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ABSTRACT The modulated wideband converter (MWC) is well-known for a sub-Nyquist wideband
sampling capability based on compressed sensing (CS) theory. In this paper, our goal is to use the MWC
as a base to design a sub-Nyquist radar electronic surveillance (ES) system. Our focus is then to extend the
capabilities of the previous MWC system in order to meet the challenges, i.e., a very long acquisition time,
a much larger simultaneous monitoring bandwidth, and a faster digital signal processing receiver. To this end,
we present a new performance analysis framework and then a new digital domain receiver. The proposed
performance analysis framework will be useful in comparing signal-acquisition performance of the proposed
ES system with those of other sub-Nyquist receivers, including those of the classical Nyquist rate receivers,
without resorting to extensive simulations. This framework can also be used to study the complex interplays
of important system parameters of MWC, such as the sampling rate, the number of parallel channels,
the period of Pseudo random sequence, and thus guides us in selecting the right system dimensions and
parameters for desired performance. Radar surveillance application has its inherent needs for very long
acquisition time and simultaneous monitoring of very large frequency range. To meet this challenge, a fast
signal recovery system needs to be developed, so that radar signal logistics can be retained and recovered
from compressed samples. We have proposed a split and synthesis process in which the radar signal recovery
problem over a long signal acquisition time can be divided into many small CS signal recovery problems,
and the solutions for small pieces are put together later on at the end. In addition, a sub-sampling method
is proposed to have the multiple measurement vector problem complete signal recovery faster without
noticeable performance loss.

INDEX TERMS Compressed sensing, electronic surveillance, modulated wideband converter, multiple
measurement vectors, radar signal.

I. INTRODUCTION
Electronic surveillance (ES) systems monitor radar signals
emitted from opponent radar systems, which detect sub-
jects by transmitting radar signals and receiving them when
reflected back from the subjects. Radar ES systems are useful
for recognizing the intent of a threat in advance. Opponent
radar signals are spectrally sparse, spread around a wide
frequency band, and are unknown in advance, presenting
unique challenges for signal processing.

Radar ES systems can utilize a Nyquist-rate receiver,
such as the rapidly swept superheterodyne receiver
(RSSR) [1], [2]. RSSR chronologically samples the sub-
bands of a wideband region. However, RSSR inevitably

misses some of the signals. For wideband signals, the sweep-
ing period must be relatively long, though opponent radar
signals are brief in duration. As shown in Fig. 1, although
a signal may appear in some frequency bands for a while,
the RSSR’s sweep samples empty sub-bands and fails to
catch the signal. The inevitable failure of catching some
signals from the RSSR sweep can become a critical problem
depending on its applications such as detecting missiles and
monitoring hostile aircraft.

To take samples of spectrally sparse signals at a rate far
below the Nyquist rate without information losses, the mod-
ulated wideband converter (MWC) [3], [4] and random mod-
ulation pre-integration (RMPI) [5], [6] have been proposed.
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FIGURE 1. Signal model and signal acquisition schemes of the RSSR and
MWC denoted as blue and red colored integers, respectively.

Based on the compressive sensing (CS) theory [7], [8], both
systems compress the received spectrum by mixing it with
rapidly alternating pseudo-random sequences, takes the low-
rate samples over a certain acquisition time, and finally recon-
structs the original spectrum from the collected samples in
the digital domain. We aim to design an ES system based
on MWC.

Notably, in terms of the probability of successful sig-
nal acquisition, MWC has not been compared with other
sub-Nyquist receivers or conventional Nyquist receivers with
similar hardware costs. To this end, one can construct proto-
types and repeat hundreds of signal-acquisition tests. How-
ever, that is inefficient and expensive. Thus, a performance
analysis model which predicts the signal acquisition perfor-
mance of systems with similar hardware costs will be of
highly valuable.

In the ES scenario, owing to tactical purposes such as the
avoidance of reverse tracing by the enemy, modern radar
systems frequently switch their signal characteristics. The
longer radar samples are acquired, the more information of
foe’s intention can be scrutinized. In the ES system exploit-
ing MWC, since CS reconstruction algorithms deal with
only a finite length of compressed sample, the reconstructed
samples possibly contain only a portion of a radar signal.
Hence, for MWC to retain sufficient amount of information
for the intention analysis, a sufficiently long acquisition time
is needed. A CS signal reconstruction algorithm covering the
entire acquisition time would give the best performance, but
such an algorithm would require a very high computational
complexity. To compound the matter, the signal bandwidth
we aim to study is very large as well. As radar systems cover
very wide frequency regions including C-band (4-8GHz),
X-band (8-12GHz) and Ku-band (12-18GHz) [9], the band-
width of interest for simultaneous monitoring purpose needs
to be wider than the 2GHz bandwidth of the previously
studied MWC [3]. As the result, the radar ES system we aim
to study in this paper requires very large system dimension for
any CS signal reconstruction algorithm towork. Large system
dimension entails high computational complexity. Our goal
therefore is to focus on how to divide the observation time
into small segments of time to reduce complexity of signal

reconstruction, and how to put the segmented signals of
interest together without losing quality.

Our contributions in this paper are two fold, one is a novel
signal-acquisition probability analysis and a low complexity
radar ES system design for very wide bandwidth monitoring
applications. First, we present a new performance evalua-
tion framework which allows analytic comparison of the
signal-acquisition performances of several wideband signal
receivers. This allows us to compare receiver architectures
while avoiding realization of all the receivers and exhaustive
testing in simulation. Our analysis demonstrates the spe-
cific benefits of MWC over conventional RSSR. In addition,
the analytic method can be applied to other sub-Nyquist
receivers based on CS. For example, analysis applied on
RMPI is included. This framework can also return design
parameters for the radar ES system.

Second, the design of a low complexity and a wideband
monitoring ES receiver usingMWC is presented in this paper.
We show how a long acquisition time is divided into continu-
ously disjoint timeslots, how a CS reconstruction algorithm
works for each segment in a single time slot, and how all
of the reconstructed segments are synthesized. We call this
split and synthesis process and show this effort reduces the
total computational complexity required for reconstruction
of radar signals for a long acquisition time at the cost of
slight degradation in reconstruction performance. In addition,
a sub-sampling method is presented aiming to further reduce
the computational complexity of a CS reconstruction algo-
rithm working within a time slot. Namely, the subsamples are
selected based on the principle components of the received
signal.

In Section II, we briefly introduce wideband signal
receivers, including RSSR, RMPI, and MWC, and formulate
problems for the radar ES system. Section III details the anal-
ysis of signal-acquisition probabilities. Section IV presents
our sub-Nyquist radar ES system design, including the split-
process and synthesis process. A pre-processing method for
the CS reconstruction algorithm is detailed in Section V.
Sections VI and VII present the results of our simulations and
our conclusions, respectively.

II. PROBLEM FORMULATION AND BACKGROUND
The input x(t) is modeled as an aggregation of radar sig-
nals generated from a range of radar systems. In particular,
the input is defined by the following equation:

x (t) =
∑N

i=1
ri (t), 0 ≤ t <∞, (1)

where ri(t) is a radar signal from the i-th radar system
and is located widely within FNYQ = [−fmax, fmax], where
fmax can be of the order of GHz. Including the carrier
frequencies, the pulse description words (PDWs) such as
pulse repetition intervals (PRIs), time-of-arrivals (TOAs),
time-of-departures (TODs), pulse widths, and duty cycles
are unknown a priori. For each ri (t), we model the carrier
frequency ranges within [0, fmax), and the bandwidth Bi is
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truncated to Bmin ≤ Bi ≤ Bmax. For separable ri (t), we
assume that the spectra of ri (t) are disjointed. In addition,
the aggregation x (t) is sparse in the frequency domain,
i.e., 2NBmax � fmax. Briefly, we acquire a successively
incoming signal x (t), which is regarded as a spectrally sparse
multiband signal [3] with unknown parameters.

A. RAPIDLY SWEPT SUPERHETERODYNE RECEIVER
The RSSR [1] is a representative Nyquist receiver designed
to cover wideband regions with a low rate of analog-
to-digital convertors (ADC). RSSR receives a multiband
signal and divides the entire spectrum into multiple subbands
by exploiting a bank of bandpass filters. The subbands are
then sampled by an ADC. With time-division multiplex-
ing [2], RSSR chronologically takes time-domain samples of
the subbands in sequence. The blue boxes in Fig. 1 depict
the time-division multiplexing, where the numbered regions
in time-frequency domain are the signal acquiring subbands
of RSSR.

Despite the simple system structure of RSSR, in Fig. 1,
it inevitably fails to acquire some of radar signals outside
the current acquiring subband. One can reduce the failures
of signal acquisitions by using faster ADC in the state of the
art [10], but such ADC have many implementation problems
such as prohibitive cost, high energy consumption, low mem-
ory, and low ADC resolution [6], [11]. The implementation
limits also restricts to wider the bandwidth fmax of signal
acquisition. Intuitively, the probability that RSSR fails to
acquire the whole radar signals would increase as the number
of signals and/or the range of the input spectrum increases.
In Section III, we compute the probability of successful signal
acquisition by RSSR.

B. RANDOM MODULATION PRE-INTEGRATION
RMPI [5] is a channelized sub-Nyquist receiver that acquires
a multiband signal at one acquisition time Tacq. For each
channel, the multiband signal is mixed with a pseudoran-
dom (PR) sequence and the result is then integrated. An ADC
samples the mixed result at the sub-Nyquist rate fs after
the integrating module. If m is the number of channels,
the channel-end sampling rate [6] fbs is defined as follows:

fbs , mfs. (2)

With the system matrix from the analog architecture, RMPI
reconstructs multiband signal with a CS algorithm. However,
because the matrix is block diagonal in form, the system
matrix is considerably large to compute expeditiously. For
one block, the number of rows and columns corresponds to
the number of channels and fnyq/fs respectively, and each
block is repeated fnyq/fbs times. This large block-diagonal
matrix causes high computational complexity and long recon-
struction times, which renders RMPI impractical for the ES
applications.

In addition, the range of the sample sequence containing
signal information corresponds to Nyquist frequency and is
digitized at an interval of 1/Tacq. Hence, for N given signals

and a minimum bandwidth Bmin, the number of nonzero
entries in a sampled sequence is more than 2NBminTacq. The
large number of nonzero entries impedes RMPI’s signal-
acquisition performance.

C. MODULATED WIDEBAND CONVERTER
To resolve missing signals in the RSSR and avoid the compu-
tational limits of RMPI, we examined the MWC [3] for ES,
which comprises analog and digital modules. In the analog
module, the MWC takes samples containing compressed
information of x (t) at a rate below the Nyquist rate. In the
digital module, the post-digital signal process (DSP) and a
CS recovery algorithm reconstruct the compressed samples
into the Nyquist-rate sample of x (t).

FIGURE 2. Analog module of the MWC.

The analog module of the MWC comprises m channels,
including a series of mixers, low-pass filters (LPFs), and
ADCs, as shown in Fig. 2. For each channel, the multiband
signal is mixed with a Tp-periodic PR sequence, pi(t). The
spectrum of the sequence has M = 2M0 + 1 weighted
impulses at intervals of fp = T−1p . The mixed signal
passes through an anti-aliasing LPF whose cutoff frequency
is defined as fs/2 = qfp/2, where q = 2q0 + 1 > 0 is an
odd integer. As a result, the mixer and LPF divide the input
frequency range [−fmax−q0fp , fmax+q0fp] into L = 2L0+1
sub-bands at intervals of fp, as presented in [3]. The sub-
bands are then compressed by multiplying them with the
Fourier coefficients ci,l of the PR sequence and projecting
into [−fs/2, fs/2). Next, the ADC samples the compressed
sub-bands at the rate of fs. For the i-th channel, the discrete-
time Fourier transform (DTFT) of the output of the ADC can
be expressed by

y̆i
(
ej2π fTs

)
=

∑L0

l=−L0
ci,lX(f − lfp) (3)

for −fs/2 ≤ f < fs/2 [3]. From the projection into
[−fs/2, fs/2), the information from q = fs/fp subbands are
piled in a single row of the X matrix. Note that M ≤ L
Fourier coefficients of pi (t) are unique and q − 1 = L −M
coefficients are repetitions. The MWC then reconstructs the
Nyquist sample of x (t) from the compressed samples in the
digital module of the MWC.
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In the DSP, the channel expansion method [3] is applied
to extend the number of the equation (3) by disjointing the
correlations of the q−1 repeated Fourier coefficients ci,l . The
channel expansion method is represented by the following
equation:

y̆i,k [
_n] = (yi[n]e−j2πkfpnTs ) ∗ hD[n]

∣∣∣
n=ñq

= (yi[n]e−j2πkn/q) ∗ hD[n]
∣∣∣
n=ñq

, (4)

where k ∈ {−q0, · · · , q0}. As shown in (4), for each k ,
yi[n] is modulated with a different frequency kfp and convo-
luted with q LPFs hD[n], whose cutoff frequencies are π/q.
The sequence is then decimated by q. As a result, the outcome
of channel expansion is

Y̆i

(
ej2π fTp

)
=

∑M0

l=−M0
ci,(l+k)X(f − lfp) (5)

for −fp/2 ≤ f ≤ fp/2. Consequently, we can obtain mq
equations from m analog channels. With the continuous-to-
finite (CTF) block in [3], the DTFT Y̆i

(
ej2π fTp

)
becomes

a finite sequence. For m channels, (5) can be expressed as
follows:

Y̆[n] = C̆Z̆[n], (6)

where the measurement matrix Y̆ ∈ Rmq×v corresponds to
the output from the MWC, C̆ ∈ Cmq×M is the sensing matrix,
Z̆ ∈ RM×v contains the signal information, v is the length of
column in Y̆ yielded from the CTF block, andM = 2M0+ 1.
The matrix equation (6) is exploited to reconstruct the multi-
band signal through a CS recovery algorithm, at which point
the MWC has successfully acquired signals.

The main difference between the MWC and RMPI is how
to sparsify the original continuous spectrum. First, the CS
model of RMPI discretizes the continuous spectrum at the
Nyquist rate. Since the received spectrum in the ES scenario
usually consists of disjoint continuous narrow bands, the dis-
cretization of such a spectrum yields not only a huge size of
CS model but also high sparsity. CS theory states the sparse
reconstruction of the original spectrum is successful only for
a low sparsity. While, the CS model of MWC divides the
continuous spectrum into disjoint subbands X

(
f − lfp

)
for

l ∈ {−M0, · · · ,M0} at intervals fp. The sparsity of MWC
is counted as the number of nonzero subbands, where the
spectra of radar signals ri (t) are contained. With the low
sparsity and the small size of CS model, we design an ES
system based on MWC.

D. PROBLEM FORMULATION
Although MWC was designed to acquire a multiband signal,
this architecture is difficult to directly implement in a radar
ES system. Radar ES faces a tradeoff between acquisition
time and post-processing time. When the acquisition time is
shorter than the post-processing time, the ES system faces
a bottleneck in outputting the acquired signal. As a result,
continuous incoming signals stack up and are not included in
the output. Meanwhile, the reconstruction process includes

complex computations in both the DSP and CS algorithms.
In the DSP, for a given compressed sample length v, the com-
putational complexity of (4) is a function of O

(
v2
)
, which

grows as v , Tacq/Ts increases. One option to reduce
computational complexity would be to increase the sampling
period Ts of the ADC and/or reduce the acquisition time Tacq
to reduce the length v. However, increasing the sampling
period is impractical because it reduces the channel expansion
factor q in (4). With the reduced q, the channel expansion
method is no longer useful. Moreover, the acquisition time
cannot be reduced. Because opponent radar systems fre-
quently change their radar signal characteristics, a radar ES
system is needed to acquire signals over a long acquisition
time to efficiently detect an enemy radar system. Another
option would involve dividing a long acquisition time
into several timeslots to reduce computational complexity.
However, this division scheme raises the problem of time-
aliasing [12]. When segments of a long signal are processed
individually and concatenated into the original signal, time-
aliasing degrades the reconstructed signal at the borders of
the segments. If we resolve the time-aliasing problem, we can
greatly reduce computational complexity with sufficiently
accurate reconstruction.

Processing a large number of samples acquired over a long
acquisition time entails high computational complexity in the
CS recovery algorithm. The problem of (6) in the MWC
is referred to as the multiple measurement vector (MMV)
problem, and the computational complexity of the algorithm
is greatly influenced by the size of the measurement matrix.
By reducing themeasurementmatrixwithoutmissing signals,
computational complexity can be reduced for the radar ES
system.

III. SIGNAL-ACQUISITION PROBABILITY ANALYSIS
This section compares the signal acquisition performances
of the MWC, RMPI, and RSSR using a novel probabil-
ity analysis. These receivers aim to watch out a very wide
bandwidth of frequencies where unknown radar signals of
interest may exist. Signals of no interest can be removed
from consideration easily for the receivers, such as radar
signals from friendly forces and commercial signals. In this
analysis, therefore, for the frequency bands of interest, we
assume uniform distribution of the occurrences of unknown
carrier frequencies. We also assume that receivers aim to
receive multiple radar signals each having bandwidth of BHz
over a very wide range of frequencies up to fnyq. From the
analytic results, we observe that the analysis guides the design
of system parameters such as the number of channels m,
the ADC sampling rate fs, and the cycle of PR sequence f −1p .
Our analytic method allows for instant comparisons without
building and simulating each receiver.

From the perspective of sampling theory, the success of
lossless sub-Nyquist sampling by the MWC at a given sam-
pling rate depends proportionally on the sum of the band-
widths of the occupied sub-bands. Hence, once we learn the
number of occupied sub-bands, we can expect successful
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lossless acquisition for a given number of input signals.
To calculate the probability of successful signal acquisition,
we generate random variables representing the numbers of
input signals, split spectra, and totally occupied sub-bands
and derive their distributions.

First, we derive a lower bound of probability for sig-
nal acquisition via the MWC. Let X denote the number of
received signals in a timeslot and Y denote split signals. Then,
the conditional probability mass function (PMF) of Y given
X can be defined as follows:

PY |X (y|x) = xCy
(
ps,MWC

)y (1− ps,MWC)x−y , (7)

where ps is the probability that a signal is split by the grid
of sub-bands. By assuming that the carrier frequency of the
signal can be uniformly drawn, we calculate ps using the
equation of:

ps,MWC = 1−
M0∑

i=−M0

∫ ifp+
fp
2 −

B
2

ifp−
fp
2 +

B
2

1
fNYQ

dx

=
B
fp
, (8)

whereB < fp is the bandwidth of each signal. Focusing on the
positive sub-bands corresponding to real signals, the number
of split and un-split spectra occupants K can be defined as
K = (X − Y )+ 2Y = X +Y . Note that the occupants do not
overlap. The conditional PMF of occupant K is expressed as

PK |X (k|x) = PX+Y |X (x + y|x)

≡ PY |X (y|x)

= PY |X (k − x|x) . (9)

The moment generating function of the occupant is derived
as follows:

MK |X (µx)

=

2x∑
k=x

eµxk · PK |X (k| x)

=

2x∑
k=x

eµxk · PY |X (k − x| x)

=

2x∑
k=x

eµxk · xCk−x
(
ps,MWC

)k−x (1−ps,MWC)x−(k−x) (10)

Assuming that the MWC achieves lossless sub-Nyquist sam-
pling if and only if K ≤ κMWC , using the Chernoff bound,
the lower bound of successful sampling is obtained by the
following equation:

PMWC (Successful sampling)

= PK |X (k ≤ κMWC | x)

> 1− min
µx≥0

e−µxκMWCMK |X (µx) , (11)

where κMWC is the maximum sparsity that allows the CS
problem to be exactly solved. κMWC can be determined by

the equation in [3], which can be written as follows:

mq ≈ 2κMWC log (M/κMWC ) . (12)

As presented in [13], the parameters µx can be obtained by
solving the following equation:

µx = argmin
µx≥0

(
ln
(
E[eµxx]

)
− µxκMWC

)
. (13)

By substituting κMWC and the last expressions of (8) and (10)
into (11), the lower bound of successful sampling can be
expressed in terms of system parameters:

PMWC (Successful sampling)

> 1− min
µx≥0

e−µxκMWC
(
fp − B√
Bfp

)2x 2x∑
k=x

xCk−x

(
eµxB
fp − B

)k
(14)

Note that fp = fnyq/M .
Second, we derive the probability of signal acquisition for

the RMPI. Owing to the architecture of the RMPI, the occu-
pants correspond to digitized signal bands B/T−1acq among the
digitized Nyquist range fnyq/T−1acq. For N received signals, the
signals occupy at least N

⌊
BTacq

⌋
slots. Because the band is

not always exactly fit to the digitized graduation, the prob-
ability of extra occupants exceeds a portion of B compared
to the width of the minimum occupants T−1o

⌊
BTacq

⌋
at one

bin T−1acq, i.e.,

ps,RMPI =
(
B− T−1acq

⌊
BTacq

⌋)
/T−1acq = BTacq −

⌊
BTacq

⌋
.

(15)

We then express the maximum recoverable sparsity of RMPI
κRMPI as mRMPI/2 = fnyq/2fs. For the l0 minimization
problem, which is the optimal but mathematically intractable
solver, the algorithm estimates the sparsity as half of the
number of equations [14]. If the RMPI fails to acquire a signal
with higher κRMPI than κMWC , MWC is superior. As found
in (11), the RMPI fails at sampling when the minimum occu-
pants N

⌊
BTacq

⌋
> κRMPI and succeeds when the maximum

occupantsN
(⌊
BTacq

⌋
+ 1

)
< κRMPI . In the remaining cases,

the probability of successful sampling is the complement
of the sampling failure, which is the number of occupants
over κRMPI with ps,RMPI . Consequently, the probability of
successful sampling for RMPI can be expressed as follows:

PRMPI (Successful sampling)

=


0, bBTacqc > κRMPI

1, N (bBTacqc+1)<κRMPI

1−
N∑

i=dκRMPI−NbBTacqce

pis,RMPI , o.w.

(16)

Lastly, we calculate the signal-acquisition probability for
the RSSR. Because only the information of signals whose
spectrum is fully located in a band currently being acquired
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by an activated filter bank is preserved in the output samples
from the RSSR, the probability of successful acquisition
under the assumption of uniform distribution of the signals
in the frequency domain can be described by the following
equation:

PRSSR (Successful Sampling) =
(
WBPF − B
fnyq/2− B

)x
, (17)

where WBPF is the bandwidth of the filter banks.

FIGURE 3. The probability of signal acquisition among the MWC, RMPI,
and RSSR.

Fig. 3 shows that the MWC has the highest rate of signal
acquisition. For a fair comparison, it was necessary to assign
the same number of channels and sampling rates to all the
receivers, including the RSSR. MWC and RMPI require a
sampling rate of at least fs = qfp for m channels. In other
words, a necessary requirement for the total sampling rate
is mqfp. Because RSSR uses a single ADC with a sampling
rate of WBPF , we can set the ADC sampling rate to WBPF =

mqfp. For the simulation, we set the conditions as m = 4,
fnyq = 4Ghz, fs = 220Mhz, fp = 31.5Mhz, Tacq = 1.11µs,
and B = 0.1fp or 0.6fp. We acquired empirical simula-
tion results from the MWC by the simultaneous orthogonal
matching pursuit (SOMP) algorithm [15]. The simulation
found that the probability that many samples will be split
signals was lower than it would have been in theory because
superposition is avoided when the test signal is generated.
As shown in Fig. 3, compared to the MWC’s performance
at κMWC = 4, the RMPI could not acquire the signals with
B = 0.6fp even though the more successful sampling criteria
with κRMPI = 9 was applied. For that signal bandwidth, high
sparsity occurred, which cannot be recovered by the SOMP
algorithm. This advantage of the MWC is one reason that we
adopted it for our radar ES system design. In addition, use
of (13) helped facilitate the design process by allowing easy
prediction of the system’s signal-acquisition performance in
terms of system parameters.

IV. SPLIT-SYNTHESIS METHOD
The high computational complexity makes the signal recon-
struction consumes longer time and may result in failure
in continuous signal acquisition. A failure occurs when the
signal reconstruction time for the acquired sample obtained
over the preceding acquisition time exceeds the acquisition
time for the next sample acquisition. Even for the SOMP
algorithm [15] which is one of the simplest signal reconstruc-
tion algorithms, the reconstruction time can easily exceed
the acquisition time. Thus, to reduce the rate of failure of
continuous signal reconstruction over a long acquisition time,
careful new design on reducing the computational complexity
is needed. Here we propose a split and synthesis method.
Given a long signal acquisition time, the split-synthesis
method trades-offs the computational complexity with the
performance of signal reconstruction. Fig. 4 depicts the split-
synthesis method.

A. SPLIT-PROCESS
After the MWC samples an aggregated radar signal over
a long acquisition time Tacq, for example 0.13msec [9],
the radar ES system imposes a uniform grid on the acquisition
time at intervals of time slot Tslot . The aggregated radar
signals in (1) are then reformulated as follows:

x(t) =
G∑
j=1

xj(t − (j− 1)Tslot ) (18)

for 0 ≤ t < Tslot , where xj(t) corresponds to the slice of
aggregated radar signal in the j-th time slot. The number of
time slots G is chosen to reduce computational complexity,
and this choice is discussed later in this section. For the
j-th time slot, the MWC output (3) can be expressed as
follows:

Yj[n′] = CZj[n′], (19)

where the measurement matrix is Yj ∈ Rm×l̃d , C ∈ Cm×L is
the sensing matrix, Zj ∈ RL×l̃d contains information of the
aggregated radar signal, and

l̃d =
Tslot
Ts
= q ·

Tslot
Tp
= q · ld . (20)

The relation (19) can be represented in matrix form as
follows:

yj,1 [1] · · · yj,1
[
l̃d
]

...
...

yj,m [1] · · · yj,m
[
l̃d
]


=

 c1,−L0 · · · c1,0 · · · c1,L0
...

...
...

cm,−L0 · · · cm,0 · · · cm,L0


VOLUME 6, 2018 10085



J. Park et al.: Sub-Nyquist Radar ES System

FIGURE 4. Block diagram of the proposed radar electronic surveillance system.

×



zj,−L0 [1] · · · zj,−L0 [l̃d ]
...

...

zj,0[1] · · · zj,0[l̃d ]
...

...

zj,L0 [1] · · · zj,L0 [l̃d ]

 (21)

The next step is to extend the number m of channels in (19).
We present a straightforward channel expansion method

to enlarge the rows of the measurement matrix Yj and the
sensing matrix C in (19); we then adopt the zero-padding
technique that alleviates time aliasing discussed Section II-D.
Before expanding the channels, qk zeros are added to the
right side of each row of Yj in (21), where k < ld . There-
after, as presented at (3), we exploit the way in which the
q = fs/fp sub-bands are piled in a single row of the Zj
matrix. By disassembling the q piled sub-bands, the rows of
Yj and C can be expanded via a fast Fourier transform (FFT)
and simple matrix reorganization. If the zero-paddings before
the FFT are not included, severe time aliasing occurs because
the results from FFT beyond l̃d are lost, whereas they should
be retained for the next timeslot. Thus, we can begin with
padding zeros and performing the FFT on the right side
of (21) to change the column indices of Yj as the frequency
axis. In other words, yj,i[n′] becomes yj,i[fn′ ] for fn′ =
1, 2, . . . , l̃d + qk .
By disjointing q piled sub-bands for the i-th row, we reor-

ganize Yj to be a qm× (ld + k) matrix such that

y̆j,i+v[f̆n′ ] =
∑q−1

v=0
yj,i [v · (ld + k)+ fn′ ] (22)

for f̆n′ = 1, 2, . . . , ld+k . In the sensing matrixC, by disjoint-
ing q−1 repeated ci,l times, such that ci,M0+s = ci,−M0+(s−1)
for s ∈ [−q0 + 1, q0], C is also expanded as follows:

c̆i+v,l =
∑q−1

v=0
ci,−L0+v+l (23)

for l = 0, 1, . . . ,M . Consequently, with the channel expan-
sion step, the relationship at (19) is transformed as follows:

Y̆j[f̆n′ ] = C̆Z̆j[f̆n′ ], (24)

where Y̆j ∈ Rmq×(ld+k), C̆ ∈ Cmq×M , and Z̆j ∈ RM×(ld+k).
The equal effect of qm enlarged equations helps to recover
the input signals [14].

Compared to the conventional convolution method of (4),
computational complexity is reduced by FFT expansion. For
one channel, the computational complexity of the convolution
method is O

(
l̃2d
)
, whereas the FFT method reduces it to

O
(
l̃d log l̃d

)
. When the FFT is performed in tandem with

the split process, the computational complexity is reduced
to O

((
l̃d + Gk

)
log

(
l̃d/G+ k

))
. Because the ES system

samples radar signals over a long acquisition time, the effect
of k additional zeros is negligible, i.e., k � l̃d . To reduce the
computational complexity, the number of timeslots G can be
calculated as follows:

G = argmin
G∈N

(
l̃d + Gk

)
log

(
l̃d/G+ k

)
. (25)

For example, when ld = 256, k = 2, and G = 76, the
computational complexities of the convolution expansion,
FFT alone, and FFT with signal division are 65536, 2048,
and 685, respectively. The reduced computational complexity
of the split process shortens the system’s computation time.

B. SYNTHESIS PROCESS
A CS algorithm recovers the signal information as Z̃j[f̆n′ ] ∈
R4N ·(ld+k) by solving the MMV problem of (24), while Z̃j[n̆]
is generated by applying an inverse of FFT. The proce-
dures from the split process through generation of Z̃j[n̆] are
repeated for each of the G timeslots, and the results from all
the timeslots are synthesized as follows:

Ẑ[n]=
∑G−1

j=1
Z̃j[n̆− (j− 1)ld ]+Z̃G[n̆− (G− 1)ld ], (26)

where the matrix Z̃G of the last timeslot decimates the
columns in [ld + 1, ld + k]. As depicted in Fig. 4, each Z̃j
is delayed for ld using buffers and then synthesized such
that the [ld + 1, ld + k] columns of Z̃j−1 are added to
the k front- columns of Z̃j to alleviate the time-aliasing.
With (22), (23) and the synthesis process, we address the
time-aliasing, as verified in Section VI.

Time-wise information, including PRI, TOA, and TOD,
can be found from the reconstructed radar waveform or the
estimation method presented in [16]. The carrier frequencies
can be estimated with pulse spectrum density estimation [17].

10086 VOLUME 6, 2018



J. Park et al.: Sub-Nyquist Radar ES System

Direction-of-arrival (DOA) can also be estimated using a
crossed-loop/monopole antenna and a multiple signal clas-
sification (MUSIC) algorithm [18].

TABLE 1. Parameters of the radar ES system.

The parameters of the proposed system are listed
in Table 1. For a given analog system, the PR sequence
parameters, ADC sampling rate, and number of channels are
the dependent parameters. The long acquisition time Tacq
used to capture reliable radar signals rapidly increases the
computational complexity in the digital signal reconstruction.
Note that the long acquisition time also improves frequency
resolution. However, the split-synthesis process can reduce
the reconstructing time. In addition to the split-synthesis
process over the long acquisition time, we provide a sub-
sampling method to reduce the computational complexity of
MMV algorithm for every timeslot.

V. MMV ALGORITHM PRE-PROCESSING
This section proposes a sub-sampling method which uses
pre-processing to proportionally reduce the computational
complexity of the MMV recovery algorithm in each timeslot.
As discussed in the previous section, the radar ES system
could greatly reduce the computational complexity of the
channel expansion by splitting a long period of acquisition
time into discrete timeslots. However, because there are still
unnecessary measurement vectors in (24) and the total com-
putational complexity of MMV recovery for G timeslots is
still high owing to the long acquisition time, the reconstruc-
tion time can still exceed the acquisition time and cause
bottlenecks. Because the MMV recovery algorithm involves
matrix multiplication and/or inversion, the computational
complexity of the algorithm rapidly increases with the num-
ber of measurement vectors. In addition, [19] shows that the
recovery performance of the MMV algorithm is saturated
with the number of measurements. Thus, we propose a sub-
sampling method as a preliminary step to reduce the compu-
tational complexity of the following MMV algorithm. This
method strategically selects a subset of measurement vectors
without missing the support set which indicate the indices

of nonzero sub-bands. The sub-sampling method is detailed
in Section V-A and the benefits in terms of computational
complexity and support recovery performance are presented
in Section V-B.

A. SUB-SAMPLING METHOD
By the linearity of (24), selecting columns of Y̆j is equivalent
to selecting columns of the signal matrix Z̆j. We therefore
select the columns of Y̆j based on the structure of the signal
matrix Z̆j. The rows of Z̆j contain spectrally orthogonal sub-
bands of the discrete spectrum of x (t) at intervals of fp. From
the discrete Fourier transform, the column indices represent
the frequency grid in intervals of 1/Tslot . Each narrow-band
spectrum of xj (t) is contained within the rows. Some of the
narrow-band spectra may be split by the borderline of the
sub-bands based on their center frequencies.

FIGURE 5. Selected columns of measurement matrix contain essential
signal information for detecting a support set while reducing
computational burden.

To address this scenario, we propose the sub-sampling
method depicted in Fig. 5. This method generates subsets
by classifying columns of Y̆j at intervals less than the
minimum signal bandwidth, Bmin. For each subset, the sub-
sampling method selects the column that has the maximum
energy. When the subset comprises fewer columns than Bmin,
the method avoids the situation where several signals are
present in a subset and do not overlap in columns. In this
situation, only one of the signals within the sampling window
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will be selected, whereas the others are missed. However,
a sub-sampled matrix Yd ∈ Rmq×lr , the union of selected
columns, includes components of all of the signals while still
reducing the size of the measurement matrix. The number of
sub-sampled columns is calculated as follows:

lr = dld/ bBminTsubce , (27)

where bBminTsubc is the element number of each subset. The
notation Z̆j also becomes Zd ∈ RM×lr . Because this simple
sub-sampling method works in one step before the following
iterative MMV recovery algorithm, the computational com-
plexity added by the sub-sampling is negligible. The reduced
column lr reduces computational complexity proportionally
in the following MMV recovery algorithm. We chose the
SOMP algorithm [15] as an example to verify the compu-
tational complexity benefits and the recovery performance of
the support set.

B. DISCUSSION ON COMPUTATIONAL COMPLEXITY
To verify the computational complexity benefit of our
sub-sampling method, we adopted the SOMP algorithm [15],
which is commonly used to solve MMV problems. Note
that the sub-sampling method is independent of SOMP.
Although there are advanced MMV algorithms, such as
MMV basic matching pursuit (M-BMP), Regularized MMV
FOCUS (M-FOCUS), Bayesian, and group OMP (GOMP),
these are inappropriate for our radar ES system because
M-BMP has problems with signal reconstruction perfor-
mance, and the other algorithms require high computational
complexity. To implement our radar ES system with field
programmable gate array, the high computational complexity
becomes a problem. M-BMP works by matching a column
of the sensing matrix with measurement vectors. However,
according to terminal conditions, the algorithm provides an
accurate solution with high sparsity or an inaccurate solution
when the algorithm terminates with a predetermined sparsity
amount [20]. Meanwhile, the other algorithms require higher
computational complexities compared to SOMP [20]–[22].
Regularized M-FOCUS algorithms contain a concatenation
of three matrices compared to the two matrices required of
SOMP. Bayesian has a conversion of MMV to single mea-
surement vector, and the dimension of the sensing matrix is
increased with the number of measurements [22]. The num-
ber of rows and columns of the sensing matrix in GOMP are
proportionally increased with the group size parameter [21].
From these reasons, we adopted SOMP because it not only
shows the effect of our sub-sampling method but also it
requires low complexity.

The SOMP is an iterative algorithm. At each iteration, the
algorithm recovers the indices of nonzero rows of a signal
matrix Zd , i.e., the support set, in (24) by matching the
MMVmatrix Yd with the bases of the sensing matrix C̆. The
procedure of SOMP is adjusted for the radar ES system to
enhance the algorithm’s efficiency and reduce computational

complexity. The terminal condition is

‖Yd‖2 ≤ EPS. (28)

When (28) is satisfied, SOMP determines that signals do not
exist. Until this condition is satisfied, the algorithm continues
to estimate a support among a set 3, defined as row indices
of Zd , which is expressed as follows:

J = argmax
3

∥∥∥CH
3Yresidue[i]

∥∥∥
2
, (29)

where C3 is a column of C̆ and i is the iteration index. In the
first iteration, the original MMV Yd replaces the residual
matrixYresidue. From the conjugate symmetry of a real-valued
radar signal, the selected and symmetric supports can be
stored in Si gathered at S, i.e., S = {Si| i = 1, 2, . . . ,N }.
After estimating the support set S containing 2i elements,
the residual of Yd is generated by the following equation:

Yresidue = Yd − CS · C
†
SYd , (30)

where C†
S is a Moore–Penrose pseudoinverse of the outcome

by extracting the columns of S from C̆ in (24). Note that N
real-valued radar signals can yield up to 4N supports. SOMP
detects the support set� for the upmost 2N iterations instead
of 4N iterations. The signal information is reconstructed as
follows:

Z̃j[f̆n] = C†
� · Y̆j[f̆n]. (31)

The result of (31) can be used for the synthesis process
explained in Section IV-C.

To verify computational complexities, we focus on the
matrix multiplication and inverse operations (29) and (30) in
the algorithm because these are the main factors that enlarge
computational complexity. For a time slot, the sizes of the
measurement and sensing matrices are m̆ × ld and m̆ × M ,
respectively, where m̆ = mq. For (29), the computational
complexity is O(Mm̆ld ). In (30), the computational complex-
ities are different for each i-th iteration owing toCS ∈ Cm̆×2i,
but we can ignore this effect for easy verification as long as
i < m̆. Thus, the computational complexity of (30) becomes
O(m̆2(ld + 2)+ 16m̆). As a result, the total complexity for N
signals becomes

O (2N (ld m̆ (M + m̆+ 2)+ 16m̆)) . (32)

Next, we compute the computational complexity of the pre-
processing method. The computational complexity becomes

O (2N (lr m̆ (M + m̆+ 2)+ 16m̆)) , (33)

where lr < ld is the number of sub-sampled columns. In (33),
we see the computational complexity reduced in proportion
to the small lr .
Fig. 6 plots the support recovery rate versus the number

of sub-sampled columns of the measurement matrix. The
support recovery rate is defined as one when the recovered
support set is a subset of the original signal. We simulated
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FIGURE 6. Support recovery rate versus the number of sub-sampled
columns of measurement matrix using SOMP.

the support recovery rate along the number of subsets corre-
sponding to the number of sub-sampled columns compared
to the original columns, ld = 35. The minimum bandwidth
of the signal was Bmin = 0.1fp = 3.15MHz. From (27),
lr is 12, which is a similar recovery performance to original
full columns as shown in Fig. 6. This implies that the sub-
sampled MMV Yd does not miss the signal information and
includes all of the essential parts of the original MMV Y̆j.
In this scenario, the sub-sampling method reduced compu-
tational complexity by a third. Consequently, we can con-
clude that this sub-sampling method proportionally reduces
computational complexity while maintaining recovery
performance.

VI. SIMULATIONS
Through simulations, we verified that the radar ES system
can successfully trade-off between the reduction of compu-
tational complexity and degradation of signal reconstruction
performance. For the simulations, we generated three pulsed
radar signals whose carrier frequencies appeared randomly
from fmin = 0.5GHz to fmax = 2GHz. We gave as an
input 5 dB pulsed radar signals where the signal to noise
ratio (SNR) and signal type were not discussed. The SNR is
defined as 10 · log

(
‖x‖22 / ‖n‖

2
2

)
, where x and n are the input

signals and noise vectors, respectively. We considered a four-
channel MWC system; the remaining system parameters are
listed in Table 1. The SOMP algorithm discussed in Section V
was used to reconstruct the multiband signal.

First, we tested the improvement to the relative error in the
reconstructed signal gained by the split-synthesis process of
the radar ES system. In this simulation, the relative error was
defined as follows:

relative_error[i] := ‖x[i]− xr [i]‖22 , (34)

where x[i] is the input radar value at the i-th time and xr is the
reconstructed radar vector. To clearly verify the reduction of
the relative errors at the borders of the timeslots, we shortened

FIGURE 7. The relative errors at the borders of the timeslots are alleviated
with the split-synthesis process of the proposed radar ES system.

FIGURE 8. Reconstruction performance of radar ES system with pulsed
signal and continuous wave (CW) for varying SNRs.

the acquisition period GTslot = 1.29µs. As shown in Fig. 7,
the errors among the timeslots are clearly reduced with the
split-synthesis process. Although the trade-off parameter k
discussed at the Section IV-A yields k additional columns in
the channel-expanded measurement matrix, compared to the
original column number ld = 35, our simulation showed that
even a small k = 2 yields some benefit. The Table 2 com-
pares computational complexity between the conventional
MWC and the split-synthesis process of the proposed radar
ES system. Note that the order of computational complexity
was discussed at the Section IV-A. With the small trade-
off parameter k = 2, the split-synthesis of (22)-(26) can
considerably reduce the computational complexity at the cost
of negligible degradation of signal reconstruction as shown in
the Fig. 7.

Second, we verified the robustness of noise along SNRs
for continuous waves (CWs) and pulsed signals [9]. In this
simulation, theMSE is defined as ‖x − xr‖22 / ‖x‖

2
2. As can be

seen in Fig. 8, the pulsed signal was reconstructed better than
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TABLE 2. Comparison of computational complexity.

the CW. For the purpose of this study, our radar ES system
can successfully monitor up to three radar signals above 2 dB
as we pursued the detection of three radar signals under 5%
of the MSE.

VII. CONCLUSION
In this study, we verified and compared the signal-acquisition
performances among RSSR, RMPI, and MWC with a novel
probability analysis. In the analysis, the MWC performed
better than the other receivers. In addition, this analysis may
be extended for comparison between CS-based sub-Nyquist
receivers. Our proposed radar ES systemwithMWCwas able
to monitor incoming wideband signals in a simulation. In this
ES system, the split-synthesis process considerably reduced
the computational complexity with the trade-off parame-
ter to alleviate the degradation of signal reconstruction.
Pre-processing with sub-sampling before the MMV algo-
rithm was able to proportionally reduce computational
complexity while maintaining signal recovery performance.
We plan to implement and test this signal-acquisitionmethods
using the hardware that is currently being developed. As a
future work, it would be meaningful to consider the problem
of estimating the PDW of radar signals, including spatial
location of carrier frequencies.
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