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Abstract: Bitcoin is the first cryptocurrency to participate in a network and receive compensation
for online remittance and mining without any intervention from a third party, such as financial
institutions. Bitcoin mining is done through proof of work (PoW). Given its characteristics, the
higher hash rate results in a higher probability of mining, leading to the emergence of a mining pool,
called a mining organization. Unlike central processing units or graphics processing units, high-cost
application-specific integrated circuit miners have emerged with performance efficiency. The
problem is that the obtained hash rate exposes Bitcoin’s mining monopoly and causes the risk of a
double-payment attack. To solve this problem, we propose the error-correction code PoW
(ECCPoW), combining the low-density parity-check decoder and hash function. The ECCPoW
contributes to the phenomenon of symmetry in the proof of work (PoW) blockchain. This paper
proposes the implementation of ECCPoW, replacing the PoW in Bitcoin. Finally, we compare the
mining centralization, security, and scalability of ECCPoW and Bitcoin.

Keywords: error-correction codes proof-of-work (ECCPoW); proof-of-work (PoW); ECCPoW
implementation; ASIC resistance

1. Introduction

We use digital signatures from third-party trust agencies to promote trust in Internet commerce.
We warrant proof of data forgery using middlemen. Satoshi Nakamoto proposed an electronic
money system without a middleman in a peer-to-peer (P2P) network through a Bitcoin white paper
[1]. Bitcoin applies blockchain technology to electronic monetary systems to guarantee transactions
without intermediaries (e.g., banks). Blockchain is a ledger management technology based on a
distributed computing technology that cannot be arbitrarily modified by storing the transaction
content in a chain-based distributed data storage environment in the form of a block [2,3].

The blockchain stores the same ledger on a global network and is designed to pay certain
rewards to maintain the block. This is called mining, and mining creates blocks and obtains
cryptocurrency by executing a hash function. Miners belong to mining pools because of the
probability and convenience of being rewarded for mining cryptocurrency [4,5].

The hash rate is the number of hash values calculated per second as a measure of computational
processing power for mining cryptocurrency. The hash rate of cryptocurrency is determined by the
total number of the participating nodes. Most miners belong to a hash pool and occupy a high
percentage of the hash rate. We should be concerned about the risk of a double-payment attack if the
mining pool in the blockchain accounts for a high percentage of the total hash rate of cryptocurrency
[6]. A double-payment attack occurs when the mining pool seizes at least 51% of the total hash rate
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to determine the branch of the blockchain to the desired side. Recent studies have shown that a
double-payment attack can be made to benefit from a low share of the hash rate [7].

Bitcoin miners receive blockchain information (version, previous block hash, Merkle root, bits,
and others) and execute hash functions (e.g., the secure hash algorithm (SHA 256). Miners create a
block if the output value of the hash function is less than the target level of difficulty. Currently,
Bitcoin requires an increasingly high operation to create blocks. Miners purchase application-specific
integrated circuits (ASICs) with high per-second computing power to mine Bitcoin and join the
mining pool. Low-power miners using central or graphics processing units (CPUs or GPUs) have
difficulty mining.

Bitcoin uses the number of zeros in the front digits of the output from the SHA 256 function to
generate blocks. The mining difficulty increases with the number of zeros. Miners buy ASICs to
compute SHA functions quickly. The mining machine Antminer S9 (13,000 MH/s) is approximately
8800 times faster than GTX1060 (1478 MH/s). The recently released S19 has a speed of 95 TH/s, and
S19Pro exhibits performance of 110 TH/s [8]. Miners using CPUs or GPUs in Bitcoin, and miners
using ASIC chips do not have equal chances for success because ASIC miners have an 8800-fold
greater chance of success in mining.

Blockchain was proposed to allow nodes to participate as miners freely and to share mining
rewards fairly. Blockchain is not free to participate in as a miner. The participating miners compete
against equity. Several methods have been proposed to curb the development of ASIC miners, but in
the end, these methods have not prevented ASIC development. As a new mining function to prevent
the development of ASIC miners, we proposed the error-correction code proof of work (ECCPoW)
concept, which combines the low-density parity-check (LDPC) decoder and hash function [9]. In
addition, we analyzed the hash cycle of ECCPoW and demonstrated that it could be used for
blockchain mining.

This paper contributes to the phenomenon of symmetry in the proof of work (PoW) blockchain.
The PoW blockchain tends to increase the hash rate along with the total size of the blockchain. The
size of the hash rate is related to the computing power required by block generation. Some people
take issue with the large amount of wasted power used to create the PoW blockchain. However, the
PoW blockchain guarantees high stability with the power required to create the block. The transition
to other PoWs due to problems in the PoW blockchain causes dangerous problems. Thus, ECCPoW
mitigates the power problems in the PoW blockchain and helps reduce the symmetry of the hash rate,
which increases in proportion to the size of the blockchain in the PoW blockchain.

The contribution of this paper is two-fold. It introduces the proposed ECCPoW and proposes an
implementation method. The second contribution is to introduce the process of experimenting in
Bitcoin by replacing the SHA 256 function with the ECCPoW function. This paper proposes the
creation of a cryptographic puzzle that changes every block and shows how to apply the crypto
puzzle decoder to the solution. We present the implementation of the proposed method by replacing
ECCPoW in Bitcoin. We also measure the block generation time of the ECCPoW. Finally, we compare
ECCPoW and Bitcoin by implementing them in the same environment.

This study contributes to the previous literature on ASIC resistance in PoW blockchain. Previous
studies have used forced memory access, leading to the inefficient behavior of ASICs. Another
method is to make ASICs challenging to produce using various hash functions. The last method is to
change the existing hash function to another hash function when ASICs are released. Therefore,
ECCPoW combines the LDPC decoder with a hash function to create the effect of releasing different
hash functions in each block. Implementing ASICs is difficult for the LDPC decoder due to cost issues.
Furthermore, the PoW blockchain without ASICs reduces the mining centralization. In addition,
ECCPoW can reduce power consumption by maintaining the advantages of the PoW.

This paper is structured as follows. Section 2 introduces the relevant research on the
development of the prevention of ASIC miners. Section 3 presents ECCPoW and development
methods. Section 4 reveals the results of the experiment by loading the ECCPoW into Bitcoin. Section
5 evaluates the mining centralization, security, and scalability of the ECCPoW. Finally, Section 6
presents the conclusion of the paper.
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2. Related Work

2.1. Ethereum

Ethereum is a distributed computing platform developed to implement smart contract functions
based on blockchain technology. In July 2015, Vitalik Buterin developed Ethereum in the C++ and Go
languages. Ethereum uses the Ethash algorithm. Ethereum plans to change from a PoW to a proof of
stake in the future [10]. Ether Solarium is against the use of the nonlinear directed acyclic graph
(DAG) in ASICs. The initial size of the DAG was about 1 GB, and it was designed to increase in size
linearly over time. In October 2019, the size of the DAG was 3.99 GB, which was maintained until
December 20, 2020 [11,12].

Ethereum approved the application of programmatic proof of work (ProgPoW) [13] to respond
to the centralization of mining in ASIC in 2019. First, ProgPoW regularly changes mining problems
to a problem in which GPUs can adapt quickly. Second, ProgPoW makes the most of all the
components of the graphics card for mining. Moreover, ProgPoW uses randomly generated problems
based on block numbers and is designed for the efficient operation of GPUs. This reduces
performance differences compared to ASICs.

2.2. The X-11 Series

The X-11 series is a cryptocurrency mining algorithm that uses as many hash functions as the
number indicated behind the X [14]. The X-11 series used hash functions to add depth and complexity
to curb ASICs. The X-11 series connects several hash functions and uses the output value of the hash
as the input value of the next hash. Typically, the algorithm is used in Dash. The concept of the X-11
series uses multiple hashes to increase security and prevent ASIC mining. Currently, however, the
X-11 series has been upgraded to increase the number of hash functions, such as X-13, X-14, X-15, X-
16R, and X-17 because ASIC mining is still possible.

2.3. CryptoNote

CryptoNote was designed to be more inefficiently executed with a GPU than a CPU [15] to
prevent ASIC mining. The performance of CryptoNote is susceptible to memory latency because
memory creation and subsequent read operations occur repeatedly. This is similar to Etherium’s
Ethash function. CryptoNote creates blocks by determining the hash function to be used after
memory-intensive tasks.

Despite such attempts, Bitmain released ASICs optimized for CryptoNote algorithms in March
2018. Monero uses CryptoNote to change its mining algorithm twice a year to prevent ASICs.
Monero’s algorithm change has prevented the use of ASICs. However, the frequent hard fork
execution (radical changes) caused participants to break away from mining. In the end, there was a
risk of the centralization of mining. To prevent frequent hard forks, RandomX proposed a key block
concept that periodically changes mining methods [16].

3. The Proposed Method

This chapter provides an overview of and the implementation method of the proposed
ECCPoW. We proposed the concept of ECCPoW to increase the resistance to ASIC, using a hash
function that makes ASIC development difficult. Moreover, ASIC resistivity research reviews
methods of inducing the loading of memory; for example, Ethereum uses several hash algorithms,
such as X-11. However, ASICs for Ethereum and the X-11 series have been developed. Thus, ECCPoW
is a method for miners to release different hash functions for each block to curb the emergence of
ASICs.

The ECCPoW can help ease the centralization of mining. The conversion to ASICs in mining is
made by ordinary people to avoid being excluded from mining and by a small group of people with
capital power to monopolize mining. Mining centralization of a small group is likely to lead to mining
blocks for malicious purposes and forging and tampering with the mined blocks. The implementation
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of ASICs in the LDPC decoder lacks flexibility due to structural cost issues [17]. Moreover, ECCPoW
proposes a method of combining the LDPC decoder with a hash function. We help reduce the risk in
the blockchain by mitigating mining centralization.

3.1. ECCPoW Owverview

The ECCPoW is a POW that uses the ECC decoder that is used in communication, which can be
implemented using ASICs. As a simple example, cell phones use ASICs to implement an ECC
decoder quickly and at low power. The parity-check Matrix H determines the design of the ECC
decoder based on ASICs. In other words, ASIC equipment can produce a decoder using parity-check
matrices. For mobile phones, ASICs have standardized parity-check matrices that allow an ECC
decoder design. Building ASICs to match the decoder supporting countless parity-check matrices is
difficult due to cost problems and decoder size problems.

Randomly, ECCPoW changes each block parity-check matrix (i.e., ECCPoW uses an infinite
number of parity-check matrices). As a result, ECCPoW inhibits the development of ASICs for ECC
decoders. The ECC decoding algorithm only runs on a CPU or GPU. For example, even if the SHA
function used in the PoW is executed quickly, a bottleneck occurs in the execution of ECC decoding
algorithms.

3.2. Create a Cryptographic Puzzle that Changes Every Block

The ECCPoW aims to create a cryptographic puzzle that changes every block. We changed the
composite function used to create the cryptographic puzzle using the generation method by
Gallagher [18] and the previous hash value. In other words, ECCPoW randomly generates an LDPC
matrix used by the decoder of the composite function. The Gallagher method requires variables.
Table 1 displays the definition of the variables used in the LDPC.

Table 1. Variables in the low-density parity-check Matrix H.

Variables Definition
n Number of columns in H
m Number of rows in H
w Number of 1s in each column

c

w, Number of 1s in each row

The LDPC matrix satisfies the equation nw, = (n — k)w,, where k is n—m and 2* is the total
number of symbols that can be generated. When the variables are given, the LDPC Matrix H of size
A is generated by the following method:

Step 1: Create a partial matrix of size Wﬂc xn

111

Step 2: Generate w, — 1 submatrices by randomly permutating the following matrices:
Ap=Tli(A4) € {0,13w"",

where []i is the ith sequence, and i = 2,3,---,w,.

Step 3: Construct the final LDPC matrix using all submatrices above:

H:i=[A] A} - 4] e€ {013
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Moreover, ECCPoW changes the sequence of permutations through the previous hash values
and uses the previous hash value as the seed value to determine the sequence of permutations. The
sequence of permutations is random because the hash values are random. The code is implemented
in Reference [19]. Table 2 compares Matrix H produced using different hash values. The lower part
of the generated Matrix H in Table 2 is different.

Table 2. Form of the resulting Matrix H using different hash values.

cococ-2oo
co=oo0o
a=ocooo
asococoo

Generated Matrix H
n=24 m=16
w.=3 w =4

TE eSS ogBeEEE R
coos-sccos-doosos
coco-c-cocadossona
c-coooscoacdocsona
cooo.ocoooo-gdooooao
Sooooacooasdocsoas
cooc-cscco-cdoosoas
c-ooooo-boodoooo-o
Socoo-c-coadoosana
lccscsc-coadoosaca
cocoocoscadoosaca
ciocoobicooodoosnos
lccoos cocadonacoa
cobeosscooodeescoe
comacoboacodoanooe
cob-cobo codo-tooe
co-cooococod

looocesc.cndecnaas
coooacbo codscno0e
coooossomacdecooss
Soz888282e29288208

coosooooooo
Cco-=00000000 4
c—scocooocoooo

Previous hash value 0x00000000000000000000000000000001

B2
-

oooo=0o0ooo=0ooooo

Generated Matrix H
n=24 m=16
w.=3w =4

EEEEEEEECEEEEEER
Looccc-ocoooEnooo -
coo-cooco-cooEDooo -
cocc-cococoocoeacnan
ciccoccococoooacoooan
cicccc-coooojcoosne
ciococococoaoeoosoo
coccoc-cooooacoosne
coco-co.coooEoo 00
loccooco-coooessooo
Looococococoaooooosnoo
Scocooco-0ooooo~000
coocc-coc-~ooEn 000
co-.cco-ocooaE-oooe
co-cocoomocooscnoa
coocococ-cooooacscooo
cccococ-cooocoescooa
cc-cococooaolhoocoo
coc.coccoc.cos-ccooa
cooc-coc-cooooeocoooo
228828828888 28828s

Previous hash value 0x00000000000000000000000000000002

3.3. Crypto Puzzle Decoder that Changes Every Block

The LDPC decoder of ECCPoW was developed using a message-passing algorithm. The decoder
receives an m X n LDPC matrix of hash values r € {0,1}" of length n as input values. The decoder
outputs a value ¢ € {0,1}" of length n. The decoder can produce two types of answers depending
on the input hash value r. The decoder outputs a sign Dyp:{r, H} = ¢; if the entered hash value r
satisfies [|r — ¢;|l, <t for any sign ¢;, where t is the value determined by the LDPC matrix. If not
satisfied, the decoder outputs a random vector c € {0,1}". The code is implemented in Reference [19].

The two conditions for determining whether to solve a cryptographic puzzle are listed in Table
3. Condition 1 determines that the cryptographic puzzle has been solved if the decoder’s output value
¢ satisfies the conditions. In Condition 1, the output value is the code. Condition 1 is possible because
the output value is less likely to code when the value is any input to the decoder. For example, there
is a low probability of finding an answer to any input in SHA 256. In Condition 2, the Hamming weight
of the output value is an element of the given set S. Set S is the range value of the output value. Condition
2 occurs because the Hamming weights of the possible codes may differ when Matrix H is given.

Table 3. Conditions for the determination of crypto puzzle resolution.

(Original method) If the result of the decoder is code and has a specific Hamming

ition 1
Condition weight, the problem is solved.

. (Existing proof of work) If the result of rehashing the result of the decoder is less
Condition 2 o .
than a specific value, the problem is solved.

The satisfactory probability of Condition 1 requires a minimum Hamming distance value of H.
To calculate this value, all distinct codes in 2¥ must be considered, which is possible when the
number of codes is small, but it is impossible when the number is large. Litsyn [20] reported the upper
and lower bounds of the minimum Hamming distance value of H at specific w, and w, values.
Table 4 reveals the probability of finding the codes according to the variables in the LDPC matrix. In
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this way, the upper bound of the probability is small. This makes it less likely for the decoder to meet

Condition 1 when any value is entered.

Table 4. Probability of finding a code according to the variables of the low-density parity-check

matrix.
w.=4, w=5 P P
Upper bounds Lower bounds
n=380,k=12 6.32 x 105 2.12x 108
n=120,k =24 1.65 x 108 1.49 x 1013
n=160,k=32  406x10" 1.34 x 107

Condition 2 is used to increase the difficulty of cryptographic puzzles when variables n, m, w,,
and w, are fixed. Table 5 displays the probability that Condition 2 is satisfied when given a set S
and part of the distribution of Hamming weights of the codes that can be generated when n = 256,

m =192, and w,, w, =5 are given.

Table 5. The probability that Condition 2 is satisfied.

Hamming o Element of the Set Probability that Condition 2 is
. Probability . g
Weight S Satisfied
98 =5x 10 98 =5x 105
128 9.7 x 102 98, 100, ..., 126 ~4 % 101
128 =1 x 10" 98, 100, ..., 126,128 =5x 101

The probability of satisfying both Conditions 1 and 2 is as follows:
p: = Pr{c|Hc=0} x Pr{||c||, € S}.

We produced the difficulty table, as shown in Table 6, by calculating the probability of meeting
Conditions 1 and 2 at the same time when the variables n, w,, and w, and the set S are given. The
probability value p in Table 6 is the difficulty level of the cryptographic puzzle. The closer the
probability value is to zero, the higher the difficulty of the cryptographic puzzle.

Table 6. Difficulty table for ECCPoW.

Lv. n w, w, Set S 14
32 3 4 {10, 12, ..., 20, 22} =3.07x 10~
2 32 3 4 {10, 12, ..., 14, 16} =2.02x 10~
379 128 {34, 94} =5.12x 102
380 128 {34} =2.60x 102

Condition 2 determines the resolution of the cryptographic puzzle by comparing the output
value of the decoder with the result value and comparing the nonce with the target. Figure 1
illustrates Condition 2 for determining whether ECCPoW cryptographic puzzles are resolved. If the
composite function and the hash algorithm are recognized as one hash function, Figure 1 has the
same structure as Bitcoin, so the difficulty control function of Bitcoin can be used.
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generation
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Composite Function y

Error-Correction
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(LDPC decoder)

Hash function
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Hash function
(SHA256)

Y
Y

No

Figure 1. Condition 2 for determining the error-correction codes proof-of-work (ECCPoW) crypto
puzzle resolution.

4. Experiment

This chapter presents experiments to verify ECCPoW. In the single-node experiment, the Bitcoin
consensus algorithm was replaced by ECCPoW to verify the block generation function. In the multi-
node experiment, we experimented with checking whether block generation, block synchronization,
and transaction creation and transmission were performed correctly in a multi-node environment. In
addition, the block generation time was tested in Bitcoin and Ethereum.

4.1. ECCPoW Operation Single/Multiple Node Experiment

We replaced Bitcoin's consensus algorithm with ECCPoW. The single-node experiment is a block
generation experiment of the ECCPoW blockchain. Bitcoin uses the “generatetoaddress” command
for block generation and receives the current address of the blockchain as a parameter. Then, a new
block address is created using the “getnewaddress” command, and 10 blocks are created using
“generatetoaddress.” Figure 2 illustrates the change in 10 of the “blocks” after block generation.
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getnewaddress
3KNswAYGAvsMt3t4pCWiEFF2uHAVTDGXxr7

generatetosddress 10 IXHSWAYGIvSMEITSpONLETF2UMAY DG 1T

I

*B6353bT cefadadf 261

“fiaEabBeace f168Fa 78506 babled ] 1

*of387deab:; frdeicay Tefrael b 1dc: i
~gfaea1fasabdh 2ba 7 =,

*B6chadBl207Efa1730c1fab3 17!521] 5837351aBd4Pa934R55CA] DeSbaf 16584,
* 2861 4bded BARD405 T TIGECEra56204eRd 10T cBoc 126580 26 faR] faed 1b62 48" |
*130092a44d247d74ce956bbcb40a069 T 177167127200 F 1387 198500 50440697,

“batices21? 9573174911, fO0975341818265111c",
. 125b82027dd Fose,
. 3%80balebbs f dlbs 4822532

1

getblockehaininta

i

“bestilockhash:
“G(Ndﬂae&iiﬂ}!ﬂﬂbalﬁlbﬂlﬁﬁhf?lﬂﬁﬂhﬂﬂﬁ?ﬂﬁaaE?lI'Esll«r.utﬁlnedlrjh'

“difficulty”: 4.523059468369196e+73,

‘mediantine”: 1560519843

“verificationprogress®: 1,

“initialblockdownlond*: false,

“chaiméork”:
612",

Figure 2. Results of block generation.

Multiple node experiments use three random nodes (Nodes 1, 2, and 3) to experiment with block
synchronization, to transmit transactions, and to verify them. This experiment demonstrates that each
node mines different numbers of blocks, synchronizing to a long blockchain. Figure 3 indicates the

results of mining and checking the blocks in Node 1.

getnowaddress

IFUFZAShBNC GOk ZoFErGRaGo2B0waLDT

gensratetaaddress 10 IFUFZEShBOPCGGQKZ0FErG2ala2aivalDnT

I
*2b2d74853990931691 153 2deB59db263e0bad 2dh7 3847489446 20aTbTS 10B1 *,
“BU9640a 17 2ecd2Be5a fEan1b2AI2014b243B4 22572405553 1aBRb TS 3ddadRca ",
*1cd4cT078ar cadbafdadlcsil gce”,
ssebih:llﬂ:nbsnzfﬁfchaewlzn:aeaﬁfsvfzz5)54wsf595832m:5a2'
*7444814521d35732db1 31d7d1deelaTd 23141 ;
28275&feata)saaf71139-1ffc-tsfs:bnaﬂfbe1f9@154bnawzf5§dfwnsz'.
“4a165651cTel aba? dB0Teb7ah1785 dctBBcadEshbalc”,
*5eabbhef30AI3ab591ha30d995c2080bchasac21613a3cRf fadTT52765C82067 ",
*c43c6bb1c954123h9981 Bheads 1 2aThT che] 150037225e6659 102 152 3eaB 117",
“7a3%ec. Zfces: I3c50b171978e43"

getblockchaininfo
i
*chain®: "main”,
"blocks": 18,
“headers®: 18,

*bestblackhash”:
"7a39ecB6ael5a0 148469301 2530048830726 fabl6baeT33c50db1719 043",

*difficulty”: 4.5238504683601962+73,
*mediantime”: 1569822743,

Figure 3. Block mining and verification in Node 1.

Figure 4 reveals the results of mining and checking blocks on Node 2, and Figure 5 demonstrates
the results of mining and checking blocks on Node 3.

getnawaddrass
34rgUn3xfEPOTLOHLZBWPP LwsRVEGLIRFY
generatetoaddress 28 2rgCraXfEPDTLOML IBWPp IWSAVEGHOKFY
[
“agdan 7ﬂaabﬂﬂ(h5bd356bﬂlb“ BBcaasTanfan ‘aaabwsdaavb»ndfc 1fébhaza"
BfcSboeld Ide?lldS?GfSﬁTh’ .
"120068e34§22¢2 {7450 fcdT8d T BB6533c 2950 ThOBbOL f 36425 1 8dB0ebc faada"
"B67T58aaTd221d15c6ac c0e3boealTbcI6de2205cTITS4TIT 20 6Ea14463a588" ,
“daI65ae19320 = ifhcS2dddabel”,
“b518385ba91808619c 36c4d44%e161dbeBet9517be2d2 fd2c faead2at4171008"
"Bd13e155421dale5050266F6dBTbATa5acT37e4377231d060T0T603255473869",
“22c b7 fEfbel fa5zaeabfbl361 c6b29bdca”,
3 asaect 1338b5 i BI6TF4chodl fodlfdana”,
“43cd96320987912200¢3F6c 2e638181894840752791233cedbbc 580299774502,
“2c65177825619bbebe75cacccBafocblesifasdeaf178cbaT2ef f20c2edabead”
aafc 6061 fd7a4a3f376117ca34950 T42353%,

getblockchaininfa

{

“chain®: *
“blocks®:
"headers® 7B
"bestblockhash®:
393306899 4aC5BAZEITY",
“difficulty®: 4.523059468369196e+73,

*mediantime®: 1569822828,

Figure 4. Block mining and verification in Node 2.
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getneuaddress
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goneratetoaddress 3 376ShBOFFHMNEFP rayKFuFdvhiaya hadd

[
= az79cf 699¢73d71b77311c9",
* 11962 fa8b5c16Fcebs5 1738311707645 30 FA200 147 70364 309225012700 500",
*8610136713ae040268c72dechd32ed] 13461 12b0bec 20b 1oe 19d8d0402eebas5 ",
*6B4BATTbBTBC 2030 13d3aedccbd 7ad F686590aB4546 1808ac 063033 C668C2" ,
*1d28dd47cB4B0a583 3 cAdbaTeRdidd fed foaTafhafo20fa57451 2166047480,
“B1@B4bcoeadScasabal fabcada31501572209¢ FE02 18 ceaddal 16edf c180e56"
*f8a52172a10c1428300749062a5004 36246771 32058607 1e0 f feedddd f4T1111",
*#Bb47bde1b2a11a350867222a0beb2 2ab94cd4dbbBE Ibd35desdbenIBe facds”
“56221e5d9bc486a2c 1226 1bc 130 e fO6TbATeT42 T 3eTdc6 fhcd3dad f 1486a532"
*803231e200e6336445605669144 7235320220018 1635 220ada5Tead 11068 158" ,
*Bfa913a21d6481c 7 fa76952dd6e507 frac188c4 20560 fdd365F5F12a766ab3c",
“B6dB4fa3aaBbeThi2 10425 FOS33647250261d56Te X3 Thb 199ceed 7B f3cda”

getblockchaininfo

"headers": 3@,

"bestblockhash":
"Gaaa’eb4a5bbd8l8e5a76383fd1f014df645ededdoffba56Bee262b5080d7b5e",

"difficulty”: 4.523059468369196e+73,

"mediantime”: 1569822888,

Figure 5. Block mining and verification in Node 3.

Node 3 connects Node 1 (192.168.232.128) and Node 2 (192.168.232.129) using the “addnode”
command. Then, Node 3 uses the “getadnednodeinfo” command to check the information on the
connected nodes. Figure 6 illustrates the connection between Node 1 (192.168.232.128) and Node 2
(192.168.232.129) using the “addnode” command. Next, Figure 6 indicates the connected node
information using the “getadnednodeinfo” command. Bitcoin’s nodes synchronize to nodes that hold
many blocks, and Bitcoin determines that nodes with many blocks are highly reliable. In the current
experiment, Node 3 had the largest number of blocks. Nodes 1 and 2 synchronize to the blocks of
Node 3, and these results are displayed in Figure 7.

addnode 192.168.232.128 add
null
addnode 192.168.232.129 add
null

getaddednodeinfo

[
{
"addednode"™: "192.168.232.128",
"connected": true,
"addresses": [

"address": "192.168.232.128:9777",
"connected": "outbound"

"addednode": "192.168.232.129",
"connected": true,
"addresses": [

"address": "192.168.232.129:9777",
"connected": "outbound”
}
1
1
1

Figure 6. Node connections in Node 3.

getblockcha
T
*chain®: "main®,
“blocks®: 38,
"headers”: 3@,
*bestblockhash®:
"BaaaTeb4asbbdalBeSaTRIAITd1 fE14dfAaSededdaf fhO5E8me 262h50EAdThSA" ,
“difficulty®™: 4.523059468369196e+73,
*mediantime”: 1569827883,

Figure 7. Blockchain synchronization of Nodes 1 and 2.
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We checked the behavior of the blockchain by checking the synchronization. We sent the
transactions between linked Nodes 2 and 3. Figure 8 indicates the balances held by Nodes 2 and 3.
Currently, Node 2 has zero, and Node 3 has 1000.

getbalance
0.00000000

getbalance
1869, 0oc000e0

Figure 8. Balances for Node 2 (top) and Node 3 (bottom).

Figure 9 displays the address of Node 2 (in the Pay-To field) and the amount of coin to send (in
the Amount field) for Node 3 to transmit 500 coins to Node 2. A transaction fee was set to the
minimum cost of 0.00001. Figure 10 reveals the transaction transfer by identifying the amount of coin
in Node 2 and displaying the recent transaction records. Figure 11 illustrates that the number of coins
in Node 3 and the recent transaction record decreased.

{1 Overview | @ Send| ) Beceive £ Transactions

Py T | IPHHFTUGYAXS MG rPgeRSaviager 4oy (olfa]
Libel

Amoust 5000000000 ' DTEE + ¢ Sbtract fee From amasnt wne svailsbie balance

Transaction Fee: Hige

Rerammmereed

* Custom pev kictiyte anconeon 7| (8ICE

At et w tnoltig)
+ Enabie Replace-ByFee

Spma Closr 48 | + A Rocpient Halanor: 1006.00000000 BTCE

Figure 9. The input of the transaction transfer.

{0 Ovwrview | 20 Send [ Becwhw £ Transachions

Malanees Mecent transacsions
Availiohe  0,00000000 BTCE NO /2919 2332
Pending  ASASYIRIOSO WTCR
af2a19 2283
Tolst  493.99%9S050 BTCE
% #/29/19 22:83
% 2729192251
% %29/1932:53

Figure 10. Balances and transaction logs for Node 2.

G Overview | (0 semd (0 Receve 53 Tramsactions

Balances Mecest transactions
Avaliable  500.00000020 BTCR

Ky Wesviszea
Peding: BBOGHI0E BTCE (o}
ITTMU 300.00090008 BTCE ? wIRIS I
Tetsh 1 B00.00DSO0D BTCE /) DA e
% WEe/19 254
&
% W19 2154

Figure 11. Balances and transaction logs for Node 3.

4.2. Block Generation Time

Figure 12 reveals the time-by-time block generation of Bitcoin with ECCPoW, using the difficulty
table proposed in Section 3. Block generation time should be able to meet the target generation time
for a stable blockchain. The blockchain adjusts the target block generation time by adjusting the
difficulty level over time. The experimental environment used block generation with one node. As
shown in Figure 12, the block generation time is unstable in the experiment. Sufficient nodes can
confirm the stability of the block generation time. The difficulty table must be finely adjusted.
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Figure 12. Block generation time of Bitcoin with ECCPoW.

5. Evaluation

We evaluated the mining centralization, security, and scalability of ECCPoW using Amazon
Web Services. Table 7 presents the evaluation environment. A monitoring computer checked the
network test results. The seed instance made the blockchain network connections between nodes.
The mining instance was responsible for block mining. The implementation environment for each
node was a Ubuntu Server 18.04 LTS, m5.large (vCPU processor 2 core with 8 GB of RAM, and a 20
GB solid-state drive).

Table 7. Implementation environment of the evaluation.

No Role CPU Memory (GB) HDD/SSD (GB) Volume
1 Monitoring PC  Intel i7-8700 3.20 GHz 16 SSD 256 1
2 Seed Instance ~ AWS mb5.xlarge vCPU 2 8 HDD 20 6
3 Mining Instance AWS m5.xlarge vCPU 2 8 HDD 20 40

The blockchain trilemma problem is that trade-off relationships occur in the evaluation
characteristics of the blockchain. The trilemma elements of a blockchain are decentralization,
scalability, and security. Thus, we compared Bitcoin in terms of these elements (mining centralization
instead of decentralization). Table 8 displays the evaluation standards and goals for evaluation.
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Table 8. Description of evaluation features.

Evaluation Features Unit of Measurement ES‘:::ZE;;I Evaél:;tllon
. e . 40% (Estimate
cenl:;[;rllilznagﬁon Distribution (;fal zumng success (BitCOii’l, Oct.—De)zc. 40%
2018)
Security Security of Bitcoin contrast 100% (Bitcoin) 100%
Scalability Scalability of Bitcoin contrast 100% (Bitcoin) 100%

Bitcoin has a total hash rate of approximately 90 TH/s (March 2020). It is impossible to compare
the current version of Bitcoin with ECCPoW. Moreover, ECCPoW (ver. 0.1.2) replaced the Bitcoin 0.17
version [21] of SHA 256 [22]. We compared two completely initialized blockchains (block count zero).

We compared the Bitcoin and ECCPoW initialized to set the evaluation environment (difficulty
change cycle, target block generation time, 23 instances, among others). The blockchain typically sets
a difficulty change cycle of 60 minutes and a target block creation time of 3 minutes for
experimentation.

5.1. Mining the Centralization Evaluation

Mining centralization is when a network is no longer centralized and operates autonomously
within a blockchain. We define mining centralization as when the nodes are fairly mined with the
same performance. The indicators used in the mining centralization evaluation include the
distribution of the mining success rates, which are defined by the formula below. According to the
formula, the lower the dispersion of the probability of mining success, the higher the distribution of
mining success. In other words, the distribution of mining success rates is higher for each
participating node to have a uniform distribution of mining success rates, which means better
dispersion. Bitcoin is estimated to have a 40% distribution of mining success rates (October to
December 2018). Moreover, ECCPoW targets 40% dispersion:

A =——x 1004 = The distribution of mining success rate (%),

VB+C?

B = The dispersion of mining success rate,

C = Average of the mining success rate.

We created three seed nodes for the ECCPoW blockchain and composed 20 mining nodes. Table
9 lists the number of mining successes of each mining node at the time of 100 blocks being mined.
Table 10 indicates the distribution of mining success.

Table 9. The number of mining success and number of nodes.

Number of Mining Number of Mining Number of Mining Number of Mining
Nodes Success Nodes Success
1 4 11 7
2 9 12 4
3 3 13 12
4 4 14 5
5 6 15 11

6 4 16
7 6 17 7
8 6 18
9 5 19 10
10 5 20 8
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Table 10. Evaluation results of the mining centralization evaluation features.

A f th
Total Number of v‘er.a 8¢ Square of the Dispersion of the Distribution of
. Mining Average ..
Mining Successes Average Number  Mining Successes
Successes Number
124 6.2 38.44 6.76 92.21944

The dispersion of ECCPoW was measured by the distribution of the mining success rate and
measured at 92.22%, which was 32% higher than the assessment target of 60% (Table 10). The results
of the experiment revealed that the ECCPoW miner is more likely to be rewarded than a Bitcoin miner
in an ideal environment where participating nodes exhibit the same performance. In other words,
ECCPoW is stronger in mining centralization than Bitcoin.

5.2. Security Evaluation

Security is associated with the difficulty of the blockchain being altered by a miner’s attack. A
typical attack on the blockchain is the double-payment issue. One of the causes of double-payment
problems occurs in the branch of the blockchain. An orphan chain is a chain that has a branch other
than the main chain, and an orphan block is a block belonging to an orphan chain. We assess the
security as the ratio of orphaned blocks to the total number of blocks in the blockchain. The security
assessment calculates the orphan block ratio of Bitcoin and ECCPoW using the expression below. We
evaluated the security of ECCPoW based on the security of Bitcoin at 100%.

number of orphan blocks

Orphan block ratio = 100
rphan brock ratto TotalHeightofBlockchainX

We configured the blockchain test environment with three seed nodes and 20 mining nodes. In
addition, we mined 100 blocks in the blockchain and checked the orphan blocks. Figure 13 depicts
the orphan block identification for the security assessment. After mining 40 blocks, the evaluation
identified blocks for stable synchronization of the blockchain. In the experiment, orphan blocks of a
height of one frequently occurred in both environments. In our experiment, we classified the height
of subchains of two or higher as orphan blocks. In Figure 13, orphan blocks correspond to Blocks 13,

14, 15, 16, and 18.
4>‘ Block 4
—-{ Block 5 ’ Block 10

—{ Block 6 Block 11 H Block 16 H Block 18 }

Block 7

Block 8
Block 9 S (cncsis block
" Main chain block

C——— 3 Sub chain block
@& Orphan block

(1 RN

Figure 13. Diagram description of security evaluation.
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Figure 14 demonstrates the blockchain status based on the results of the security assessment in
the Bitcoin environment.

Block 2
Block 3
Block 4
Block 5
Block 6
Block 7
Block 8
Block 9

Block 100

(Block 42)

(95}

Height of block synchronization : 40
Block 41
(Block 43)

s (Genesis block
C———— Main chain block
C——— Sub chain block

@ (@) (2 (@) (=) [ (&) @) (=) [
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~l|~| |~ =~~~ [= ==~
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—
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=]

Figure 14. Evaluation diagram of Bitcoin security.

Figure 15 reveals the blockchain status according to the results of the security assessment in the
ECCPoW environment.

(<) [72)
) O
o %
< 2
= m
= () (@) D) [—) (—)
Block 2 X ol ¢ 3| = =
EIRE ] S 35
Block 3 % a—“; 2 o2 ]
= | = (es) @) () 2
Block 4 = | = =l . — =
Block 5 2l &l [ & s
ISHH{S] oSS L)z ~ e
Block 6 21222 S 8 3
g | B ||z S E = 2
Block = | @ | = = = —
GG 2@ Z
Block 8 = 5| Lol Sih{=5 bl 5[] < =
Block 9 N E? % 'c% c% 'ﬂ% 5? 5
(= =) = = = = = =
o
EIESR -Block 10/~ £ | (3 @ @ Q) 51
Block 11 S b 515 bl 5 b4
ol |2 2lle ° S
Block 12/— 5| | & (=2 (=) @) (2]
(o] vy —_—
Block 13} 3| | [€ S
Block 14} 2| 2 E
m
Block 15} 2 | & =
=)
Block 16}~ T| | |3
N
Block 17 g
Block 18 ; e Genesis block
Block 19 »: ———— Main chain block
Q
Block 20~ | | ———— Sub chain block

Figure 15. Evaluation diagram of ECCPoW security.
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All blockchains were measured at 0% because of the assessment. The security of ECCPoW was
the same on a Bitcoin and orphan block basis. Blockchain measurements inhibited the generation of
orphan blocks.

5.3. Scalability Evaluation

Scalability is the extent to which a system can flexibly respond to an increase in the number of
users. Blockchain scalability is related to the transaction processing speed of blockchain. Transactions
per second (TPS) is the transaction processing speed of the blockchain. Thus, we evaluated the
scalability of the blockchain using TPS. The following equation defines how to obtain TPS using
transactions in blocks.

Total number of transactions in block

TPS =

Generation time of total block

We configured the blockchain test environment with three seed nodes and 20 mining nodes.
Transaction generation occurs continuously from height 91 to 100 —the blockchain mines 100 blocks.
We checked the number of transactions in the height blocks of the blockchain from 91 to 100. We
calculated the TPS of the blockchain. Table 11 lists the generation time and number of transactions of
blocks of height 91 to 100 in Bitcoin.

Table 11. The evaluation result of Bitcoin scalability.

Number Height Block Generation Time (Seconds) Number of Transactions

1 91 719 672
2 92 19 22
3 93 94 88
4 94 144 141
5 95 275 263
6 96 40 40
7 97 313 296
8 98 6 11
9 99 574 534
10 100 146 137
Total 2330 2204
TPS 0.945922747 TPS

Table 12 displays the generation time and the number of transactions of blocks of height 91 to
100, in ECCPoW. The evaluation results revealed that Bitcoin’s TPS is 0.95, and ECCPoW's average
TPS is 0.94. Moreover, ECCPoW'’s scalability was measured at 98.95%, which was down 1.02% from
Bitcoin’s scalability. In addition, ECCPoW added a process to Bitcoin to resist ASICs. However, the
scalability values of ECCPoW and Bitcoin were assessed at a similar level.

Table 12. Evaluation results of ECCPoW scalability.

Number Height Block Generation Time (Seconds) Number of Transactions

1 91 151 140
2 92 192 182
3 93 369 351
4 94 361 331
5 95 156 151
6 96 214 205
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97 124 120
98 267 250
99 585 548
10 100 514 480
Total 2933 2758
TPS 0.940334129 TPS

5.4. Comparison to Related Work

This section compares the features with the existing studies on ASIC resistance. Table 13
compares the proposed method and existing relevant research on ASIC resistance. The ASIC
resistance study for the PoW blockchain has three approaches. The first method causes bottlenecks
using memory access in a hash function—for example, Ethereum (Ethash) and Bytecoin. The second
method prevents the generation of ASICs using a hash function overlay, for example, the X-11 series.
Finally, the third method uses periodic hash function replacement for ASICs, for example, in Monero
(2019.9, RandomX algorithm) and Ethereum (2020.7 applying scheduled, ProgPoW).

Table 13. Comparison results of the related work.

Comparison Proposed Memory Hash Function Perlodlc.Hash
Function
Features Method Approach Overlay
Replacement
Monero (2019.9,
. RandomX),
Appl Eth
« tE?ulriinc - ]; ::Z;‘ X-11 series Ethereum (2020.7
P Y y applying scheduled,
ProgPoW)
Change hash Overlapping  Hard fork manually
- . Force memory . .
Characteristic function every Access multiple hash or automatically
block functions with a hash function
Ethash,
’ Blake, B R X
Algorithm ECCPoW ProgPoW, axe, bmw, andomX,
. Groetl, etc. ProgPoW
CryptoNight
ASI
SIC - Yes Yes Unknown
appearance
Hard fork every six
Use of ASIC months (formerly
. Induce cache .
. resistance by . Overlapping the Monero).
ASIC resistance . miss when or
. . connecting the . difficulty of Convert the hash
induction creating blocks . .
LDPC decoder . known hash  function for a period
method (using a DAG, . .
and hash etc.) functions using the key-block
function '

concept (currently
Monero)

The resistance induction of each ASIC in the existing studies is as follows. The memory approach

induces a cache miss (using DAG, among others) when creating blocks. This method degrades ASIC
performance as memory access increases. The hash function overlay method uses the overlap of the
difficulty of known hash functions. This method relies on the security of the applied hash function.
The periodic hash function replacement method periodically changes the hash function manually or
automatically.
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6. Conclusions

In this paper, we explained ECCPoW and applied the proposed method to Bitcoin. This paper
addressed the problem of centralization of mining due to the emergence of ASICs. We proposed a
PoW concept based on error-correction codes to solve this problem. The core of the ECCPoW is the
connection of the hash function with the LDPC decoder. Blockchain applied with the ECCPoW
determines the completion of the POW using the output value of the decoder. In addition, ASIC
suppression is possible because ASICs use the LDPC decoder.

This paper contributes to the phenomenon of symmetry in the PoW blockchain. The total block
size of the PoW blockchain symmetrically influences the hash rate. The PoW blockchain increases
stability as the hash rate increases in size. However, a high hash rate causes the waste of computing
power in block generation. Thus, we mitigate the causes of a high hash rate using ASIC resistance.

The ECCPoW offers a method of solving different puzzles in each block to avoid ASICs. This
maximizes the benefits of how existing studies use a limited number of hash functions to solve each
block of different hash functions. The proposed method offers more effective connections and the use
of multiple hash functions. We presented the difficulty control, parity-check matrix generation
method, hash vector generation, and code determination methods for implementing ECCPoW.
Furthermore, ECCPoW was applied to Bitcoin to verify the proposed method. We assessed the
mining centralization, security, and scalability of ECCPoW and Bitcoin. We found that ECCPoW
maintained security and scalability, showing 32% higher mining centralization than Bitcoin. Using
the proposed method, ECCPoW does not require high hash rates, and miners can compete more fairly.

This study contributes to the previous literature on ASIC resistance in the PoW blockchain. The
ASIC resistance study of the PoW blockchain was conducted in response to hardware development
by ASIC manufacturers. One of the studies on ASIC resistance induced forced access to memory in
the hash function, thereby lowering the performance of ASICs. Other studies have suggested
periodically altering the hash function to render ASICs useless. The ECCPoW provides a method of
releasing different hash functions for each block, rather than changing the periodic hash function.

The ECCPoW revealed the limit of block generation time in the experiment. For the stable
operation of the blockchain, the block generation time of the ECCPoW must be stable and
controllable. The results of the block generation time test were unstable in the experiment using one
node. Thus, ECCPoW requires further research regarding the difficulty of block generation for stable
operation. We also need to increase the number of nodes in the ECCPoW to carry out mining.
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