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Abstract: Compressive sensing (CS) spectroscopy is well known for developing a compact
spectrometer which consists of two parts: compressively measuring an input spectrum and recovering
the spectrum using reconstruction techniques. Our goal here is to propose a novel residual
convolutional neural network (ResCNN) for reconstructing the spectrum from the compressed
measurements. The proposed ResCNN comprises learnable layers and a residual connection between
the input and the output of these learnable layers. The ResCNN is trained using both synthetic and
measured spectral datasets. The results demonstrate that ResCNN shows better spectral recovery
performance in terms of average root mean squared errors (RMSEs) and peak signal to noise ratios
(PSNRs) than existing approaches such as the sparse recovery methods and the spectral recovery using
CNN. Unlike sparse recovery methods, ResCNN does not require a priori knowledge of a sparsifying
basis nor prior information on the spectral features of the dataset. Moreover, ResCNN produces
stable reconstructions under noisy conditions. Finally, ResCNN is converged faster than CNN.

Keywords: spectroscopy; compressed sensing; deep learning; inverse problems; sparse recovery;
dictionary learning

1. Introduction

There has been considerable interest in producing compact spectrometers having a high spectral
resolution, wide working range, and short measuring time. Such a spectrometer can be used in a broad
range of fields such as remote sensing [1], forensics [2], and medical applications [3]. Spectrometers
that exploit advanced signal-processing methods are promising candidates. The compressive sensing
(CS) [4,5] framework makes it possible for a spectrometer to improve its spectral resolution while
retaining its compact size. CS spectroscopy comprises two parts: Capturing a spectrum with a
small number of compressed measurements and reconstructing the spectrum from the compressed
measurements using reconstruction techniques.

To date, for effective signal recovery in CS spectroscopy, three requirements should be satisfied.
First, the spectrum should be a sparse signal or capable of sparse representation on a certain
basis. Second, the sensing patterns of optical structures should be designed to have a small mutual
coherence [6]. Third, appropriate reconstruction algorithms are required. Note that several sparsifying
bases have been used in CS spectroscopy such as a family of orthogonal Daubechies wavelets [7],
a Gaussian line shape matrix [8,9], and a learned dictionary [10]. Furthermore, numerous optical
structures have been proposed to attain the necessary small mutual coherence for sensing patterns
such as thin-film filters [11,12], a liquid crystal phase retarder [13], Fabry–Perot filters [7,14], and
photonic crystal slabs [15,16]. As algorithms for reconstructing the original signal, two types of
basic reconstruction techniques have been developed: greedy iterative algorithms [17,18] and convex
relaxation [19,20]. In CS spectroscopy, the reconstruction algorithms have been used with a sparsity
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constraint. Additionally, a non-negativity constraint is used in Reference [16,21]. Combining these
three considerations, CS spectrometers have shown stable performance for light-emitting diodes (LEDs)
and monochromatic lights.

Since not all signals can be represented as sparse on a fixed basis, prior information on structural
features of the spectral dataset is therefore required to generate a best-fit sparsifying basis. Furthermore,
a high computational cost is required for reconstruction techniques. Recently, deep learning [22] has
been emerging as a promising alternative framework for reconstructing the original signal from the
compressed measurements.

Mousavi et al. [23] was the first study on image recovery from structured measurements using
deep learning. Moreover, a deep-learning framework for inverse problems has been applied in
biomedical imaging for imaging through scattering media [24], magnetic resonance imaging [25,26],
and X-ray computed tomography [27]. Kim et al. [28] reported the first attempt to use deep learning in
CS spectroscopy. They trained a convolutional neural network (CNN) to output the reconstructed
signal from the network. From here on the network reported by Kim et al. will be referred to as CNN.

Unlike CNN [28] in which learnable layers were simply stacked and trained to directly reconstruct
the original spectrum, we make a residual connection [29] between the input and output of CNN and
train the network to reconstruct the original spectrum by referring the input of the network. As a
result, the network learns residuals between the input of the network and the original spectrum. It has
been reported that it is easier to train a network when using residual connections than to train a plain
network that was simply stacked with learnable layers [25,29]. Lee et al. [25] analyzed the topological
structure of magnetic resonance (MR) images and the residuals of MR images. They showed that
the residuals possessed a simpler topological structure, thus making learning residuals easier than
learning the original MR images. In addition, He et al. [29] demonstrated with empirical results that
the residual networks are easy to optimize and they achieved improvements in image-recognition tasks.
From these works, we gain insights such that adding residual connections to CNN would improve the
spectral reconstruction performance in CS spectroscopy.

In this paper, we aim to propose a novel residual convolutional neural network (ResCNN) for
recovering an input spectrum from the compressed sensing measurements in CS spectroscopy. The
novelty lies in the proposed ResCNN structure, with a moderate depth of learnable layers and a single
residual connection, which provides the desired spectral reconstruction performance. The desired
performance here means that the proposed ResCNN offers a performance which is better than that of
CNNs as well as that of CS reconstruction with its sparsifying base known. In CS reconstruction, the
prior knowledge of a fixed sparsifying basis is useful and offers good sparse representation results.
However, in general it is a difficult problem to identify a sparsifying basis for various kinds of spectra
and apply the identified basis to have the recovery performance improved. In this regard, it is an
important advance to find a simple ResCNN which offers good enough performance. It is also worth
to note that the proposed ResCNN is tested with the array type CS spectroscopy, discussed in Section 2,
which we have designed with an array of multilayer thin-film filters.

The previous works on CS spectroscopy [7,11,13,14,16] have shown decent reconstruction
performance but on limited simple sources such as LEDs and monochromatic lights. Using ResCNNs,
we are now able to reconstruct more complex spectra, such as spectra with multiplicity of peaks mixed
with a gradual rise-and-fall.

The remainder of this paper is organized as follows. In Section 2, we model the optical structure
which is used for CS spectroscopy. In Section 3, we describe the system of CS spectroscopy and the
proposed ResCNN. In Section 4, simulated experiments are described. Section 5 presents the results of
experiments. In Section 6, we discuss the results. Finally, we conclude this paper in Section 7.

2. Optical Structure

Numerous optical structures have been proposed for CS spectroscopy. It has been reported that
CS spectrometers, which have various spectral features in the transmission spectrum, show high
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spectral-resolving performance [16]. In this work, we used thin-film filters to model CS spectrometers.
Thin-film filters demonstrate a variety of spectral features depending on the materials used, the number
of layers, and the thicknesses of the layers. Once the structure of thin-film is determined, a transmission
value at a given wavelength λ is defined as follows [30]:

T(λ) = 1−
1
2

(∣∣∣ρTE(λ)
∣∣∣2 + ∣∣∣ρTM(λ)

∣∣∣2), (1)

where ρTE(λ) and ρTM(λ) are amplitude reflection coefficients. The coefficients represent the fraction
of the power reflected by a multilayer thin-film in the transverse electric (TE) and transverse magnetic
(TM) modes of an incident light, respectively. We summarized recursive processes for calculating
amplitude reflection coefficients in Algorithm 1 [11,12,31].

Algorithm 1: Recursive processes for amplitude reflection coefficients.

Input: λ

Structure parameters: θ1,n = {n1, n2, · · · , nl},d = {d2, d3, · · · , dl}.
Step 1: Calculate θk,βk, and Nk using structure parameters.

θk = sin−
( nk−1

nk
sinθk−1

)
, for k = 2, 3, ..., l.

βk = 2π cos(θk)nkdk/λ, for k = 2, 3, ..., l.

Nk =

nk/cosθk f or TE

nk cosθk f or TM
, for k = 2, 3, ..., l.

Step 2: Obtain η2 by setting ηl = Nl.
For k = l-1 to 2
ηk = Nk

ηk+1 cos βk+ jNk sin βk
Nk cos βk+ jηk+1 sin βk

.

Step 3: Compute ρ = (N1 − η2)/(N1 + η2).

Output: ρ

Here, θk is the angle of an incident light passing from kth to k+1th layer. The refractive index
of kth layer is denoted as nk. dk denotes the thickness of the kth layer. Given a wavelength vector
λ = (λ1 λ2 . . . λN) ∈ R1×N in the range of interest, i.e., λmax − λmin. Let ∆λ = λmax−λmax

N . Then,
evaluating the function at the integer multiple of ∆λ, i.e., T(λ = λmin + n∆λ) for n = 0, 1, · · · , N − 1,
we obtain the vector of transmission spectrum Tm ∈ R1×N for the wavelength range. Then, the sensing
pattern matrix of optical structures T ∈ RM×N is obtained by repeating the calculation of Tm for
m = 1, 2, · · · , M.

We have used SiNx and SiO2 for high- and low-refractive index materials, respectively. We
numerically generated thin-film filters by alternately stacking high- and low- refractive index materials,
changing the number of layers, and varying the thickness of each layer. The number of layers in each
filter is in the interval of (19, 24), and the thickness (nm) of each layer is in the interval of (50, 300).
Initially, we randomly generated reference filters and compute the mutual coherence among the filters.
Then, new filters were generated by changing thicknesses of the layers and the mutual coherence of the
filters is compared to the mutual coherence of reference filters. Filters with a smaller mutual coherence
then became the new reference filters. This process is repeated until reasonable reference filters with
the required small mutual coherence are obtained.

Figure 1 shows the heatmap for the transmission spectra of the reference filters and two selected
transmission spectra. In Figure 1a, each of the transmission spectra shows a unique sensing pattern
because of the iterative modeling process of the reference filters based on mutual coherence. Figure 1b
shows two transmission spectra that correspond to the 15th and 30th rows in the heatmap of reference
filters. The transmission spectrum reveals a deep spectral modulation depth and various features such
as broadband backgrounds, multiple peaks with a small full width at half maximums (FWHMs), and
irregular fluctuations.
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Figure 1. (a) Heatmap of the sensing matrix: each row represents the transmission spectrum of the
designed thin-film filter. (b) Two transmission spectra corresponding to the 15th and 30th rows in the
sensing matrix.

3. Compressive Sensing (CS) Spectrometers Using the Proposed Residual Convolutional Neural
Network (ResCNN)

3.1. CS Spectrometers

In CS spectroscopy, the measurement column vector y ∈ RM×1 is represented using the
following relation:

y = Tx, (2)

where x ∈ RN×1 is the spectrum column vector of incident light and T ∈ RM×N is the sensing matrix
of the optical structure. Each row of T represents a transmission spectrum. Because the length of
the measurement vector is smaller than the length of the spectrum vector (M < N), the system is
underdetermined. Conventionally, if x is a sparse signal or can be sparsely represented in a certain
basis, i.e., x = Φs, reconstruction algorithms can determine a unique sparse solution Ŝ from the
following optimization problem:

min
s

∥∥∥TΦs− y
∥∥∥2

2 + τ‖s‖1, (3)

where Φ ∈ RN×N is a sparsifying basis and τ is a regularization parameter. Here, s is a sparse signal
whose components are zero except for a small number of non-zero components. Then, the recovered
spectrum x̂ is Φŝ. In this paper, we refer to the methods of solving the optimization problem using
Equation (3) as sparse recovery.

Typically, except for narrow-band spectra, a spectrum is not a sparse signal, and a fixed sparsifying
basis cannot transform all spectra into sparse signals. Clearly, the use of a fixed basis may lead the
sparse recovery to struggle, as no fixed basis will transform every signal into a sparse signal. In
addition, the sparse recovery is time-consuming and takes a high computational cost.

Our goal is to overcome the limitations of the sparse recovery in CS spectroscopy and recover
various kinds of spectra using ResCNN. Figure 2 shows the schematic of the CS spectroscopy system
using ResCNN. This system consists of two parts: compressive sampling and dimension extension,
and the reconstruction using ResCNN. In the compressive sampling and dimension extension, the
measurement vector y is obtained from Equation (1), which then transforms into x̃ ∈ RN×1 using a
linear transformation. A transform matrix A ∈ RN×M extends the M dimension of y to N dimension of x̃,
where x̃ is a representative spectrum corresponding to x. We used x̃ as the input for the reconstruction.
ResCNN learnt a non-linear mapping between x̃ and x, and afforded a reconstructed spectrum x̂ ∈ RN×1.
The dimension extension by the transform matrix was used to make it easier for ResCNN to extract
features and reconstruct spectra from the non-linear mapping.
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Figure 2. Overview of compressive sensing (CS) spectrosocopy system including the proposed residual
convolutional neural network (ResCNN): An input spectrum is compressively sampled by the sensing
matrix, and the dimension of measurements is extended by the transform matrix. ResCNN is trained to
recover the original spectrum from the extented measurements.

3.2. The Proposed ResCNN

As depicted in Figure 2, ResCNN comprises nine learnable layers, five of which are convolution
layers, four are fully-connected layers, and one is a residual connection. Convolution layers are used
for the feature extraction in the non-linear mapping between x̃ and x. Fully-connected layers are used
for the spectra reconstruction. Each of the convolution layers has a set of one-dimensional learnable
kernels with specific window sizes. The number of kernels and the window sizes are indicated in
Figure 2. After every convolutional layer, the rectified linear unit (ReLU) is used as an activation
function, and the subsampling is then applied. We use non-overlapping max-pooling to down-sample
the output of the activation function. We stack the convolutional layer, the ReLU, and the subsampling
five times. The output of the last subsampling is flattened and then fed into the subsequent four
fully-connected layers. The first three layers are followed by the ReLU and dropout in sequence. The
dropout is introduced to reduce the overfitting of ResCNN. The output of the last fully-connected
layer is fed into a linear activation function. The number of units in each of the fully-connected layers
is noted in Figure 2. Unlike CNN [28] in which learnable layers are simply stacked, we make the
residual connection that the representative spectrum x̃ and the output of the linear activation function
are added up to the reconstructed spectrum x̂. Consequently, x̂ is trained to become x. Given training

data
{
xt

i
}k

i=1
, we train ResCNN to minimize a loss function L. We use the mean squared error between

the original xt and recovered x̂t as the loss function:

L =
1
k

k∑
i=1

∥∥∥xt
i
− x̂t

i
∥∥∥2

2. (4)

The non-linear mapping that x̃ becomes x can be defined as H(̃x) = x. Because of the residual
connection in ResCNN, H(̃x) can be rewritten as H(̃x) = F(̃x) + x̃, where F(̃x) is the mapping of
the learnable layers. The representative spectrum x̃ is referenced by the residual connection, and
then,F(̃x) = H(̃x) − x̃. In particular, the mapping of F(̃x) is called a residual mapping; therefore, the
learnable layers learn the residual of x and x̃.

The previous researches [25,29] have used numerous residual connections in very deep neural
networks in order to make networks converge faster by avoiding vanishing gradient problems. We use
one residual connection between input and output of the moderate depth network. Figure 3 depicts the
manner in which a spectrum is recovered in CNN and ResCNN. The learnable layers of CNN directly
reconstruct the spectrum from the representative spectrum x̃. Alternatively, ResCNN reconstructs the
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spectrum by passing the representative spectrum x̃ through the residual connection shown in Figure 3b.
Consequently, the learnable layers of ResCNN learn to reconstruct residuals.

Figure 3. Descriptions of the spectrum recovery process: (a) convolutional neural network (CNN),
(b) ResCNN.

4. Simulated Experiments

We reconstructed 350 spectral bands (N = 350) using 36 thin-film filters (M = 36) whose sensing
patterns have a spacing of 1 nm for wavelengths from 500 to 850 nm. We determined the sensing
matrix T, assuming that the incident light falls onto the filters with normal incidence. As the transform

matrix A, we used the Moore–Penrose inverse of the sensing matrix T, i.e., A = TT
(
TTT

)−1
.

4.1. Spectral Datasets

To evaluate the performance of ResCNN, we used two synthetic spectral datasets and two
measured spectral datasets. The first synthetic dataset is composed of Gaussian distribution functions
while the other is composed of Lorentzian distribution functions. These two synthetic datasets were
selected as generally these types of functions are used to represent spectral line shapes. As shown
in Figure 4, component functions are added to produce the spectra. We generated 12,000 spectra for
each dataset. For each spectrum, the number of component functions was generated using a geometric
distribution with the probability parameter p set to 0.3. We added one to the number of component
functions to prevent the number of component functions from becoming zero. Then, we randomly
set a location, a height, and an FWHM of each peak. To set a peak location (nm), an integer number
was randomly selected from a uniform distribution with the interval (500, 849). A random number
from a uniform distribution in the interval (0, 1) was used for the height. An integer number for an
FWHM (nm) was randomly drawn from a uniform distribution with the interval (2, 50). Finally, all
of the component functions were summed to generate the spectrum. The height of each generated
spectrum was normalized such that it was mapped from zero to one.
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Figure 4. Examples of two synthetic spectra: the solid purple line is composed of two Lorentzian
distribution functions (dash-dotted orange and olive lines), and the solid black line is composed of
three Gaussian distribution functions (dashed red, blue, and green lines).

As measured datasets, we used the US Geological Survey (USGS) spectral library version 7 [32],
and the glossy Munsell colors spectral dataset [33]. The USGS spectral library provides reflectance
spectra for artificial materials, coatings, liquids, minerals, organic compounds, soil mixtures, and
vegetation. We discarded any spectrum that has missing spectral bands. Then, we extracted the
spectrum in the wavelength range of interest (500 to 849 nm) from the wavelength range of the original
spectrum (350 to 2500 nm). The measured wavelength range for the glossy Munsell colors spectral
dataset, which contains the reflectance spectra of the glossy Munsell color chips, was 380 to 780 nm.
The wavelength range of the original spectrum was different from the wavelength range of interest. We
decided to use the wavelength range from 400 to 749 nm to ensure each spectrum was set to 350 spectral
bands. This selection of wavelengths is reasonable because the wavelengths were located in the center
of the wavelength range of the original spectrum, and showed different spectral features with respect
to each spectrum. In addition, our aim was to show the reconstruction performance with respect to
various kinds of spectra. Finally, each spectrum was normalized such that the height varies from 0 to 1.
Overall, 1473 spectra from USGS spectral dataset and 1600 spectra from Munsell color spectral dataset
were used for our simulated experiments. Table 1 lists the details of each of the spectral datasets.

Table 1. Description of the spectral datasets.

Dataset Training/Validation/Test Avg. Number of
Nonzero Values Description

Gaussian dataset 8000/2000/2000 336.8/350
FWHM (nm) on the interval

[2, 50], Height on the
interval [0, 1]

Lorentzian dataset 8000/2000/2000 349/350
FWHM (nm) on the interval

[2, 50], Height on the
interval [0, 1]

US Geological Survey [32] 982/246/245 348.9/350
350–2500 nm, 2151 spectral
bands (we use 350 spectral

bands in 500–849 nm)

Munsell colors [33] 1066/267/267 349/350
380–780 nm, 401 spectral

bands (we use 350 spectral
bands in 400–749 nm)
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4.2. Data Preprocessing and Training

Given the sensing matrix, the spectral data are compressively sampled as the measurement vector
y shown in Equation (1), and then transformed into the representative spectrum x̃ by multiplying the
transform matrix A and y.

In each spectral dataset, the number of training, validation, and test spectra are randomly assigned
using a ratio of 4:1:1 for the synthetic and measured data sets, respectively. The validation spectra are
used for estimating the number of epochs and tuning the hyper-parameters. To train ResCNN, we
used the Adam optimizer [34] implemented in Tensorflow with the batch size of 16 and 250 epochs.
The experiments were conducted on an NVIDIA GeForce RTX 2060 graphics processing unit (GPU).
Training the architecture can be done in half an hour for each dataset.

4.3. Sparsifying Bases for Spare Recovery

Using sparse recovery, we evaluated the performance of conventional CS reconstructions to
benchmark the performance of ResCNN. As shown in Table 1, the spectra for both the synthetic and
measured datasets are dense spectra. Therefore, we must transform the spectra into sparse signals to
solve Equation (3). In this section, we considered methods to make a sparsifying basis Φ.

First, we considered a Gaussian line shape matrix as a sparsifying basis. Each column of the matrix
comprises a Gaussian distribution function whose length is N. A collection of N Gaussian functions
works as a sparsifying basis Φ ∈ RN×N. We generate two Gaussian line shape matrices. Figure 5 a
shows the heatmap images for two Gaussian line shape matrices. Seven different FWHMs are used to
generate the Gaussian distributions. Given an FWHM, Gaussian distributions are generated by shifting
the peak location using uniform spacing. To create a small dissimilarity between the two Gaussian
line shape matrices, two of the seven FWHMs in Gaussian 1 were replaced with other FWHMs, thus
producing Gaussian 2, as shown in Figure 5a.

Figure 5. Heatmap images of sparsifying bases that were used in simulated experiments: (a) Gaussian
line shape matrices, (b) the learned dictionaries which are from the Gaussian training dataset.

Second, a learned dictionary [35–38] is used as a sparsifying basis. Given a training dataset{
xt

i
}k

i=1
, we can derive a learned dictionary Φ that sparsely represents the training data xt by solving

the following optimization problem, known as the dictionary learning problem:

min
Φ,st1,...,stk

k∑
i=1

∥∥∥xt
i
−Φst

i
∥∥∥2

2 + τ
∥∥∥st

i
∥∥∥

1, (5)
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where τ is a regularization parameter and st
i is ith sparse signal over the training dataset. By fixing an

initial guess for the dictionary Φ in Equation (5), we obtain a solution for the sparse signals
{
st

i
}k

i=1
.

The dictionary is then updated by solving Equation (5) using the sparse signals obtained. This process
is iteratively repeated until convergence is reached and we derive the learned dictionary. We used
three dictionary learning methods: method of optimal directions (MOD) [36], K-SVD [37], and online
dictionary learning (ODL) [38]. The learned dictionaries are generated for each of the training datasets,
and the reconstruction performances are evaluated for each test dataset. Figure 5b shows learned
dictionaries identified using the Gaussian training dataset. The learned dictionaries clearly depend on
the dictionary-learning methods used. Nevertheless, each column of the dictionaries shows a learned
spectral feature from the training dataset.

5. Results

To demonstrate the ability of ResCNN to reconstruct spectra, we evaluated its performance using
three different datasets: Synthetic datasets, noisy synthetic datasets, and measured datasets. We used
the same hyper-parameters of ResCNN for each of these datasets. Moreover, we adopted l1_ls [39]
as the fixed reconstruction algorithm in the sparse recovery. We compared the recovered signal with
the original signal by calculating the root mean squared error (RMSE) and the peak signal to noise
ratio (PSNR). In addition, the performance of five conventional sparse recovery methods, described in
Section 4.3 and CNN was calculated.

5.1. Synthetic Datasets

The two synthetic data sets described in Table 1 were used to perform the signal recovery using
sparse recovery and deep learning. Table 2 shows the average RMSE and PSNR for each of the seven
methods evaluated. ResCNN shows the smallest average RMSE for both the Gaussian and Lorentzian
datasets of 0.0094 and 0.0073, respectively. Moreover, ResCNN shows the largest average PSNR
of 49.0 dB for the Lorentzian dataset. For the Gaussian dataset, the sparse recovery method with
Gaussian 2 shows the largest average PSNR, 49.7 dB, which is slightly higher than the 47.2 dB for
ResCNN. Note that the minor difference between the two Gaussian line shape matrices results in
considerable performance difference. However, reconstruction using the learned dictionaries show
similar performance across all of the synthetic datasets.

Table 2. Average root mean squared errors (RMSEs) and peak signal to noise ratios (PSNRs) over
synthetic datasets.

Sparse Recovery Deep Learning

Dataset Gaussian 1 Gaussian 2 K-SVD MOD ODL CNN ResCNN

Gaussian
dataset

0.0226
(43.1 dB)

0.0112
(49.7 dB)

0.0172
(40.3 dB)

0.0174
(40.3 dB)

0.0161
(41.1 dB)

0.0132
(40.5 dB)

0.0094
(47.2 dB)

Lorentzian
dataset

0.0146
(44.9 dB)

0.0094
(47.5 dB)

0.0136
(42.3 dB)

0.0137
(42.3 dB)

0.0127
(42.9 dB)

0.0101
(42.8 dB)

0.0073
(49.0 dB)

Figure 6 shows the reconstructed test spectra from each of the synthetic datasets. The solid red
line (i) is the input spectra from each dataset. ResCNN is shown in dashed black line (ii), while CNN is
shown in solid orange lines (iii). The reconstructed spectra using sparse recovery with Gaussian 1
(iv), Gaussian 2 (v), and ODL (vi) are shown in solid green, blue, and purple lines in respectively.
Because of the similar performance from each of the learned dictionaries, only the ODL method is
shown. The RMSE and PSNR of ResCNN are 0.0138 (37.2 dB) for the spectrum from the Gaussian
dataset and 0.0096 (40.4 dB) for the spectrum from the Lorentzian dataset. For the selected spectra,
ResCNN achieves superior reconstruction performance compared with the other four reconstructions.
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Figure 6. Spectral reconstructions of test spectra in synthetic datasets, (a) Gaussian dataset,
(b) Lorentzian dataset. An input spectrum (solid red (i)) is compared with ResCNN (dashed black
(ii)), CNN (orange (iii)), sparse recovery: Gaussian 1 (green (iv)), Gaussian 2 (blue (v)), and online
dictionary learning (ODL) (purple (vi)). The baselines are shifted for clarity.

Only sparse recovery with Gaussian 1 fails to recover the fine details of the input spectrum. One
example of the poor ability of sparse recovery with Gaussian 1 to resolve the signal is the recovery of
the peak at ~830 and 590 nm being recovered as two neighboring peaks in Figure 6a,b, respectively.
CNN was unable to capture the smoothness of the spectral features compared to the other methods.

5.2. Noisy Synthetic Datasets

To verify the stability of ResCNN, we evaluated the accuracy of the reconstruction at various
noise levels. Gaussian white noise was added to the measurement vector n ∈ RM×1 to Equation (2),
i.e., y = Tx+n. We considered six different noise levels whose signal-to-noise ratios (SNRs) are 15,
20, 25, 30, 35, and 40 dB. The SNR (dB) is defined as 10 · log10

(
‖x‖22/Nσ2

)
, where σ is the standard

deviation of the noise. Using Gaussian and Lorentzian datasets, we compared the reconstruction
performance of ResCNN with the sparse recovery using Gaussian 2, which shows the best reconstruction
performances among sparse recovery methods in synthetic datasets. ResCNN was evaluated with the
same hyper-parameters that were used for the noise-free datasets. The average RMSE and PSNR for
each of the six noise levels are shown in Table 3. While ResCNN was trained using noise-free data, it
outperformed the sparse recovery with Gaussian 2 at every noise level, which indicates that ResCNN
remains stable even with noisy datasets.

Table 3. Average RMSE and PSNR under various signal-to-noise ratios (SNRs, dB) with
synthetic datasets.

SNR (dB)

Dataset Method 15 dB 20 dB 25 dB 30 dB 35 dB 40 dB

Gaussian
Dataset

Sparse
recovery +
Gaussian 2

0.0796
(22.7 dB)

0.0482
(27.1 dB)

0.0308
(31.2 dB)

0.0215
(34.8 dB)

0.0166
(37.9 dB)

0.0138
(40.7 dB)

ResCNN 0.0671
(24.2 dB)

0.0401
(28.7 dB)

0.0251
(32.9 dB)

0.0171
(36.6 dB)

0.0130
(39.8 dB)

0.0110
(42.4 dB)

Lorentzian
Dataset

Sparse
recovery +
Gaussian 2

0.0817
(22.6 dB)

0.0483
(27.1 dB)

0.0300
(31.2 dB)

0.0201
(35.0 dB)

0.0147
(38.5 dB)

0.0119
(41.4 dB)

ResCNN 0.0689
(24.1 dB)

0.0404
(28.7 dB)

0.0243
(33.1 dB)

0.0157
(37.1 dB)

0.0113
(40.6 dB)

0.0091
(43.4 dB)
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5.3. Measured Datasets

ResCNN was trained using the two measured datasets listed in Table 1, USGS and Munsell
colors, and its reconstruction performance was evaluated. In addition, the signal reconstruction was
performed using CNN and sparse recovery with five different sparsifying bases. Table 4 reports the
average RMSE and PSNR for each of the seven methods. ResCNN achieves the smallest average RMSE
and the largest average PSNR for both datasets. In the USGS dataset, the average RMSE and PSNR of
ResCNN are 0.0048 and 52.4 dB, respectively. In addition, ResCNN achieves 0.0040 for the average
RMSE and 50.0 dB for the average PSNR in the Munsell colors dataset. Similar to synthetic datasets,
all of the learned dictionaries provided similar reconstruction performances. In addition, the small
differences between Gaussian 1 and 2 show large differences in the RMSE and PSNR. The average
RMSE and PSNR of the learned dictionary methods approach the values of ResCNN for Munsell colors
dataset because the Munsell colors dataset has simpler spectral features than the other datasets.

Table 4. Average RMSEs and PSNRs for the measured datasets.

Sparse Recovery Deep Learning

Dataset Gaussian 1 Gaussian 2 K-SVD MOD ODL CNN ResCNN

USGS [32] 0.0081
(45.3 dB)

0.0061
(48.4 dB)

0.0070
(48.5 dB)

0.0081
(47.4 dB)

0.0074
(47.6 dB)

0.0116
(40.8 dB)

0.0048
(52.4 dB)

Munsell
colors [33]

0.0068
(44.6 dB)

0.0050
(47.5 dB)

0.0040
(49.8 dB)

0.0040
(49.9 dB)

0.0042
(49.5 dB)

0.0076
(43.0 dB)

0.0040
(50.0 dB)

Figure 7 shows the reconstruction results of one test spectra from each of the measured datasets.
The spectrum for the organic compound dibenzothiophene in the USGS dataset is reconstructed in
Figure 7a. The spectrum of Munsell color 5 PB 2/2 is shown in Figure 7b. The solid red lines are the
input spectra (i). ResCNN are shown in dashed black lines (ii), and CNN are shown in solid black lines
(iii). The spectra of (iv) to (vi) are reconstructed spectra using the sparse recovery with Gaussian 1,
Gaussian 2, and K-SVD. Because of the best performance of the K-SVD among the learned dictionaries
only the K-SVD method is shown.

Figure 7. Spectral reconstructions of test spectra in measured datasets: (a) spectrum of organic
compound dibenzothiophene in USGS dataset, (b) spectrum of Munsell color 5PB 2/2. The input
spectrum (solid red line (i)) is compared with ResCNN (dashed black (ii)), CNN (orange (iii)), sparse
recovery: Gaussian 1 (green (iv)), Gaussian 2 (blue (v)), and K-SVD (purple (vi)). The baselines are
shifted for clarity.

The RMSE and PSNR for ResCNN are 0.0069 (43.2 dB) for the spectrum from the USGS dataset
and 0.0077 (42.3 dB) for the spectrum from the Munsell colors dataset. ResCNN outperforms other
approaches for the spectrum from USGS dataset. However, for the spectrum from Munsell colors
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dataset, the sparse recovery with K-SVD outperforms ResCNN. ResCNN achieves slightly larger RMSE
and smaller PSNR.

The performances of sparse recovery with Gaussian 2 is degraded for measured datasets compared
with the performance for synthetic datasets. The measured datasets have rough spectral features
unlike the smooth spectral features observed in the synthetic datasets. As a result, the sparse recovery
with Gaussian 2 performs worse, because of its inability to represent rough spectral features using
Gaussian distribution functions. The performance of sparse recovery with dictionary learning methods
are improved for measured datasets compared with the performance of synthetic datasets. Because the
number of spectra in measured datasets are smaller than the number of spectra in synthetic datasets.
Therefore, finding the best-fit sparsifying basis for measured datasets is easier than finding the best-fit
sparsifying basis for synthetic datasets using dictionary-learning methods. Meanwhile, ResCNN
shows superior reconstruction performances regardless of spectral features of datasets and the size
of datasets.

6. Discussion

As shown in the results, we demonstrate empirically that ResCNN outperforms the sparse
recovery methods and the CNN over all datasets. The sparse recovery shows unstable performance
because it is highly dependent on the sparsifying basis and spectral features of dataset. This is a direct
result of being unable to identify a fixed sparsifying basis that can transform any spectra into a sparse
signal, which means the a priori structural information such as line shapes and FWHMs is required
to select a consistent sparsifying basis. Learned dictionaries are used to cope with the problem of
identifying a consistent sparsifying basis. The columns of learned dictionaries are composed of learned
spectral features from the training dataset. While this shows an improvement in measured datasets,
a learned dictionary is still limited to representing all the spectral features in the large dataset (i.e.,
synthetic datasets) using linear combinations of columns of the learned dictionary.

Compression approaches for summarizing information with a small number of sensors were
proposed in [40]. These approaches can be exploited to generate a sparsifying basis by reducing the
loss of spectral information in large datasets.

To improve the reconstruction performance in sparse recovery, pre-defined structure information
and side information of unknown target signals were used in [41,42]. The reconstruction of
three-dimensional electrical impedance tomography was improved by updating three-dimensional
structural correlations using pre-defined structured signals [41]. To recover multi-modal data, a
reconstruction framework is proposed in [42] that uses side information in unrolled optimization.
Unrolled optimization approaches using deep learning were proposed in [43,44]. Deep-learning
architectures were used to train hyper-parameters, such as a gradient regularizer and a step size. Using
learned hyper-parameters, it was shown optimized solutions can be obtained within a fixed number of
iterations. These proposed approaches for image reconstruction have assumed random sensing matrix
and structured or sparse signals. In this work, however, we consider dense spectra and the sensing
matrix from thin-film filters for the real implementation. Moreover, the reconstruction performance
may change to a sparsifying basis as shown in results because a reconstructed spectrum x̂ should be
represented as a linear combination of columns of a fixed sparse basis Φ as Φŝ.

For recovering spectra, ResCNN does not require the a priori knowledge of a sparsifying basis
or prior information of spectral features. During training, ResCNN learns the spectral features using
learnable layers, which enable it to recover the fine details for various kinds of spectra without
identifying a sparsifying basis.

ResCNN is directly compared with CNN for the synthetic Gaussian dataset in Figure 8a where
the mean squared error (Equation (4)) is plotted with respect to the epoch. The mean squared error for
CNN and ResCNN are shown in solid black line and solid red line with square symbols, respectively.
ResCNN shows a lower mean squared error than that of CNN. Moreover, ResCNN converges faster
than CNN, indicating that ResCNN optimizes the learnable layers quicker, as expected based on
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previous research using residuals [25,29]. In contrast to the previous research that numerous residual
connections were used in very deep neural networks to converge networks faster by avoiding vanishing
gradient problem, we achieve spectral reconstruction improvements even with one residual connection
in a moderate depth CNN.

Figure 8. (a) Mean squared error of Gaussian dataset with respect to epochs. Solid black line denotes
validation error of CNN, and solid red line with square symbols denotes validation error of ResCNN.
(b) Reconstructions of a spectrum with respect to epochs where (i) to (iv) are epochs 1, 50, 150, and 250,
respectively. Red line (v) denotes the original spectrum.

The reconstruction of an example spectrum with respect to the number of epochs is shown in
Figure 8b. Black lines ((i) to (iv)) are the reconstructed spectra at 1, 50, 150, and 250 epochs, respectively.
The solid red line (v) is the original spectrum, and the series of reconstructed spectrum for ResCNN
show that the reconstruction converged earlier than CNN. The increased rate of convergence is because
of the residual connection in ResCNN. Overall, the reconstruction performance of ResCNN is an
improvement over CNN.

Note that both ResCNN and dictionary learning for sparse recovery require a training dataset
and an optimization process to learn the spectral features. While this is a time-consuming process,
remember that when using a learned dictionary to recover spectra, an iterative reconstruction algorithm
is required, which needs additional time and incurs a high computational cost. The benefit of ResCNN
is that it gives a reconstructed spectrum immediately once the training is completed.

7. Conclusions

In this paper, we propose a novel ResCNN for recovering the input spectrum from the compressed
measurements in CS spectroscopy. As the optical structure for CS spectroscopy, we numerically
generated multilayer thin-film filters which have a small mutual coherence. Therefore, we could
compressively measure input spectra with unique sensing patterns. To reconstruct the input spectra
from the compressively sampled measurements, we modeled ResCNN, which has a moderate-depth of
learnable layers and a residual connection. We stacked nine learnable layers: five convolutional layers
and four fully-connected layers with a single residual connection between the input and output of the
learnable layers. The measurements were extended by a linear transformation and then fed into ResCNN.
Finally, ResCNN reconstructed the input spectra. We demonstrated the empirical reconstruction results
for ResCNN using synthetic and measured datasets. We compared the reconstruction performance of
ResCNN with sparse recovery using five different sparsifying bases and CNN. Compared with sparse
recovery methods, ResCNN shows better reconstruction performance without the a priori knowledge
of either a sparsifying basis or any spectral features of the spectral datasets. On the other hand, the
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sparse recovery methods show deviation of reconstruction performances to sparsifying bases and
spectral datasets, meaning that a fixed sparsifying basis cannot represent all spectral features of input
spectra. Furthermore, ResCNN shows stable reconstruction performances under noisy environments.
Compared with CNN, ResCNN shows significant improvement in reconstruction performance and
converges faster than CNN. In future work, we will explore compression approaches [40] and unrolled
optimization approaches [43,44] for generating a sparsifying basis Φ from the training dataset to fully
represent spectra without loss of spectral features.
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