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Abstract— Based on the compressed sensing theory, the sub-
Nyquist samplers are proposed to acquire the wideband signals. 
Among them, although the modulated wideband converter (MWC) is 
theoretically well designed, a calibration is needed for the 
implementation. In this paper, we propose a calibration algorithm to 
estimate the practical system transfer sequentially injecting sinusoids 
with unknown phases. For the successful calibration, the unknown 
phases of the sinusoids are estimated in the proposed algorithm, 
which affect the calibration performance tremendously. 
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I.  INTRODUCTION 
The analog-to digital converter (ADC) is essential for the 

spectrum sensing in cognitive radio. However, the ADC 
encounters inefficiency when it deals with wideband signals 
whose carrier frequencies reach up to scores of Giga-Hertz, 
whereas the bandwidths of the signals are narrow compared to 
their Nyquist frequencies. For an efficient sampling of the 
wideband signals, based on the compressed sensing theory 
(CS) [1, 2], the channelized sub-Nyquist samplers are proposed 
as troubleshooters, such as multi-coset sampler [3, 4], random 
modulation pre-integration [5], modulated wideband converter 
(MWC) [6, 7], random demodulator [8], compressive 
multiplexer [9], and multirate sampler [10]. 

The modulated wideband converter (MWC) [6, 7] is one of 
the realizable sub-Nyquist samplers, which samples spectrally 
sparse wideband signals. The analog part of MWC receives the 
priory unknown multiband signal [6] and the signal goes 
through multiple channels. For each channel, the series of 
analog components consist of mixer, low-pass filter (LPF), and 
ADC. The signal is multiplied with pseudo random (PR) 
sequence at the mixer, and the mixed signal is then filtered by 
LPF. The ADC samples the signal at a sub-Nyquist rate. After 
the analog part, the sub-Nyquist samples then are digitally 
processed to reconstruct the Nyquist samples using sparse 
recovery algorithms such as orthogonal matching pursuit 
(OMP) [11], 1l -minimization [12], least absolute shrinkage and 
selection operator (LASSO) [13]. 

The theoretical studies on the MWC usually assume that 
the analog components are ideal and delays do not exist 
amongst analog components. However, when the MWC is 

implemented in real world, the assumptions are not valid. This 
invalid assumption causes model-mismatch problems leading 
to failure in the reconstruction of Nyquist samples. Thus, 
calibration techniques for remedying the problems are required 
for the successful reconstruction. 

For the calibration of MWC, researchers have proposed 
schemes sequentially injecting sinusoids [14 - 17]. In [14], the 
authors have considered non-linearity of mixer and non-ideal 
response of filters. In [15], the authors have considered 
perturbations of ADC. From an assumption the perfect 
synchronization between the mixer and the ADC, they derive 
useful information and exploit it to the calibration. However, 
the perfect synchronization requires additional electronic parts, 
which might be complex and highly costs to be implemented 
for fast ADC. In [16], they have considered the delays in 
analog paths and difference among channel gains. In [17], the 
authors have considered a problem of non-ideal LPF. 
Consequently, all the literatures of [14-17] solve their own 
problems by injecting arbitrarily generated sinusoids with 
assuming that the phases of the sinusoids are perfectly 
controllable. However, the phases may be unknown in practice 
due to the unknown transient between the sinusoid generator 
and the front-end of the MWC, and the unknown phases again 
result in the failure in the reconstruction. For the more precise 
calibration, we need to estimate the phases of sinusoids 
injected for the calibration. 

In this paper, we propose a calibration algorithm for the 
MWC sequentially injecting sinusoids with unknown phases. 
In addition to considering the implementation problems from 
the non-ideality of the analog parts, we consider that the phases 
of the sinusoids injected during the calibration are unknown 
and not consistent for every calibration. In the proposed 
algorithm, the unknown phases and the calibrated transfer 
function are estimated at the same time. The estimation of the 
unknown phases is fulfilled by simple multiplications and 
divisions, and it is easy to be implemented.  

II. BACKGROUND AND PROBLEM FORMULATION 

A. The modulated wideband converter 
In this section, we briefly introduce about the MWC [6]. The 

analog part of MWC consists of m  channels as shown in Fig. 1. 
Series of mixer, LPF and ADC compose each channel. For the  
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i  -th channel, the multiband signal ( )x t  which has several 
disjoint bands in max max[ , ]f f   , is mixed with PR sequence 
whose cycle is 1/p pT f  . For a cycle, the PR sequence  ip t   

has 02 1M M   chips for 0 0M  , where each chip value 

,i va  is one of 1  for equal duration /pT M  . Thereafter, the 
mixed signal goes through the LPF whose bandwidth is 

/ 2 / 2s pf qf , where 02 1q q   is a positive odd integer. 
After that, the ADC samples them at rate of 1/s sf T .  

By representing  ip t  as a form of the Fourier series 

expansion of bases 2 pj f lte   for , ,l    , the output of i -
th channel [ ]iy n  is represented as 
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where {}LPF   is the low-pass filtering operator, and the 
infinite order of summation is reduced to a finite order of 

02 1L L   since  x t  is bandlimited and the bandwidth of 
LPF out of the maximum frequency outputs zero. The reduced 
order is calculated by 0 0 0L M q   [6]. Fourier series 
coefficients ,i lc  of  ip t  is defined by 

 
2

. 0

1 ( )p p
j ltT T

i l i
p

c p t e
T



   (2) 

For an observation time oT , the matrix form of  (1) is 
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where , ,i l i lc c
   and ( )  is a complex conjugate operator. 

Thereafter, additional digital signal processing (DSP) and a 
CS recovery algorithm reconstruct the Nyquist sample [ ]x n  of 
the input  x t . 

B. Problem formulation 
The MWC can reconstruct the Nyquist sample [ ]x n  from 

the compressed samples  iy n  by using the theoretical model 
of (3) when every analog component is ideally designed. 
However, the transfer matrix C  of (4) does not contain the 
practical analog characteristics including failure of clock 
synchronization between the PR sequence and the ADC, 
irregular channel gains, and the non-ideal responses of the LPF. 
Since the model mismatch by the non-ideal responses of the 
LPF can be easily eliminated by digital equalizing filters [17], 
we focus on the other non-idealities ensuring the linearity in  
(3) and the calibration using single tones with unknown phase 
information.. 

The non-idealities are usually posed when the MWC is 
implemented. For examples, there are asynchronization 
between the PR sequence and the ADC and irregularity among 
channel gains. In theory, the transfer model of (4) assumes 
perfect synchronization between the initial starting points of 
the PR sequence and the ADC. However, the synchronization 
requires additional circuits, and unknown path delays on the 
channels may disturb the synchronization. We model the 
asynchronization as a time difference of the initial points 
between the ADC and the PR sequence, which is equivalent to 
giving an unknown delay i  to  ip t  in Fig. 1. Likewise, for 
the irregular channel gains, we give an unknown channel gain 

iw  to  ip t .  By the definition, the elements of the transfer 

matrix C


distorted by the asynchronization and the irregular 
channel gains are derived as 
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The asynchronization and irregularity among channel gains 
respectively multiplies complex exponentials and magnitudes 
to every column and row of (4). Consequently, some non-

Fig. 1. The m  channelized modulated wideband converter [7]. 
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idealities of analog components distort the transfer matrix C  
while keeping the linearity. 

By noting that the columns of unknown C


 correspond to 
frequency response of the sampling system, we can estimate 
every frequency response by sequentially injecting single tone 
signals owing to the linearity of the distorted system. However, 
when the phases of the input single tone signals are unknown, 
which results in another complex exponentials in outputs, the 
estimated response is still untrustworthy. Such a case is 
impractical since the unknown path delays in analog channels 
make it hard to predict the phase of outputs even if the phase 
of input tone is elaborately controlled. Thus, it is needed to 
develop a calibration algorithm using tone signals with 
unknown phases for a practical implementation of the MWC. 

III. CALIBRATION 
We provide a calibration algorithm using single tone 

signals with unknown phase information for estimation of 
linear system transfer of the MWC. In specific, we suppose that 
the system is distorted while keeping the linearity, and our goal 
is to calibrate a distorted system transfer C . The calibration 
algorithm consists of two steps; linear estimation and phase 
equalization. In the linear estimation step, we input sinusoids 
with unknown phases to the distorted MWC. Based on a 
mathematical relationship between the input tone signals and 
the output samples, we estimate the frequency responses of the 
system transfer. However, due to the unknown phases of the 
tone signals, the estimate still contains uncertain components. 
In the phase equalization step, we equalize the effect of the 
unknown phases by exploiting a structural characteristic in a 
matrix representation of the input-output relationship. The 
phase equalization step outputs the distorted system transfer of 
a single analog channel of the MWC. 

In the linear estimation step, for the i -th channel, we 
sequentially input tone signals of 

 ,2 ( )( ) p i kj f k ts t e    (6) 

for 00,1, ,k M  , where ,i k  are the priorly unknown phases, 
which are different among input frequencies and channels. 
From (1), the output , [ ]i ky n  is derived as 
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where .i lc  is elements of the distorted transfer matrix C  and 
,2

,
p i kj f

i k e     is represented as effects of unknown phases. 
The frequencies ( )pf l k  within the bandwidth of LPF sf  is 
remained in (7), and the order of summation 0L  is reduced to 

0q  when  

 / 2l k q   (8) 

The inequality (8) is yielded from ( ) / 2p sf l k f   and 

s pf qf . From (8), the last of (7) is derived as 
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For 00,1, ,k M  , the last equation of (9) can be represented 
as a matrix form of 

 i i i HFY PA  (10) 

where ( 1)0M ld

i

 

Y  , ( 1) ( 1)0 0
i

M M  
P  , ( 1)0

i
M q 

A  , and 
dq lHF   are readily represented at (10a). The matrices iY  

and HF  are already known, but iP  and iA  are unknown. 

Meanwhile, iA  contains elements of distorted system transfer 

C . Note that our aim is estimation of distorted system transfer. 
The matrix HF  is a form of discrete Fourier transform (DFT) 
matrix and become full rank matrix when dl q . This 
condition can be achieved by injecting the signals for an 
observing time o sT qT  since /d o sl T T . By multiplying 
Moore-Penrose pseudoinverse †F  of HF   to the right side of 
(10), it turns into 

 †
i i iYF PA  (11) 

We define †
i iB YF  whose the  ,k l -th element equals to 

 
 

0

,
,

1
, 1 , ( 2)

k l i i
k l

k
i k i q k l

b

c 
    



 

PA


  (12) 

As shown in the result of linear estimation (12), the elements 
,i lc  of distorted transfer matrix are multiplied with elements of 
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iP . Thus, to acquire the elements ,i lc  from iA , we should 
estimate or equalize the iP . 

In the phase equalization step, we exploit that iA  is a 
Hankel matrix, i.e. ( 1, 1)k l   element equals to ( , )k l  
element for 1, 1k l  . We generate a matrix 

01 2 1{ , ,..., }i Mdiag g g g G  to equalize the unknown phase 

matrix iP  . All the elements of iG  are defined as 
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,kk
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By the definition of (12), the elements kg  are equal to the 
inverse of the k -th elements of iP . In specific, 
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Hence, the multiplication i iG P


  becomes identity matrix I . 

Consequently, we can estimate the iA  by multiplying iG  to 
(12), i.e.  

 
i iA G B   (15) 

The result of equalization iA  contains positive frequency 
elements ,i lc  for 00,1,...,l L  . The negative elements are 
acquired by using the conjugate symmetric property of 
transfer matrix , ,i l i lc c

   . Thus, by injecting calibration 
signals to the i  -th channel of MWC, we can estimate i  -th 
row of distorted transfer matrix C . For the m  channels, the 
linear estimation and phase equalization are repeated. The 
calibrated transfer matrix C  is acquired from the m  estimated 
rows. With the calibrated transfer matrix C , the unknown 
multiband signal can be reconstructed successfully. 

IV. SIMULATIONS 
In this section, the simulations were presented to verify the 

performance of proposed calibration algorithm. For the 
simulation, we generated an unknown multiband signal ( )x t , 
which consisted of 6 disjoint bands with max 2f GHz . We 
used 4-channel MWC to sample ( )x t . There were 127M   
Fourier coefficients of PR sequence at intervals of 

31.5pf MHz , and the sampling rate of ADC was 
220sf MHz , which induced 7q  . To construct a distorted 

environment, we set an asynchronization as a certain time 
difference of the initial points between the ADC and the PR 
sequence to 7 pT . To estimate the distorted transfer matrix C , 
we injected 30dB  tones as (6). The signal-to noise ratio (SNR) 
was defined as 2 2

10 2 210 log ( / )SNR s n  , where s  and n  
were respectively the calibration signal and noise vector. In 
addition, we also generated unknown input phases , [0, ]i k oT    
randomly. We exploited the OMP [11] to estimate supports of 
x  from the compressed outputs [ ]iy n . Note that the supports 
correspond to actual indices of signal spectra among subbands. 

We compared the recovery performances using the 
calibrated transfer matrix and theoretical transfer matrix 
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Fig. 2. Support recovery rates under various SNRs of unknown input signals.
The system transfer matrix calibrated by the proposed algorithm and the
theoretical matrix ignoring practical conditions are used. 
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without calibration. We also generated the actual transfer 
matrix aC  from the distorted environment. To verify success 
of recovery, we measured the supports recovery rate whose 
flag is denoted as one when the recovered supports were 
coincided to original supports. As shown in Fig.2, the 
theoretical transfer matrix failed to recover the original 
supports due to the distortion by the asynchronization between 
the ADC and the PR sequence. On the contrary, the calibrated 
transfer matrix successfully recovered them like the actual 
matrix. In addition, to verify the importance of the phase 
equalization step in calibration, we implemented the 
conventional calibration algorithms of [14-16]. The proposed 
phase equalizing calibration only succeeded to recover the 
supports when the unknown input phases exist. The algorithms 
of [15, 16] cannot cover the distortion of asynchronization. 
Above all, since the system transfer is distorted by the 
remained unknown phases again, their failures were 
unavoidable. Hence, the phase equalization should be executed 
for the successful calibration. 

We demonstrated the effects of the increased injecting time 
of calibration signals. By increasing the injecting time, the 
number of compressed samples dl  of (10) was enlarged, which 
contributed to estimate the actual transfer matrix more 
precisely. To verify it, we compared relative errors of the 
calibrated and theoretical matrix to the actual matrix aC  along 
the dl . The relative error was defined as 

 /a a FF
relative error  C C C   (16) 

where C is calibrated or theoretical matrix, and 
F

  is 
Frobenius norm. As shown in Fig. 3, the calibrated sensing 
matrix was closed to the actual matrix unlike the theoretical 
matrix. The relative errors of theoretical matrix were a certain 
constant, because the asynchronization and the system transfer 
are unchanged. Consequently, the result demonstrated that 
calibration performance was enhanced along the dl . 

V. CONCLUSION 
In this paper, we proposed a calibration algorithm for the 

practical implementation of MWC. By inserting tone signals 
whose phases were not known but the frequencies were known 
in advance, the MWC was calibrated successfully. Through the 
calibration algorithm, the unknown input phases were also 
estimated for the successful calibration. Under the distorted 
environment, the simulation showed that only the calibrated 
transfer matrix successfully recovered the original supports set. 
In addition, the simulation also showed that the unknown input 
phases should be estimated for the successful calibration. 
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