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Abstract— Attempts are being made to make brain-computer 
interface system (BCIs) commercially viable for normal person. 
Stable performance is essential so that BCIs could widely be 
used for general public. We propose a new classification 
method based on sparse representation of EEG signals and L1 
minimization. The proposed method use the common spatial 
filtering (CSP) and band power feature for classification. We 
compare the classification accuracy of proposed method to that 
of the conventional linear discriminant analysis (LDA) method. 
Our method shows improved accuracy over the LDA 
classification method regardless of the number of CSP filters. 

Keywords- Electroencephalogram (EEG), Brain-Computer 
Interface (BCI), Sparse Representation, Compressed Sensing 
(CS), Common Spatial Pattern (CSP). 

I.  INTRODUCTION 
Brain-computer interface system (BCIs) provides a new 

communication and control channel between human brain 
and an external device without any muscle movements [1]. 
In the past, BCIs have been developed mostly to provide 
alternative communication means to people who have 
severe motor disabilities [2]. These days there are some 
companies applying electroencephalogram (EEG) based 
BCIs to normal person by using headset shaped scalp 
electrodes, such as Emotiv EPOC [3] and MindWave [4]. 
For these commercial BCIs going beyond laboratory 
researches, important issue is stable performance, viz. 
classification accuracy.  

 In this paper we propose a sparse representation based 
classification (SRC) scheme for the purpose of increasing 
the classification accuracy of EEG based BCIs. This SRC 
method has been used in the face recognition field [5].  The 
SRC method works by finding a sparse representation of the 
test signal in terms of a set of training signals inside a 
dictionary. This sparse representation is efficiently done by 
using an L1 minimization which is motivated from the 
compressive sensing (CS) theory [6]. The dictionary design 
is the critical step for this method. We use band power as a 
feature, and common spatial pattern (CSP) filtering for 
making the EEG signals distinguishable for different classes 
[7].     

II. METHODS 

A. Experimental data 
In this study, we use a BCI Competition III data set 

(Data set IVa) [8] which were recorded from five subjects. 
Subjects have taken the same procedure of a BCI 
experiment in which there are two classes, Right hand, and 
Right foot of motor imagery movements. The data recording 
was made using BrainAmp amplifiers and a 128 channel 
Ag/AgCl electrode cap from ECI. 118 EEG channels were 
measured at positions of the extended international 10/20-
system. Signals were band-pass filtered between 0.05 and 
200Hz and then digitized at 1000Hz. For off line analysis 
signals were downsampled to 100Hz. 

B. Data analysis  
We take a data segmentation for following analysis. We 

use 1000~2000ms of signal samples (100 samples) after the 
Cue has been presented. Next, to eliminate the noise that is 
not related with sensorimotor rhythms (SMRs), we use a 
band-pass filter with 8~15Hz cut off frequency. 

To reduce the dimension of feature vector and make 
distinguishable features, we use the CSP filtering. CSP is a 
powerful signal processing technique that has been 
successfully applied for EEG-based BCIs [7]. 

Let C T×∈X   be a segment of EEG signals where C  is 
the number of EEG channels. In this study, C is 118, and T  
is the number of sampled time points collected in all the 
trials. We use 100 samples (one second). We have two 
classes of EEG training trials C T

R
×∈X  and 

C T
F

×∈X  each corresponding to the Right hand ‘R’ and 
Foot ‘F’ movement. Using the CSP method, we obtain the 
CSP filters C C×∈W  . We call each column vector 

( 1, 2,..., )C
i i C∈ =w  of W a spatial filter. Among them, 

we use n CSP filters from the front and another set from the 
back. Then, we can make this as the CSP filtering 
matrix 2C n×∈W  , i.e., 1 1: [ ,..., , , ]n C n C− +=W w w w w . Given 
the two classes of EEG training signals, we define the CSP 
filtered signals, i.e., 
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Next, we compute band power of each class signal. In this 
study, the power of the CSP filtered signal, i.e., the second 
moment of each row of RX and FX  is the band power from 
8 to 15 Hz. 

C.  Linear Sparse Representation Model 
In this section, we aim to introduce the sparse 

representation of the test signal. Let tN be the number of 
total training signals for each class ,i R F= . We define the 
dictionary matrix ,1 ,2 ,[ , ,..., ]

ti i i i N=A a a a for ,i R F=  where 

each column vector 1m×∈a  having dimension 2m n= is 
obtained by concatenating the 2n band power features. The 
same procedure is repeated for the right hand and right foot 
classes. By combining the two matrices, we form the 
complete dictionary, : [ ; ]R F=A A A . Thus, the dimension of 
A is 2 tm N× .  

 
Figure 1. Design a dictionary and linear sparse representation model 

 
Figure 1 shows the proposed model. We apply the same 

procedure done to obtain the columns of the dictionary to 
the test signal. Thus, the dimension of y is the same as the 
dimension of the columns of the dictionary A. Then, this test 
signal y can be sparsely represented as a linear combination 
of some columns of A: 

 ,1 ,1 ,2 ,2 , ,
,

t ti i i i i n i N
i R F

x x x
=

= + + ⋅⋅⋅ +∑y a a a
 

(2)
 

where , , 1, 2,...,i j tx j N∈ =  are scalar coefficients. Then, 
we can represent this as a matrix algebraic form: 

 =y Ax  (3) 

where 2
,1 ,2 , ,1 ,2 ,[ , ,..., , ,..., ] t

t t

NT
R R R N F F F Nx x x x x x ⋅= ∈x  . For 

example, we expect that the test signal y of class R  can be 
represented as the training signals of class R . 

 
1m

R R
×= ∈y Ax   (4) 

where 2
,1 ,2 ,[ , ,..., ,0,...,0] t

t

NT
R R R R N= ∈x a a a  is a coefficient 

vector whose elements are zero except some elements 
associated with test signals of class R . Sparse representation 
of the test signal y can be made when the number of non-
zero coefficients of x is much smaller than tN . 

D. Sparse Representation by L1 Minimization 
We have the number of total training signals 2 tN which 

is larger than the number of CSP filters ( 2 )m n= . Thus, the 
linear equation (4) is under-determined ( 2 )tm N< . Recent 
studies in the Compressed Sensing theory have shown that 
the L1 norm minimization, given below, can solve this 
under-determined system well in polynomial time [9]:  

 1
min subject to =x y Ax

 
(5)

 

 There are many L1 minimization algorithms. In this 
paper, we use one of the standard linear programming 
methods [10], the ‘SolveBP’ function implements the basis 
pursuit algorithm available in the SparseLab, which is a free 
MATLAB software package [11].  

E. Sparse Respresentation based Classification 
After solving the L1 minimization problem, the nonzero 

elements of x  must be corresponding to the column of class 
i . Because the EEG signals are very noisy and non-
stationary, the nonzero elements may appear in the indices 
corresponding to the column of another class. To make use 
of the sparse representation result, the coefficient vector x, 
in a classification problem, we introduce the characteristic 
function δ [5]. For each class i , we define its characteristic 
function 2 2: t tN N

iδ →  which selects the coefficients 

associated with class i . For 2 2, ( )t tN N
iδ∈ ∈x x  is a new 

vector which is obtained by nulling all the elements of x  
that are associated with the other class. Then we can obtain 
the residuals 

2
( ) : ( )i ir δ= −y y A x  for L and R. Then, the 

classification rule is given by: 

 
class( )=arg min ( )ii

ry y
 

(6)
 

Thus, we determine the class i that has the minimum 
residuals. 

III. RESULTS 
We have analyzed five data sets using proposed SRC 

method and conventional linear discriminant analysis (LDA) 
method. To evaluate the average classification accuracy 
using limited size datasets, we use the statistical leave-one-
out (LOO) cross-validation method with the same total 
number of data trials for each subject [12]. The 
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classification accuracy is calculated from the following 
equation: 

 correct test trialsAccuracy(%) 100
total test trials

= ×  (7) 

Figure 2 shows the classification accuracy (%) of SRC 
and LDA as a function of the number of CSP filters for each 
subject. Figure 2 (a) shows the results of subject al, aw and 
av. Solid line represents the SRC accuracy and dashed line 
represents the LDA accuracy. Figure 2 (b) shows the results 
of subject ay and aa. For each selection on the number of 
CSP filters, SRC performs better than LDA does with few 
exceptions. Thus, it can be said that SRC has better 
classification accuracy than LDA regardless of the number 
of CSP filters in Figure 2. To investigate the statistical 
significance of the observed accuracies in Figure 10, we 
performed a paired t-test for each subject. The obtained p-
value of the t-test was less than 0.05 for all subjects, which 
indicates that the difference was significant. 

 

 
     (a) 

 
(b) 

Figure 2. Classification accuracy (%) per subject with different number of 
CSP filters. (a) Classification accuracies for subject al, aw and av. Solid 

line represents SRC results and dashed line represents LDA results. (b) 
Classification accuracies for subject ay and aa. 
 

IV. CONCLUSIONS 
We apply the idea of sparse representation as a new 

classification method for the motor imagery EEG based 
BCIs. The sparse representation method needs a well-
designed dictionary matrix made of a given set of training 
data. We use the CSP filtering and the band power to 
produce the columns of the dictionary matrix. We have 
shown that a good classification result can be obtained by 
the proposed method. In addition, we have compared with 
the conventional approach, viz., the LDA method, which is 
well known for robust classification performance. Our 
method shows improved accuracy over the LDA 
classification method regardless of the number of CSP 
filters.  
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