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a b s t r a c t

Most animals that have compound eyes determine object distances by using monocular cues, especially motion
parallax. In artificial compound eye imaging systems inspired by natural compound eyes, object depths are
typically estimated by measuring optic flow; however, this requires mechanical movement of the compound eyes
or additional acquisition time. In this paper, we propose a method for estimating object depths in a monocular
compound eye imaging system based on the computational compound eye (COMPU-EYE) framework. In the
COMPU-EYE system, acceptance angles are considerably larger than interommatidial angles, causing overlap
between the ommatidial receptive fields. In the proposed depth estimation technique, the disparities between
these receptive fields are used to determine object distances. We demonstrate that the proposed depth estimation
technique can estimate the distances of multiple objects.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Compound eyes, such as those of arthropods, have attracted
widespread research interest owing to their unique features – such
as wide fields of view (FOVs), excellent motion detection capability,
and sensitivity to light intensity – that indicate their great potential
for use in numerous applications, including unmanned aerial vehicles
and endoscopic medical tools [1–4]. Recently, cameras inspired by
compound eyes found in nature have been developed using curved
optics and electronics [5,6] and discrete component integration at
macroscopic levels [7].

Visual methods for depth estimation can be grouped into two main
categories based on whether they use binocular or monocular cues [8].
Binocular cues are obtained from the minor disparities between the
views of two eyes when the eyes are located close to one another and
have overlapping views. These slightly different images of the same
scene are sent to the brain and integrated into a single image containing
depth information [9]. By contrast, monocular cues are obtained from
two-dimensional images captured by a single eye; these cues include
interposition, motion parallax, relative size and clarity, texture gradient,
linear perspective, and light and shadow [8].

Some insects, such as praying mantids, that have binocular vision
systems in the fronts of their heads use binocular cues to estimate target
distances [9,10]. However, unlike humans’ camera-like eyes that can
focus on objects by changing the shapes or positions of their lenses,
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insects’ compound eyes are inherently immobile and unable to focus
owing to their structural limitations [8]. Thus, the binocular cues
used for depth estimation in compound eyes are much less efficient,
yielding images with low spatial resolutions and limited effective depth
estimation ranges [11,12].

Insects can also estimate object distances using monocular cues.
The motion parallax of objects in a visual scene that is caused by the
relative motion between the observer and the objects yields information
about object distances [8,13]. Specifically, nearby objects produce
more apparent motion than distant ones. Insects’ visual systems can
easily detect the depths of objects that move independently of their
surroundings by using motion parallax. For example, grasshoppers judge
depths accurately by using the motion parallax generated by peering
movements, that is, by moving their head from side to side [9], and
bees measure distances by monitoring the apparent motion of an object
relative to its surroundings [14].

Recently, artificial compound eyes that mimic natural compound
eyes have been proposed. In these eyes, each ommatidium (individual
imaging unit) has a limited acceptance angle, thus avoiding optical
crosstalk among neighboring ommatidia [5–7,13]. In [6,13], object
depths were estimated using monocular cues from optic flows (i.e.,
pattern of apparent motion) based on the phenomenon in which a closer
object appears to move faster than a farther one. However, this method
requires rotation or movement of the compound eye.
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In this paper, we propose a method for estimating object depths
in a monocular compound eye imaging system based on the compu-
tational compound eye (COMPU-EYE) framework described in [15].
In COMPU-EYE, each ommatidium has a larger acceptance angle than
its interommatidial angle, causing the ommatidial receptive fields to
overlap significantly. As in binocular depth estimation methods, depth
estimation in COMPU-EYE involves processing the multiple and slightly
differing views received by the ommatidia by using a proposed digital
signal processing (DSP) technique. Depth information can be estimated
by using the dependences of the disparities between the ommatidial
observations on object distance. We perform a numerical experiment to
verify the effectiveness of the proposed method. In our experiment, we
demonstrate that the proposed depth estimation technique can not only
estimate the distances of multiple objects but also reconstruct object
images with high resolution.

Depth estimation using the disparities between multiple subimages
has been studied in multicamera systems such as integral imaging [16].
Integral imaging is a three-dimensional imaging and sensing system that
uses an array of optical units. Each optical unit consists of a microlens
and an array of photosensors, and it produces an elemental image. From
multiple elemental images, a three-dimensional image is reconstructed
optically or computationally [17]. In [18], an iterative reconstruction
algorithm was proposed for improving image quality given distance
information. A stereo matching method that used the spatial variations
of parallax shifts in elemental images was proposed for depth estimation
[2,19]. We note that multicamera setups are essentially different from
our work. First, our structure can be considered a degraded integral
imaging system with a single photosensor in each elemental image; this
imitates the structure of apposition compound eyes found in nature.
The number of sensors is thus reduced dramatically, and the sensors
can be implemented in a fully hemispherical structure that provides
a large FOV [5]. Some studies on integral imaging considered curved
surfaces for realizing a large FOV [20]. However, with planar sensors,
they require additional optical components like random phase masks;
otherwise, mismatch occurs [20]. Second, three-dimensional informa-
tion is highly compressed using a single photosensor per lens. Thus,
more sophisticated reconstruction algorithms are required for imaging
and depth estimation.

In Section 2, we describe the COMPU-EYE system model and the
principle of depth estimation. In Section 3, we propose our depth
estimation method, and in Section 4, we discuss the results. Finally, we
present our conclusions in Section 5.

2. COMPU-EYE system model and depth estimation

2.1. COMPU-EYE system model

We consider an apposition compound eye imaging system in which
a hemispherical eye observes a planar object. The hemispherical com-
pound eye can be implemented by reformulating a stretchable set of a
microlens and photodetector array [5]. As a result, this compound eye
has a large FOV. This compound eye consists of a two-dimensional array
of M ommatidia that are uniformly spaced with an interommatidial
angle of Δ𝜙. As illustrated in Fig. 1(a), each ommatidium receives
incident light within its acceptance angle Δ𝜑. Based on the object’s
location, each observation at each ommatidium can be specified by a
transfer function that describes the fraction of the input light that each
ommatidium observes. We assume that the object is located a distance
d (measured in millimeters) away from the compound eye and that
the image to be reconstructed consists of N pixels that form an N ×
1 input vector 𝐱 =

[

𝑥1,… , 𝑥𝑁
]𝑇 in lexicographic order. Let 𝑦𝑖 denote

the output sample obtained by a photodetector at the 𝑖th ommatidium
for 𝑖 ∈ {1, 2,… ,𝑀}. Through ray tracing analysis, 𝑦𝑖 can be obtained
using the linear equation 𝑦𝑖 = 𝒂𝑖,𝑑𝐱, where 𝒂𝑖,𝑑 is a 1 × 𝑁 vector
whose elements represent the visibility of the 𝑖th ommatidium at each
of the N pixels of the object located at a distance of d [15]. Given

the structure of the compound eye, specifically, the acceptance angles,
interommatidial angles, and sizes of the compound eye and ommatidia,
the receptive fields of ommatidia at a distance of d are determined.
Each element of 𝒂𝑖,𝑑 is obtained by calculating the intersection area
of the receptive field of the 𝑖th ommatidium and the 𝑗th pixel in the
object for 𝑗 ∈ {1, 2,… , 𝑁}. The data acquisition model for M ommatidial
observations can be expressed as a system of linear equations as follows:

𝐲 = 𝐀𝑑𝐱 + 𝐧, (1)

where 𝐲 =
[

𝑦1,… , 𝑦𝑀
]𝑇 is a set of M output samples, 𝐀𝑑 ∈ R𝑀×𝑁

denotes a measurement matrix whose 𝑖th row is 𝒂𝑖,𝑑 , and n is an 𝑀 × 1
noise vector.

A signal is typically considered sparse if it can be represented
with few nonzero elements. We note that any natural image can be
represented as a sparse signal in a certain domain, such as by applying
a wavelet, discrete cosine, or discrete Fourier transform [21]. That is,
𝐱 = 𝐰𝑇 𝐬 and 𝐰𝐱 = 𝐬, where s is a sparse 𝑁 × 1 vector and w is an 𝑁 ×𝑁
sparsifying matrix. By exploiting the sparse representation of x, Eq. (1)
can be expressed as

𝐲 = 𝐀𝑑𝐰𝑇 𝐬 + 𝐧. (2)

To obtain sufficiently high resolution, the number of pixels to be
reconstructed is set to be larger than the number of ommatidia, that
is, N >M. Then, Eq. (2) becomes an underdetermined system of linear
equations. Given 𝐀𝑑 and y, s can be obtained by solving the following
convex optimization problem [22]:

�̂� = min
𝐬

|𝐬|1 subject to ‖

‖

‖

𝐲 − 𝐀𝑑𝐰𝑇 𝐬‖‖
‖2

< 𝜀, (3)

where 𝜀 is a small constant. From �̂�, the object image can be recon-
structed by solving �̂� = 𝐰𝑇 �̂�.

2.2. Distance and measurement matrix

The COMPU-EYE imaging system proposed in [15] yields resolution
improvements beyond the number of ommatidia owing to its use of large
ommatidial acceptance angles in combination with a DSP technique. The
large acceptance angles enable each pixel to be observed multiple times
by multiple ommatidia with different perspectives. However, these
ommatidial observations are severely distorted owing to the overlap
in the ommatidial receptive fields. Given a measurement matrix, DSP
can be used to reconstruct high-resolution images from the distorted
observations by solving the underdetermined linear system in Eq. (1).
The measurement matrix strongly depends on the object’s properties,
such as its distance. In [15], the object distance was assumed to be fixed
and known, and the measurement matrix corresponding to this distance
was given to the DSP system. However, assuming prior knowledge about
object distances is impractical in reality. The reconstruction process
works well only if the measurement matrix is correct; if an inappropriate
measurement matrix is used, then the reconstructed image is severely
distorted.

In the framework of COMPU-EYE imaging, we propose a new depth
estimation method. In conventional compound eyes, Δ𝜑 is designed to
be smaller than or equal to Δ𝜙 to avoid aliasing [5,6,23]. As shown
in Fig. 1(a), each ommatidium observes an independent section within
Δ𝜑. Consider two objects, 𝑃1 and 𝑃2, that are located at different
distances from a compound eye. If the objects are observed by a single
ommatidium in Fig. 1(a), their distances cannot be inferred. In contrast,
the COMPU-EYE system has enlarged, overlapping ommatidial receptive
fields, because Δ𝜑 is much larger than Δ𝜙, as seen in Fig. 1(b). We note
that a large acceptance angle can be realized by increasing the diameter
of the photodetector, decreasing the focal length of the microlens, or
using a material of higher refractive index for the microlens [15]. This
configuration is shown in Fig. 1(b), in which object 𝑃2 is observed by two
ommatidia; thus, the compound eye can deduce that object 𝑃2 is farther
away than object 𝑃1. When many ommatidia are present, the number of

179



W.-B. Lee, H.-N. Lee Optics Communications 412 (2018) 178–185

Fig. 1. Structures and fields of view of (a) Conventional compound eye with Δ𝜑1 ≤ Δ𝜙 and (b) Proposed COMPU-EYE system with Δ𝜑2 ≫ Δ𝜙.

ommatidia viewing the object and the area of the object that is visible
by the ommatidia depend upon the object distance. The variation of
these quantities with object distance is used for depth estimation in the
proposed method.

Here, we give an example of the variation for different object dis-
tances. In Fig. 2, the measurement matrices and corresponding number
of nonzero elements per column are shown, in which a compound
eye consists of 5 × 5 ommatidia with a radius of 6.92 mm, focal
length of micro lens of 1.35 mm, Δ𝜙 = 12◦, and Δ𝜑 = 30◦. Three
objects are located at 𝑑1 = 2 mm, 𝑑2 = 20 mm, and 𝑑3 = 40 mm
from the compound eye. The object plane is composed of 12 × 12
pixels with a uniform distribution. As the object moves away from the
compound eye, the areas of the ommatidial receptive fields and the
overlap between them both increase. Accordingly, as shown in Fig. 2(a),
the number of nonzero elements in the measurement matrix increases
with object distance. In Fig. 2(b), the number of nonzero elements
per column in the measurement matrices varies with respect to the
object distances, implying that each pixel is uniquely observed by a
different set of ommatidia with different perspectives. Thus, a unique
measurement matrix is generated with respect to object distance. By
using the relationship between the unique measurement matrix and the
object distance, we propose the following method for estimating object
distances.

2.3. System model for depth estimation

First, we set the range of interest 𝑅 =
[

𝑑min, 𝑑max
]

, where 𝑑min and
𝑑max are the minimum and maximum distances, respectively. The range
of interest can be application-specific; for example, it can be 10–25 mm
for endoscopic applications [24]. For DSP, we assume that the object dis-
tance can be sampled as a set of discrete distances 𝐝 =

{

𝑑1, 𝑑2, … , 𝑑𝐿
}

within the range of interest, where L is the number of distance elements.
In this paper, we consider uniform discrete distances within the range
of interest. The depth resolution Δ𝑑 =

(

𝑑max − 𝑑min
)

∕𝐿 depends on the
number of distance elements and depth range of interest. According to
the predetermined 𝐝, a measurement matrix 𝐀𝑑𝑙 for 𝑙 ∈ {1, 2,… , 𝐿}
can be obtained from the structure of the compound eye and the object
located a distance 𝑑𝑙 away from the compound eye. By concatenating L
measurement matrices, a dictionary matrix 𝐀 ∈ R𝑀×(𝐿⋅𝑁) can be formed
as 𝐀 =

[

𝐀𝑑1𝐀𝑑2 … 𝐀𝑑𝐿

]

. Then, the linear representation of y in Eq. (1)
can be rewritten in terms of all possible measurement matrices as

𝐲 =
𝐿
∑

𝑖=1
𝐀𝑑𝑖𝐱𝑖 = 𝐀𝐗, (4)

where 𝐗 =
[

𝐱𝑇1 ,… , 𝐱𝑇𝐿
]𝑇 =

[

𝑥1,1,… , 𝑥1,𝑁 , … , 𝑥𝐿,1,… , 𝑥𝐿,𝑁
]𝑇 ∈

R(𝐿⋅𝑁)×1. When an object is located at a certain distance in the set 𝐝,
a valid observation y can be sufficiently represented by a linear combi-
nation of the columns from the corresponding measurement matrix. For

example, when the object distance matches the 𝑙th measurement matrix,
the linear equation becomes

𝐲 = 𝐀𝐗0, (5)

where 𝐗0 =
[

0,… , 0, 𝑥𝑙,1,… , 𝑥𝑙,𝑁 , 0,… , 0
]𝑇 is a sparse coefficient vector

whose entries are zero except for those associated with the 𝑙th measure-
ment matrix. x can be sparsely represented as 𝐱 = 𝐰𝑇 𝐬. Similarly, X can
be sparsely represented as 𝐗 = 𝐖𝑇 𝐒. Here, S is an 𝐿 ⋅𝑁 ×1 sparse vector
and W is a block diagonal matrix containing L instances of w, that is,
𝐖 = 𝑑𝑖𝑎𝑔(𝐰,… ,𝐰

⏟⏞⏟⏞⏟
𝐿

) ∈ R(𝐿⋅𝑁)×(𝐿⋅𝑁), where 𝑑𝑖𝑎𝑔 (⋅) represents a diagonal

matrix. By using S, Eq. (4) becomes

𝐲 = 𝐀𝐖𝑇 𝐒 = 𝐁𝐒, (6)

where 𝐒 =
[

𝐬𝑇1 ,… , 𝐬𝑇𝐿
]𝑇 =

[

𝑠1,1,… , 𝑠1,𝑁 ,… , 𝑠𝐿,1,… , 𝑠𝐿,𝑁
]𝑇 ∈ R(𝐿⋅𝑁)×1

and 𝐁 = 𝐀𝐖𝑇 . As does Eq. (3), 𝑙1 norm minimization provides a sparse
vector �̂�:

�̂� = arg min
𝐒

‖𝐒‖1 subject to ‖

‖

‖

𝐲 − 𝐀𝐖𝑇 𝐒‖‖
‖

≤ 𝜂, (7)

where 𝜂 is a small constant.

3. Depth estimation method

After �̂� has been obtained from Eq. (7), the problem of estimating
object distances can be reformulated as a classification problem whose
objective is to find the distances at which the object has the high-
est probability of being located. Because the compound eye imaging
system can be sparsely represented in Eq. (6) and the measurement
matrices are uniquely generated with respect to object distances, sparse-
representation-based classification (SRC) can be used to estimate object
locations. SRC has been widely studied, and its accuracy has been
demonstrated in many applications including face recognition [25] and
brain computer interface systems [26]. SRC usually finds the most
compact representation of a test sample, where the representation
is expressed as a linear combination of columns in an overcomplete
dictionary matrix, and then, it determines a class that contributes most
to represent the test sample [27]. In this paper, we use SRC to estimate
the depths of multiple objects. Unlike conventional SRC, the observed
signal in this depth estimation framework is superposed with respect to
the number of objects. Therefore, our problem is defined as a multiclass
classification problem. We first describe an SRC-based depth estimation
algorithm in the compound eye imaging system; we then propose an
iterative depth estimation method that updates dictionaries in a coarse-
to-fine manner.

We first specify a classification rule by using sparse signal reconstruc-
tion. As 𝑙1 norm minimization provides a sparse solution for Eq. (7),
most of the nonzero components in �̂� reside in the class in which the
object exists with high probability. One of the classification rules is
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Fig. 2. (a) Measurement matrices and (b) their number of nonzero elements per column for 𝑑1 = 2 mm, 𝑑2 = 20 mm, and 𝑑3 = 40 mm, where 𝑀 = 5 × 5, 𝑁 = 12 × 12, Δ𝜙 = 12◦, and
Δ𝜑 = 30◦.

Table 1
SRC-based depth estimation algorithm.

Initial parameters: 𝐲,𝐝 =
{

𝑑1 , 𝑑2 ,… , 𝑑𝐿
}

,𝐰, 𝜂, 𝛼
Step 1: Set 𝐀 =

[

𝐀𝑑1𝐀𝑑2 … 𝐀𝑑𝐿

]

and 𝐖 = 𝑑𝑖𝑎𝑔(𝐰,… ,𝐰
⏟⏞⏟⏞⏟

𝐿

).

Step 2: Solve Eq. (7) from y given A and W, and obtain �̂�.
Step 3: Calculate the regularized residuals:

𝑟𝑙 ∶=
‖

‖

‖

‖

𝐲 − 𝐁𝛿𝑙
(

�̂�
)

‖

‖

‖

‖

2
∕
‖

‖

‖

‖

𝛿𝑙
(

�̂�
)

‖

‖

‖

‖

2
for 𝑙 = 1,… , 𝐿.

Step 4: Obtain the class of existence 𝐼𝑒 =
{

𝑙|𝑟𝑙 < 𝛼
}

and the estimated
distance of the object �̂� =

{

𝑑𝑙|𝑙 ∈ 𝐼𝑒
}

.

to use the residuals [22]. For each class, we define its characteristic
function 𝛿𝑙 ∶ R𝐿⋅𝑁 → R𝐿⋅𝑁 that selects the coefficients of �̂� associated
with the 𝑙th class while nullifying the coefficients of other classes. Thus,
for �̂� ∈ R𝐿⋅𝑁 , 𝛿

(

�̂�
)

∈ R𝐿⋅𝑁 is obtained by including the elements
corresponding to the 𝑙th class and nulling all elements of �̂� from other
classes. By using the characteristic function, we denote the regularized
residuals as

𝑟𝑙 ∶=
‖

‖

‖

‖

𝐲 − 𝐁𝛿𝑙
(

�̂�
)

‖

‖

‖

‖

2
∕
‖

‖

‖

‖

𝛿𝑙
(

�̂�
)

‖

‖

‖

‖

2
. (8)

If the object is located at 𝑑𝑙, the 𝑟𝑙 value is smaller than those at other
distances. We denote 𝐼𝑒 as a set of the indices of estimated distances at
which the objects are expected to be located. With 𝑟𝑙 for 𝑙 = 1,… , 𝐿, the
classification rule is given by

𝐼𝑒 ∶=
{

𝑙|𝑟𝑙 < 𝛼
}

, (9)

where 𝛼 is an arbitrary constant. A set of distances �̂� where the object
is expected to be located can be determined by

�̂� =
{

𝑑𝑙|𝑙 ∈ 𝐼𝑒
}

. (10)

Then, the images that only correspond to the estimated distances are
reconstructed by solving �̂�𝑙 = 𝐰𝑇 �̂�𝑙 for 𝑙 ∈ 𝐼𝑒. The SRC-based depth
estimation algorithm is summarized in Table 1.

Thus far, depth estimates have been obtained by finding locations
in a dictionary, where the signals have small residuals. To improve the

depth accuracy, the number of distance elements L must be increased
in the form of the dictionary. However, the dictionary cannot include
infinitely many possible distances owing to computational complexity
and memory storage. To solve Eq. (7), 𝑂(𝑀 ⋅ 𝑁 ⋅ 𝐿) computations
for every iteration and 𝑂(𝑀 ⋅ 𝑁 ⋅ 𝐿) storage are required; these are
proportional to the number of distance elements [28]. We note that
the 𝑙1 norm minimization in Eq. (7) finds a sparse solution whose
nonzero elements are most closely associated with the most correlated
measurement matrix. By using the fact that the measurement matrices
of neighboring distances are relatively more correlated than those of
farther distances in dictionary matrix A, we propose an iterative depth
estimation method that is more efficient in terms of computational
complexity and memory storage. Instead of universally searching for
the object distances at once, we iteratively refine the set of distances
in a coarse-to-fine manner [29]. The distances are investigated in detail
only around regions where objects are expected to be present.

For iteration index i, we first choose a set of coarse distances within
the range of interest 𝑅(𝑖) as 𝐝(𝑖)𝑙 for 𝑙 = 1, 2,… , 𝐿𝑖, at which the objects
can potentially be located. The depth interval is Δ𝑑(𝑖) = 𝑑(𝑖)𝑙+1 − 𝑑(𝑖)𝑙 .
Accordingly, 𝐀(𝑖) and 𝐖(𝑖) can be generated from the structure of the
compound eye imaging system. The sparse signal �̂� is reconstructed
by solving Eq. (7), and the estimate of distances �̂�(𝑖) can be obtained
by solving Eq. (8)–(10). Then, the set of distances is updated by
refining the range of interest and the depth interval. The range of
interest is refined around the estimated distances, that is, 𝑅(𝑖+1) =
[

𝑑(𝑖)𝑗 − Δ𝑑(𝑖)∕2, 𝑑(𝑖)𝑗 + Δ𝑑(𝑖)∕2
]

for 𝑗 = 1,… , ||
|

�̂�(𝑖)||
|

, where |⋅| represents
the cardinality. The depth interval is refined as Δ𝑑(𝑖+1) = Δ𝑑(𝑖)∕𝐾 for
a positive real number 𝐾 > 1. Then, the updated set of finer distances is

𝐝(𝑖+1) =
{

𝑑(𝑖+1)𝑗,𝑘

}

(11)

where 𝑑(𝑖+1)𝑗,𝑘 =
(

𝑑(𝑖)𝑗 − Δ𝑑(𝑖)∕2
)

+ (𝑘 − 1)Δ𝑑(𝑖+1) for 𝑗 = 1,… , ||
|

�̂�(𝑖)||
|

and 𝑘 = 1,… , ⌈𝐾⌉. We repeat this process until the depth interval is
sufficiently fine. The iterative coarse-to-fine depth estimation algorithm
is summarized in Table 2.
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Table 2
Iterative depth estimation algorithm.

Initial parameters: 𝐲, 𝑅(1) ,𝐝(1) =
{

𝑑(1)
1 , 𝑑(1)

2 ,… , 𝑑(1)
𝐿1

}

,𝐰, 𝜂, 𝛼, i = 1

Step 1: Set 𝐀(𝑖) =
[

𝐀𝑑(𝑖)
1

… 𝐀𝑑(𝑖)
𝐿𝑖

]

and 𝐖(𝑖) = 𝑑𝑖𝑎𝑔(𝐰,… ,𝐰
⏟⏞⏟⏞⏟

𝐿𝑖

).

Step 2: Solve Eq. (7) from y given 𝐀(𝑖) and W, and obtain �̂�.
Step 3: Calculate the regularized residuals:

𝑟𝑙 ∶=
‖

‖

‖

‖

𝐲 − 𝐁𝛿𝑙
(

�̂�
)

‖

‖

‖

‖

2
∕
‖

‖

‖

‖

𝛿𝑙
(

�̂�
)

‖

‖

‖

‖

2
for 𝑙 = 1,… , 𝐿.

Step 4: Obtain the set of indices of estimated distances 𝐼 (𝑖)
𝑒 =

{

𝑙|𝑟𝑙 < 𝛼𝑖
}

.
Step 5: Update

𝑅(𝑖+1) =
[

𝑑(𝑖)
𝑗 − Δ𝑑(𝑖)∕2, 𝑑(𝑖)

𝑗 + Δ𝑑(𝑖)∕2
]

,

Δ𝑑(𝑖+1) = Δ𝑑(𝑖)∕𝐾 for 𝐾 > 1, 𝐝(𝑖+1) =
{

𝑑(𝑖+1)
𝑗,𝑘

}

and 𝐿𝑖+1 = |𝐝(𝑖+1)|,

where 𝑑(𝑖+1)
𝑗,𝑘 =

(

𝑑(𝑖)
𝑗 − Δ𝑑(𝑖)∕2

)

+ (𝑘 − 1)Δ𝑑(𝑖+1)

for 𝑗 = 1,… , ||
|

�̂�(𝑖)||
|

and 𝑘 = 1,… , ⌈𝐾⌉.
Step 6: Set i = i +1 and repeat from Step 1 until the depth resolution is

sufficiently fine.

4. Results

To evaluate the performance of our depth estimation technique, we
consider a hemispherical compound eye with a radius of 6.92 mm,
where each ommatidium has a height of 1.35 mm [5]. The compound
eye consists of an M = 80 × 80 array of uniformly spaced ommatidia
with Δ𝜙 = 1. 8◦ and Δ𝜑 = 45◦, such that Δ𝜑 ≫ Δ𝜙. The 200 × 200
mm object consists of N = 100 × 100 pixels. Thus, each measurement
matrix has dimensions of 6400 × 10000. For the sparsifying basis w, we
use a db2 wavelet transform and a level of two. To solve Eq. (7), we use
the fast and efficient alternating direction method [28].

First, we determine the depth estimation accuracy for the proposed
compound eye. Because the measurement matrices corresponding to
neighboring distances are more correlated with each other, we set a
distance of 108 mm from the compound eye as the reference distance
and compare with other distances by increasing the depth intervals.
To evaluate the depth estimation accuracy with respect to the depth
interval, we consider a sparse signal as an input, that is, w = I, where
I represents an identity matrix. In each assessment, a sparse signal
dimension of 10000 × 1 with 5%, 7.5%, and 10% of randomly located
nonzero elements is used. The distance of the input signal is randomly
chosen between the reference distance and the comparison distance.
The tolerance 𝛼 in Eq. (9) is set to be 0.1. This assessment is repeated
100 times. As seen in Fig. 3, as the object distances increase, the
accuracy of the proposed depth estimation increases. For signals with
5% sparsity, if the depth intervals are larger than 0.3 mm, the proposed
depth estimation works with more than 97% accuracy. For the 𝑙1 norm
minimization in Eq. (7), the reconstruction performance depends on the
sparsity of the input signal, that is, low accuracy for the input signal
with large sparsity. Thus, as the sparsity increases, the performance of
the proposed depth estimation deteriorates as well.

The proposed COMPU-EYE imaging system used for evaluating the
image reconstruction is shown in Fig. 4. The hemispherical compound
eye observes an object consisting of four characters: G, i, S, and T. The
characters are located at three different distances from the compound
eye. G is 108 mm away from the compound eye, i and S are 109 mm
away, and T is 112 mm away, as shown in Fig. 4(b). As shown in
Fig. 4(c), the characters overlap one another, preventing the distance
information from being inferred. The DSP technique introduced in
Section 3 can be used to decompose each letter given its distance.

We demonstrate the performance of the proposed depth estimation
method when the object distances are included in the set of potential
distances in the dictionary. We assume that the depth range of interest
is from 108 mm to 112 mm and the target depth resolution is 1 mm.
Within the range of interest, the distances are uniformly sampled with
1-mm resolution, that is, 𝐝 = {108, 109, 110, 111, 112}. For depth estima-
tion and object reconstruction, we construct a dictionary matrix 𝐀 =
[

𝐀108 𝐀109 𝐀110 𝐀111 𝐀112
]

in accordance with the potential distances.

Fig. 3. Depth estimation accuracy (%) with respect to depth interval.

Fig. 4. Proposed COMPU-EYE imaging system: (a) Three-dimensional, (b) Top, and (c)
Front views.

GivenA, we can solve Eq. (7) to obtain �̂� from y. Then, �̂� can be obtained
by calculating �̂� = 𝐖𝑇 �̂�. The reconstructed �̂� and �̂� are shown in
Fig. 5(a) and (b), respectively. Owing to the sparse signal reconstruction,
most of the nonzero signals in Fig. 5(a) are concentrated in the set of
indices corresponding to distances of 108 mm, 109 mm, and 112 mm.
We note that the reconstruction errors in Fig. 5(a) and (b) for 110 mm
and 111 mm are caused by coherence among neighboring measurement
matrices. As indicated in Fig. 5(c), the regularized residuals of the set
of indices corresponding to distances of 108 mm, 109 mm, and 112 mm
are smaller than those corresponding to the other distances. As a result,
the index set of the estimated distances and the estimated distances of
the objects are determined as 𝐼𝑒 = {1, 2, 5} and �̂� = {108, 109, 112},
respectively. In Fig. 5(d), the reconstructed signals �̂�𝑙 = 𝐰𝑇 �̂�𝑙 for 𝑙 ∈
{1, 2, 5} are represented as images. Note that the observation is highly
distorted owing to the overlap among the ommatidial receptive fields.
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Fig. 5. (a) Reconstruction of �̂�, (b) Reconstruction of �̂�, (c) Normalized regularized residuals, and (d) Ommatidial observations and reconstructed images with respect to estimated
distances.

The reconstructed characters at 108, 109, and 112 mm are clearly
visible. This result indicates that COMPU-EYE achieves 1-mm depth
resolution. We note that the reconstruction resolution is also improved
by 1.56 times because 100 × 100-pixel images are reconstructed from
80 × 80-pixel ommatidial observations.

We now investigate the performance of the iterative depth estimation
for the object shown in Fig. 4. We assume that the potential object
locations are unknown and that the range of interest is from 100
mm to 120 mm, that is, 𝑅(1) = [100mm, 120mm]. For the SRC-based
depth estimation method in Table 1 to achieve a depth resolution of
1 mm, the dictionary requires 21 concatenated measurement matrices
with dimensions of 6400 × 210000. The computational complexity of
this task necessitates the use of the iterative depth estimation method
described in Table 2. We first formulate a set of coarse distances 𝐝(1) =
{100, 110, 120} and 𝐀 =

[

𝐀100 𝐀110 𝐀120
]

correspondingly. The result of
iterative depth estimation is shown in Fig. 6. At the 1st iteration, because
the objects are located at around 110 mm, the residual value at 110 mm
is the smallest. Thus, the object distance is estimated as 110 mm for
𝛼 = 0.3 at the 1st iteration. For detailed depth estimation, we further set
a dictionary with finer distances at around 110 mm. The range of interest
is refined as 𝑅(2) = [105, 115] and the depth interval, as Δ𝑑(2) = 3 for 𝐾 =
3.33. Then, the set of distances is updated as 𝐝(2) = {105, 108, 111, 114}.
At the 2nd iteration, the residual values at distances of 108 mm and
111 mm are smaller than those at other distances. Thus, we estimate
that the objects are located at around 108 mm and 111 mm for 𝛼 = 0.2.
The range of interest is refined as 𝑅(3) = [107, 109] ∪ [110, 112] and the
depth interval as Δ𝑑(3) = 1 for 𝐾 = 3. Then, the set of distances is
updated as 𝐝(3) = {107, 108, 109, 110, 111, 112}. At the 3rd iteration, the
object distances are estimated as 108 mm, 109 mm, and 112 mm from
the compound eye for 𝛼 = 0.1. As a result, the objects are efficiently
reconstructed by using the proposed iterative depth estimation method.

Now, we aim to demonstrate depth estimation for an object with
continuous depths. As a target, we consider a plane object that is
slanted at 23◦ toward the compound eye and located 108 mm away
from the compound eye. When the range of interest is from 108 mm
to 111 mm, the object distance can be uniformly sampled as 𝐝 =
{108, 109, 110, 111} in Fig. 7(b). The proposed depth estimation method
provides a depth map of the object with 1-mm depth resolution, as
shown in Fig. 7(d). Consequently, an object with continuous depths
can be well reconstructed by using the estimated distances, as seen in
Fig. 7(c). In this manner, continuous depths can be estimated. We note
that if we densely sample the range of distance, the depth map will be
more accurate; however, there is a limit to the depth resolution, as seen
in Fig. 3.

5. Conclusion

We have proposed a depth estimation method based on the COMPU-
EYE imaging system, in which the ommatidial acceptance angle is
much larger than the interommatidial angle. The ommatidial receptive
fields overlap, and the disparities the between ommatidial observations
vary with object distance. As a result, the uniqueness of the generated
measurement matrix depends upon the object distance. In the proposed
technique, the dependences of the disparities between the ommatidial
observations and the measurement matrix uniqueness on object distance
are used to estimate the depth. This work helps not only to estimate
object distances but also to reconstruct objects with high resolution,
and it is therefore essential for future development of the COMPU-EYE
system.

Generally, disparity-based depth estimation methods have limita-
tions for very distant objects because the disparities decrease [30].
By varying the acceptance angles of the ommatidia or arranging the
ommatidia irregularly, the range of depth estimation can be extended

183



W.-B. Lee, H.-N. Lee Optics Communications 412 (2018) 178–185

Fig. 6. An example of the iterative depth estimation method.

(a) Target object. (b) Sampled depth map.

(c) Reconstruction. (d) Reconstructed depth map.

Fig. 7. Depth estimation and object reconstruction for a slanted object.

adaptively, that is, large acceptance angles for small distances and small
acceptance angles for large distances [31]. Our future work will focus
on improving the depth resolution by designing COMPU-EYE to have
high incoherence among measurement matrices with respect to object
distances. Furthermore, we will improve the depth estimation perfor-
mance by applying the 𝑙0-norm based minimization to solve Eq. (6).

This has been shown to provide better reconstruction performance than
the 𝑙1-norm minimization [32].
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