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1. Introduction  

Brain-computer interface (BCI) systems provide a new 

communication and control channel between people and external 

devices [1]. In these systems, users can control an external device 

using their intention or imagination without making any real 

muscle movement. Therefore, these systems are very helpful for 

people who are suffering from severe motor diseases. The 

electroencephalogram (EEG) is widely used for measuring brain 

signals in BCI systems because of its low cost, no space 

restriction, and high temporal resolution compared with other 

equipment such as functional magnetic resonance imaging (fMRI) 

and magneto encephalogram (MEG) [2,3]. However, scalp-

recorded EEG signals are very sensitive to noise. In particular, in 

the case of motor imagery based BCI, which uses induced EEG 

signals while the subject imagines limb movements [2,3], the 

instability of imagery task, non-stationarity of signals, and lack 

of concentration are among main obstacles to effectively process 

the EEG signals. In addition, it is difficult to collect a large set of 

training samples because of the subject’s fatigue. The raw EEG 

signals are associated with high dimension owing to the large 

number of EEG channels; hence, it is difficult to collect volume 

of data samples that are large enough for good training. 

Therefore, EEG signal processing is very important and many 

research efforts have been focused on this issue [5–7]. 

The signal processing steps in BCI can be categorized as 

preprocessing, feature extraction, and classification. In the 

preprocessing step, the artifact detection and rejection are 

conducted. The purpose of feature extraction is to make a 

meaningful low-dimensional data, i.e., a feature vector, from the 

original high-dimensional data. This feature vector should be 

distinguishable for different classes. Typically, the feature 

extraction is performed using a dimensionality reduction method. 

The principal component analysis (PCA), independent 

component analysis (ICA), and common spatial pattern (CSP) are  

 

 

popular methods for dimensionality reduction in the motor 

imagery based BCI systems [7,20]. 

Another important signal processing step is classification. In 

the BCI systems, the purpose of classification is to translate the 

extracted feature of a user’s intention into a computer command, 

which can then be used to control external devices. Typically, 

this translation is done using the classification algorithms, which 

are adopted from pattern recognition area. Frequently used 

classification methods in the EEG based BCI systems are linear 

classifiers such as linear discriminant analysis (LDA) and support 

vector machine (SVM) [6]. In many BCI studies, the SVM has 

been recognized as a robust classification method with 

generalization ability and has shown to provide the best 

classification results [6,14,15]. 

Recently, in the field of pattern recognition, the concept of 

sparse representation based classification, namely SRC, has been 

introduced [8]. The basic idea of SRC is to parsimoniously 

represent a test signal y  via the so-called sparsification step, i.e.,

,y Ax  where A is a dictionary whose columns are a collection 

of training signals. This sparsification step leads to the 

representation of the test signal y with the training signals from 

the same class predominantly. The L1 minimization algorithm is 

employed to perform the sparse representation of the test signal 

with a given set of training signals. 

The robust classification performance of the SRC framework 

has been shown in various applications such as face recognition 

[9,12,13,24], digit classification [8], and speech recognition [10]. 

Particularly, in [9], Yang et al. presented that SRC obtains robust 

face recognition performance for occlusion and corruption on 

facial images. In addition, SRC has been successfully applied to 

the EEG based BCI application [11] and EEG based vigilance 

detection [28]. However, in the EEG signal classification, SRC is 

rarely studied. The previous SRC study for the motor imagery 
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based EEG signal classification focused on algorithm 

construction and evaluated the classification performance 

compared with a conventional classifier such as LDA in [11]. To 

the best of our knowledge, there has been no literature to 

systematically evaluate the noise robustness and classification 

characteristics of SRC for the scalp recorded EEG signals.  

It is well known that EEG signals are non-stationary. The non-

stationarity can be observed during the change in alertness and 

wakefulness, eye blinking, and in the event-related potential 

(ERP) and evoked potential (EP) such as motor imagery signals 

[32]. Because of the non-stationarity of the EEG, we can observe 

that the test feature positions vary from the original training 

feature positions in the feature space [6,16]. This is one of the 

major obstacles in EEG signal classification. Thus, a classifier 

that is optimized for a particular training data may not work for 

online BCI with a new test data.  

Recently, extensive research efforts have been devoted to 

overcome the non-stationary issue in the motor imagery based 

EEG classification. In [38–40], robust feature extraction methods 

were proposed for common spatial pattern (CSP), which is the 

most widely used technique for feature extraction in the motor 

imagery BCI. In the classification stage, supervised and un-

supervised adaptive classification schemes were studied for the 

conventional LDA and SVM methods [16,27,41]. 

In this study, our aim is to evaluate the robustness of SRC for 

non-stationary EEG signal classification. First, we compare the 

classification performance, i.e., classification accuracy and 

computation time, of the SRC with SVM, which has been known 

as the state of the art classifier in many studies. Second, we 

evaluate the noise robustness of the SRC and SVM methods. For 

this purpose, we generate noisy test signals which have different 

feature distribution with original test signals. The noisy test 

signals are generated with the addition of random Gaussian noise 

and scalp recorded background EEG signal into the original test 

signal. Then, we assess the noise robustness of both SRC and 

SVM methods. Third, in addition to the simple performance 

comparison, we examine working mechanism of SRC by 

analyzing advantages and disadvantages as the role of classifier 

compared with the conventional SVM. Moreover, we discuss 

why SRC outperforms SVM for the noisy test signal. Finally, we 

evaluate the SRC method using an online experimental dataset 

where non-stationarity occurs from training to testing sessions. 

Our work is intended to provide evaluation and analysis of SRC 

to researchers who want to apply the SRC framework to non-

stationary EEG signal classification.  

This paper is organized as follows: In section 2, the 

experiment and EEG signal processing methods such as feature 

extraction and classification are described. In addition, noise 

robustness analysis method is explained in this section. Section 3 

shows the experimental results. In section 4, discussions and 

analysis are provided. Finally, we conclude this paper in section 

5. 

2. Methods  

2.1. Experiment 

In this study, to evaluate and analyze the SCR method, we 

perform two-class EEG based motor imagery experiment. 

Twenty healthy subjects (11 male and 9 female subjects whose 

average age is 24.05±3.76) participated in this experiment. 

Therefore, we collected 20 motor imagery datasets. Each dataset 

contains EEG signals generated from the left and right hand 

motor imagery experiment. Experiment included five runs. One 

run consisted of 20 trials for each class. Thus, the total number of 

trials was 100 for each instruction (class).  

Fig. 1 shows a single trial experimental paradigm of our motor 

imagery experiment. Cue line indicates the starting point of 

motor imagery. One trial consisted of 4–6 sec of resting time 

period and 3 sec of imagery time period. In the resting period, a 

blank screen appeared on the monitor. The resting time was 

randomly selected in the range of 4 to 6 sec. In the imagery 

period, one of the motor imagery instructions was represented at 

the center of the screen, then subjects imagined their left or right 

hand movements for tasks such as grasping and releasing hand. 

In each trial, instruction was randomly selected from the left and 

right hand class. 

 
Fig. 1. Single trial time procedure of motor imagery experiment. 

In addition, we recorded resting state EEG signals for each 

subject to estimate the subject-specific background noise. In this 

recording, subjects were instructed to open their eyes for 60 sec 

without any experimental task. 

These experimental datasets were recorded by an active 

electrode cap. We used Active Two EEG measurement system 

made by Biosemi, Inc. The sampling rate for these datasets was 

512 samples per second, and the number of EEG channels was 64. 

The channel positions were selected from the international 10/20 

standard. 

2.2. Preprocessing and Feature Extraction 

Preprocessing and feature extraction steps are common to both 

SRC and SVM classification algorithms. Using the motor 

imagery dataset obtained from each subject, we perform the data 

preprocessing. Before preprocessing, raw EEG signals are 

segmented. After an instruction (left or right hand) appears on the 

screen, the time samples from 1 to 2 sec were collected for all 

trial data. We apply the band pass filter to the trial data to 

eliminate the frequencies that are not related to motor imagery 

signals. In this study, sensorimotor rhythm, 8 to 15 Hz, is used 

for band pass filtering [11]. For fair comparison of the 

classification performance, we fixed the time and frequency 

range for all subjects. Then, we reduce the dimension of EEG 

signal using the common spatial pattern (CSP) filtering, which is 

a widely used feature selection method for motor imagery based 

BCI systems [5,11,20]. CSP filters maximize the variance of the 

spatially filtered signal under one class condition while 

minimizing it for the other class condition. The CSP filtering 

algorithm finds the filters,
1 2[ , , , ]C C

C

  W w w w which 

transforms the EEG data 
C SX  (C and S denote the number 

of EEG channels and time samples) into a spatially filtered space:
T

CSP  X W X . Generally, W is computed by simultaneous 

diagonalization of the covariance matrices, 1 and 2 , of the two 

classes of data. This is equivalent to solving the generalized 

eigenvalue problem, i.e., 1 2  w w , where  is the eigenvalue. 

In practice, the first and last n columns of the W correspond to 

the n largest and n smallest eigenvalues that are used for CSP 

filtering. However, the optimal number of CSP filters, 2m n , 

which shows the maximum classification accuracy varies and has 



to be chosen empirically [20]. After CSP filtering, for each CSP 

filtered trial, we compute the frequency power of sensorimotor 

rhythm (8–15 Hz) which is the widely used band power (BP) 

feature in motor imagery based BCI classification [6,11]. Various 

feature types including BP, AR (autoregressive) [6], and 

functional connectivity [42] can be used for motor imagery 

classification. However, in this study, we focus on the evaluation 

of classification methods using a common feature type. 

2.3. Classification Methods 

2 .3 .1 .  Sparse Representation based EEG Signal Classification 

The SRC framework was introduced to the EEG based motor 

imagery BCI application in [11]. There, the SRC method showed 

a better classification accuracy over the conventional LDA 

method.  

In the SRC method, dictionary is first formed using the 

processed training feature. Let 
,1 ,2 ,[ , ,..., ]

ti i i i NA a a a be the 

class-dictionary for classes andi L R where L and R represent 

class information of left hand and right hand motor imagery 

respectively, and 
tN is the total number of training trials, i.e.,

99tN  for each class in this study. Then, the final dictionary A 

is formed by : [ ; ]L RA A A . Each column vector 
1ma where 

m  is the number of applied CSP filters. In this study, we used 64 

EEG channels; thus, m  is varied from 2 to 64. Each entry of a is 

obtained by computing the frequency power of sensorimotor 

rhythm after the CSP filtering. Let y denote a testing feature with 

the same dimension as a .  

 
Fig. 2. Dictionary design and linear sparse representation model for SRC. 

 

Fig. 2 shows the formed dictionary A and model of sparse 

representation for motor imagery based EEG signals. In this 

example, a certain test feature y of the right hand class can be 

sparsely represented with a linear combination of training feature 

of the right hand class. This is represented by the nonzero scalar 

coefficients x in the position of corresponding class. 

The SRC method can be summarized in the following two 

steps. The first step is to sparsely represent y using A via L1 

norm minimization. This step is the sparsification step: 

 
1

min subject to 
x

x y Ax  (1) 

where x is a scalar coefficient vector and 
m nA is the 

dictionary. 

Note that the linear system in Eq. (1) is under-determined. The 

literature of compressive sensing (CS) shows that the L1 

minimization algorithm can solve this optimization problem in 

polynomial time [17,18,21]. 

The second step is to classify the test signal via minimum 

residual. This step is the identification step: 

 class ( ) min ( )i
i

ry y  (2) 

where 
2

( ) :i i ir  y y A x , 
ix is the scalar coefficient vector 

corresponding to the class i. 

2.3.2. Support Vector Machine 

SVM is a well-known classification method in the area of 

pattern recognition and machine learning. In the BCI field, the 

SVM has shown a robust classification performance in many 

experimental studies [6,14,15]. SVM is recognized for its 

excellent generalization performance, i.e., small error rate for test 

data. This property is achieved through the idea of margin 

maximization. As shown in Fig. 3, the margin d is twice the 

distance between the support vector (the black and white circles 

that are on the dashed line) and the decision hyperplane. The 

hyperplane can be described by a weight vector w  and a bias b . 

The SVM finds the decision hyperplane by solving the following 

optimization problem [19]: 

 

21
minimize ,

2

subject to  ( ( ) ) 1  

0, 1,...,

n

n
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n n n
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n N









   

 

w

w y  (3) 

where ny is the training feature vector,  1, 1nt    is the class 

information and n  indicates the training trial number. To 

consider the training error, a slack variable   and a 

regularization parameter C are included [19]. Using  , we can 

consider the training error which is positioned inside the support 

vectors. C is a user defined regularization parameter to control 

the importance between the maximum margin and the training 

error. 

 
Fig. 3. The main idea of SVM. The SVM algorithm tries to find the 

decision hyperplane, which has the maximum margin d.  

 
In the SVM optimization problem, mapping function ( )  can 

be used to map an inseparable feature vector onto a higher-

dimensional space using a kernel function  K x, y . In BCI 

research, the Radial Basis Function (RBF) kernel (4) is widely 

used and has shown robust classification performance [6,15]: 

  
2

2
exp

2

x y
K



  
 
 
 

x, y  (4) 

Therefore, in this study, we consider a linear SVM and an RBF 

kernel based SVM for comparison of the classification 

performance with the SRC method. For both SVM algorithms, 

we use the MATLAB Bioinformatics Toolbox (SVMtrain) [23].  



In the SVM algorithm, selection of parameters is important to 

obtain the robust performance. We optimize the regularization 

parameter C in (3) for linear SVM and kernel parameter   in (4) 

with combination of C for RBF SVM. We adopt a coarse grid 

search method using cross-validation to find optimal parameters 

that provide the best classification accuracy [25]. In the 

exhaustive coarse grid search, we first find a better region on the 

loose grid, then fine grid search on that region is conducted. For 

two parameters C and  , we set the same grid sequence as 

follows: 3 2 1 0 1 2 3and [10 ,10 ,10 ,10 ,10 ,10 ,10 ]C     . Then, for 

the best region, we optimize the parameters using a fine tuning. 

2.4. Noise Robustness Analysis Method 

In this study, we aim to evaluate the noise robustness of the 

SRC and SVM classification methods when our test data is 

contaminated by an additive random Gaussian noise and scalp 

recorded background noise. The ultimate goal of this evaluation 

is to assess the classification performance of both methods for 

non-stationary EEG signal. As it is known, EEG signals have 

inherent non-stationary characteristics. Therefore, BCI features 

vary from training sessions to test sessions during a BCI 

experiment [6,16,38]. There are many reasons to change EEG 

signals in the motor imagery task such as physical and mental 

drifts, misalignment of sensors, and task–irrelevant background 

activity [33,38]. During the imagery period in the motor imagery 

experiment, when we assume subjects exclusively perform motor 

imagery task, the task-irrelevant background activity can be the 

main reason for a change in EEG signals [16,38]. In [36–37], 

authors also considered the resting state signal as task-irrelevant 

noise in the motor imagery task. In addition, in [16], it was 

showed that EEG signals were changed from training to online 

testing sessions in feature space by changing the background 

activity. Therefore, in this context, we aim to model the modified 

noisy test signals by adding background activity estimated by the 

resting state recording into the original test signal. 

For robustness analysis, we generate the modified test data by 

introducing two different noise sources such as white Gaussian 

and background noise into the original test data. Each noise 

source signal is separately applied to the EEG test data. Thus, we 

evaluate the classification performance of both classifiers for two 

types of noise corrupted test data. In result section, we show the 

position shift in the noisy test feature that is generated by the 

background noise (see Fig 10). 

Fig. 4 shows the generation concept of the polluted noisy test 

data using one noise source. In the online BCI experiment, the 

power of EEG test data varies. Therefore, to evaluate the noise 

robustness of the classifiers systematically, we generate five 

different noisy test data with various SNR levels. Thus, we 

control the noise power of each noise source in five levels.  

 
Fig. 4. Noisy test signal generation using different power of noise signal. 

 
For the Gaussian noise, we control the noise power by varying 

the standard deviation of Gaussian distribution. For the 

background noise, we use a scale factor   to control the noise 

power as follows:  

 polluted test signal test signal (resting noise)   (5) 

For each subject’s dataset, the classification performance of the 

SRC and SVM methods is evaluated using both types of noisy 

test data. 

Random Gaussian noise is artificially generated by m-

dimensional Gaussian distribution, i.e.,  2,mN    where   and 
2 are the mean and variance. We use a MATLAB built-in 

function to generate the zero mean Gaussian distribution with 

different standard deviation  . To make polluted EEG test data 

by Gaussian noise, we generate the same dimension of Gaussian 

noise to the segmented EEG signal, i.e., noise dimension is 64 by 

512. We also apply the band pass filter to the generated Gaussian 

noise with 8–15 Hz cutoff frequency, which is used in the 

preprocessing of EEG signal. 

Subject-specific background noise is measured by the EEG 

recording of the resting state. In this recording, subject is 

instructed to just open their eyes without any task for one minute. 

We apply the band pass filter to the recorded resting state signal. 

To make polluted EEG test data by background noise, we collect 

one-second time samples (512 samples) from the resting state 

signal.  In this study, both classifiers are evaluated using 100 test 

trials. Therefore, we generate 100 noise signals using the moving 

window from the total resting state signal. The size of the moving 

window is 256 samples (0.5 second).  

To evaluate and compare the classification accuracy of the 

SRC and SVM methods, we use the leave-one-out (LOO) cross-

validation, which is useful for increasing the number of 

independent classification tests with a given set of limited data 

trials [22]. Thus, one trial out of 100 training trials is selected as 

the test trial, and the remaining trials are used as the training 

trials. This test is repeated for 100 times with different 

combination of training and test trials. To obtain noisy test trials, 

we apply 100 different noise signals for each noise source into 

the 100 test trials acquired from LOO cross-validation. Therefore, 

we have 100 noisy test trials for each Gaussian and background 

noise. In this study, we calculate the classification accuracy as 

follows: 

 
the number of correct test trials

Accuracy(%) 100
the number of total test trials

   (6) 

3. Results 

3.1. Comparison of Classification Results 

First, we evaluate the classification accuracy of the SRC and 

SVM methods for the original experimental datasets that are not 

contaminated by noise sources. Fig. 5 shows the comparison 

result of the classification accuracy for the SRC, linear SVM, and 

RBF SVM. For each subject, we computed the classification 

accuracy (in %) using the LOO cross-validation. We used 18 

CSP filters for both classification methods, which are determined 

heuristically (see Fig. 6).  

In Fig. 5, we observe that SRC achieves competitive 

classification accuracy over both linear and RBF kernel-based 

SVM. The classification accuracy of SRC was found to be better 

than linear SVM for 15 subjects and RBF SVM for 14 subjects 

over 20 subjects. In addition, the mean difference of the 

classification accuracy between the SRC and both SVM methods 

was statistically significant using the paired t-test (p < 0.01). 

 



 
Fig. 5. Comparison of classification accuracy for the linear SVM, RBF 

kernel SVM, and SRC method using 20 non-noisy experimental datasets. 

 

Moreover, we investigated the impact of varying the feature 

dimension on the non-noisy classification performance in each 

method (see Fig. 6). In this study, we used the CSP filtering as a 

feature selection method. The number of CSP filters (feature 

dimension) was varied from 2 to 64. Usually, the optimal number 

of CSP filters, which showed the maximum classification 

accuracy was chosen empirically. However, the optimal number 

of CSP filters was different depending on the classification 

method and dataset. Therefore, we evaluated the classification 

performance of each classification method when the feature 

dimension was varied. Fig. 6 shows the average classification 

accuracy over all subjects when the number of feature 

dimensions m was varied from 2 to 64. We found that the 

classification accuracy of SRC method consistently outperformed 

the linear and RBF kernel based SVM methods regardless of 

their feature dimension. There was not much difference in the 

classification accuracy between the SVM methods. However, the 

RBF SVM showed a better classification accuracy when the 

number of CSP filters was over 18. 

 
Fig. 6. Average classification accuracy over 20 non-noisy datasets when the 

number of CSP filters (feature dimension) is varied from 2 to 64. 

 

We used the fixed 18 CSP filters for all classification methods 

that are shown in Fig. 5. However, the results in Fig. 6 shows that 

this number was not optimal for certain classification methods. 

When we used more CSP filters, the difference in the 

classification accuracy between the SRC and SVM methods was 

increased. 

3.2. Classification Results for Noise Robustness  

In this section, we evaluate noise robustness of the RBF kernel 

based SVM and SRC methods. For the noise robustness analysis, 

we used polluted test signals that were generated by adding two 

noise sources, i.e., white Gaussian noise and background noise, 

into the original test signal as mentioned in section 2.4. 

 
Fig. 7. Comparison of the average classification accuracy over 20 subjects. 

Average classification accuracy for Gaussian noise is represented as a 

function of SNR. Vertical line indicates the standard deviation of the 
accuracy for each SNR.  

 

Fig. 7 shows the noise robustness results of the SRC and RBF 

kernel based SVM methods for the Gaussian noise. The average 

classification accuracy over all subjects was assessed when the 

noise power was varied. For the Gaussian noise, we controlled 

the noise power by changing the standard deviation, and the SNR 

was computed for different noise powers. In this study, SNR 

computation was defined as follows: 

 
10SNR(dB) = 10log S

N

P

P

 
 
 

 (7) 

where SP and NP indicate the signal and noise power, respectively. 

For the SNR computation, we investigated the average SNR over 

all the channels and subjects. As shown in Fig. 7, we found that 

the classification accuracy of SRC was higher than that of the 

RBF SVM for all SNR cases. The difference in the classification 

accuracy between the SRC and RBF SVM was increased with the 

SNR increase. 

 
Fig. 8. Comparison of the average classification accuracy over 20 subjects. 

Average classification accuracy for background noise is represented as a 
function of SNR. 

 

Similarly, Fig. 8 shows the noise robustness results of the 

SRC and RBF kernel based SVM methods for the background 



noise, which was measured by the recorded resting state. For the 

background noise, the noise power was controlled by scale factor 

 (see Eq. (5)). It was found that the classification accuracy of 

SRC was higher than that of the RBF SVM for all SNR cases. In 

addition, when the noise power increased, the accuracy 

difference between the SRC and SVM increased. For example, in 

the noiseless case, the average accuracy difference between the 

SVM and SRC was 1.9%. However, in the case of 0.5 and -4dB 

SNR, the difference was 5.8% and 8.5%. This means that the 

SRC method was more robust than the SVM for the polluted test 

signal in the background noise case. 

 
Fig. 9. Classification accuracy of RBF based SVM and SRC method for 

polluted test data by background noise (-4dB).     

 

In two-class classification problems, the theoretical chance 

level is 50%. However, in many EEG based BCI studies 

[26,34,35], at least 70% classification accuracy is considered as a 

threshold for an acceptable communication and device control. In 

Fig. 9, we examine the classification performance for the 

polluted test data. Fig. 9 shows the classification accuracy of all 

subjects for the -4dB SNR for background noise cases shown in 

Fig. 8. The threshold of 70% classification accuracy is 

represented by black dotted line. For this threshold, the SVM has 

seven datasets that are over the threshold and the SRC has 

seventeen datasets. This means that for the noisy test data, 10 

more subjects can use a reliable BCI system with the SRC 

compared to the SVM method. 

 
Fig. 10. Scatter plot of training data and noisy test data in two-dimensional 

feature space (2 CSP filters) for one subject dataset. Noisy test data are 
generated using background noise with 4 dB SNR. 

 

Fig. 10 shows an example of training and polluted test features 

for one subject dataset. In this example, the background noise 

with 4 dB SNR (shown in Fig. 8) was used for the polluted test 

data. The positions of noisy test features (red and blue squares in 

Fig. 10) in two-dimensional feature space were relocated from 

the positions of the original training features (red x-marks and 

blue circles) to places with a particular direction. This represents 

a typical situation that occurs in real-time BCI scenario where the 

online test data has different background noise compared to the 

training data [16]. In this study, the positions of the noisy test 

features were varied according to the SNR of the test data.   

4. Discussions  

4.1. Comparison of Classification Mechanism 

In this section, we examine the algorithmic difference between 

the SRC and SVM methods as the role of signal classification. 

Fig. 11 shows the classification algorithms for both methods. 

Feature vectors for the training data were used as an input for 

both classification algorithms. 

 
Fig. 11. Comparison of the SVM and SRC classification algorithm. 

 
In the SVM algorithm, the input feature data and model 

parameters were used and the training was performed to find the 

parameters w and b for decision boundary as shown in Eq. (3). 

Based on the boundary, the test feature was classified. Thus, the 

y class information was determined by the decision boundary. 

In the SRC algorithm, the dictionary was simply formed by 

collecting the input training feature vectors as the columns of the 

dictionary. Then, using the dictionary, sparse representation was 

performed for each test data. Thus, scalar coefficient vector x 

was obtained by solving L1 minimization as shown in Eq. (1). 

Using x, class information was determined by computing the 

residual ( )r y in Eq. (2). 

Our aim was to highlight the important difference of the 

classification mechanism of the SRC and SVM methods as 

follows:  

 In SVM, a fixed decision rule (decision boundary) was 

obtained for the entire set of training signals. Then, for each 

test signal, this fixed decision rule was used for signal 

classification. 

 In SRC, the sparse representation was adaptively performed 

for each test signal by utilizing all training signals in the 

dictionary. 

4.2. Robustness Analysis of SRC 

The experimental results presented in section 3 shows that  



Fig. 12. Comparison of the classification procedure and characteristic of the SVM and SRC for the noisy test data. In the SVM part, black solid line and black 

dotted line indicate the decision boundaries for linear and RBF based SVM.  

 

SRC had a better classification accuracy than the conventional 

SVM for motor imagery based EEG signal. In addition, SRC was 

more robust for polluted test data than SVM. In this section, we 

discuss the relationship between the classification performance 

and the difference in the classification mechanism for SRC and 

SVM methods. 

Fig. 12 shows the concept of the classification strategy for the 

SVM and SRC using a toy example of polluted test data in two- 

dimensional feature space. In the SVM classification, decision 

hyperplane and non-linear decision boundary were presented for 

linear and RBF based SVM. For many conventional classifiers 

including SVM, the classifier was trained using training data; 

thus, the best decision rule was determined. Then, this 

classification rule was applied to each test data. However, as we 

have shown in Fig. 12, when the test data was polluted and 

shifted in feature space, the decision rule could not guarantee a 

satisfactory classification performance. On the other hand, in the 

SRC method, no classification rule was designed in the training 

part of SRC. Instead, a dictionary was formed by collecting 

feature vectors of the training data. Then, the sparse 

representation was performed for each test data using the 

dictionary. In addition, for the noisy test data, an independent 

classification task was performed in each classification by using 

all the training data instead of a fixed decision rule. 

For a detailed analysis, we considered three possible cases of 

polluted test data that are presented by numbers ①, ②, and ③ in 

Fig. 12: 

In the first case, test data was shifted away from the decision 

boundary and positioned at the same class feature space. In this 

case, both SVM and SRC correctly classified the noisy test data. 

In the second case, the test data was positioned at a different 

class feature space of training data. Then, based on the decision 

boundary, the SVM classified the test data incorrectly. In the 

SRC method, the test data was more likely to be represented with 

different class training data. Thus, both classifiers were not 

working correctly. 

Note that in the third case, similar to the second case, the test 

data was placed at a different class feature space. At the same 

time, the test data could be possibly positioned near the decision 

boundary. In this case, based on the decision rule obtained from 

the training data, the SVM resulted in wrong classification. 

When we used non-linear decision boundary, e.g., RBF SVM, as 

shown in black dotted line, this line was optimal for the training 

data. Thus, the classification error could be less than the linear 

decision hyperplane. However, for the polluted test data, the non-

linear decision boundary was fixed. On the other hand, in the 

third case, SRC still had a chance for correct sparse 

representation with the same class training data as shown in Fig. 

12. This was possible because the SRC method did not depend on 

a fixed decision rule that was obtained from the training data. 

Instead, for each classification of test data, the SRC method 

directly used all training data and performed sparse 

representation. 

 
Fig. 13. Scatter plot of training data and noisy test data in two-dimensional 

feature space (2 CSP filters) for one subject data. Noisy test data are 

generated using background noise with 4 dB SNR.  

 

To evaluate the validity of our analysis, we examined the 

same data shown in Fig. 10 in details. Fig. 13 shows an enlarged 

version of the scatter plot using the training and noisy test data. 

The black line indicates the obtained decision boundary from the 

RBF kernel based SVM. The region between the two green 



dotted lines is chosen as the near area of the decision boundary. 

In this area, many miss-classification cases may occur for both 

classifiers. In addition, most of the polluted test data, which 

correspond to case ③ in Fig. 12 are located in this region.  

For all noisy test data (i.e., 100 trials), the RBF SVM and SRC 

showed the classification accuracy of 56% and 62%, respectively. 

Because we used only two CSP filters for visualization, the 

classification accuracy was very low compared with the results 

given in Fig 8.  

For the noisy test data, which are located between the green 

dotted lines, the RBF SVM showed 57% classification accuracy. 

However, the SRC showed an improved classification accuracy 

of 83%. In addition, when we only considered the noisy test data 

for case ③ examples, the RBF SVM had 18 miss-classification 

data. However, the SRC correctly classified 12 test data among 

18 test data. Therefore, we confirmed that the noisy test data of 

case ③ were miss-classified from the fixed rule based SVM. On 

the other hand, for the same data, the SRC correctly classified 

many times with the effort of independent classification task for 

each test data using all training data. 

 
Fig. 14. Scatter plot of training data and noisy test data. The figure inside 

the green box indicates the sparse representation result of the noisy test data.  

 

Fig. 14 shows one instance of the noisy test data that was not 

correctly classified by the SVM; however, was correctly 

classified by the SRC method. The test signal of class 1 is 

represented by a red square, which is located in the region 

between the green dotted lines shown in Fig. 13. The figure 

inside the green box shows the recovered coefficient x from the 

SRC method. Using the trial numbers (x-axis of the figure inside 

the green box) with large coefficient values, we represented the 

corresponding trials by the black x-marks and circles in Fig. 14. 

Four largest coefficient values were selected for class 1. Two 

largest coefficient values were selected for class 2. As it can be 

seen, the noisy test trial of class 1 (red square) is located near the 

training trials of class 2. However, in the SRC method, using the 

coefficient x, the test trial could be correctly classified from the 

minimum residual rule in Eq. (2). In addition, in each test trial, a 

different coefficient x which represented the test data most 

compactly, was recovered by L1 minimization. Therefore, for the 

case of time varying EEG signal classification, the SRC approach 

was much more appropriate to employ than the SVM method, 

which was based on the fixed decision rule. 

An adaptive classification scheme for a conventional classifier 

such as LDA and SVM was studied to overcome the non-

stationary problem of EEG signals [16,27,41]. In the adaptive 

techniques, typically decision boundary was updated (relearned) 

using collected labeled test data for a given duration. However, 

after designing new decision boundary, new test signal was 

dependent to the decision boundary. Thus, the adaptive scheme 

for the conventional classifier was still a decision rule based 

classification. Therefore, it could not be adaptively applied to 

each test signal. We think that some adaptation techniques for 

SRC [30–31], i.e., dictionary learning using collected signals, can 

be more efficient for real-time online BCI systems. Therefore, the 

comparison of the adaptive classification schemes between the 

SRC and conventional classifier is an interesting area for our 

future research. 

4.3.  Computation Time Analysis 

In this section, we evaluate the computation time (running 

time) of the classification algorithms for the experimental 

datasets.  

As it can be seen in Fig. 12, the most time consuming process 

of the SVM occurred while training the SVM. On the other hand, 

the most computation cost in the SRC algorithm occurred in L1 

minimization step for sparse representation. Therefore, our 

evaluation for running time focused on the SVM training and L1 

minimization step for the SRC algorithm. We used the tic and toc 

MATLAB commands to measure the start and end time of the 

SVM and SRC algorithms, respectively. We simulated all 

algorithms in the same environment using MATLAB 7.14 

(R2012a) with 3.30 GHz processor and 8 GB memory.  

For a single test trial, the average computation time for the 

SVM and SRC was 12.1 msec and 16.7 msec respectively. This 

computation time was averaged for 100 test trials of all subjects. 

However, in the case of online BCI classification, typically the 

SVM decision boundary was designed once using the training 

data. Then, all the test data was classified based on the decision 

boundary. On the other hand, independent classification task was 

performed for each test data in the SRC. Therefore, the 

computation time of the SRC method increased by the number of 

test trials. Thus, a robust classification performance of SRC 

included the cost of the computation time at each test trial. 

 
Fig. 15. Computation time of the SRC as a function for the number of 

training trials. 

 



In this study, the size of the dictionary, i.e., the number of 

training trials, was 200.  In this case, the computation time of the 

SRC was very small and negligible (16.7 msec). In addition, in 

Fig. 15, we display the average computation time as a function of 

the number of training trials. When the size of dictionary was 

increased, the difference of the computation time was just a few 

milliseconds. Therefore, this was not an important factor for an 

online classification in BCI systems. In addition, recently 

developed fast L1 minimization algorithms were used for the 

SRC method. In [24], authors showed that a few of the fast L1 

minimization algorithms provided faster computation time than 

the conventional SRC method for large datasets of real face 

images.  

Note that even though the computation time of the SVM was 

smaller than the SRC, the SVM required more effort to select a 

proper kernel and tune the model parameters for accurate 

classification results [6,25].  

4.4. Online Data Analysis 

In this study, we modeled noisy test data by adding two noise 

sources into the original trial data and controlled the noise power 

to evaluate the noise robustness of the SRC systematically. In 

this section, we aim to evaluate the SRC using online motor 

imagery experimental dataset. In this experiment, the training 

session and online test session were independently performed. 

Thus, in this evaluation, we used a non-stationary dataset from an 

online motor imagery experiment. 

 
Fig. 16. Single trial procedure for online motor imagery experiment. 

Five subjects participated in our online experiment. Right 

hand (R) and foot (F) motor imagery were performed for each 

subject. The sampling rate of these datasets was 512 samples per 

second, and the number of EEG channels was 64. The detailed 

experimental paradigm is illustrated in Fig. 16. The same 

paradigm was used for both training (calibration) and online 

testing (feedback) sessions. In each trial, the target bar was 

presented on 0 sec at the right or left side of the screen 

corresponding to the right or foot motor imagery. Two seconds 

after cue onset, the subject was instructed to perform the motor 

imagery task. During the training session, no feedback was 

provided. However, in the online testing session, the online 

feedback was provided in each trial. We collected 60 training 

trials and 75 online test trials for each class. After data 

segmentation from 2 to 4 sec, we performed the same 

preprocessing step that was used in section 2.2.  

As shown in Fig. 17, using five online datasets, we evaluated 

the classification accuracy of the SRC and SVM_RBF. Even 

though size of the online dataset was small compared with the 

twenty offline datasets used in Fig. 5, we obtained consistent 

results. Thus, the SRC showed better mean classification 

accuracy than the SVM for the online datasets. Except one 

subject’s dataset, which showed the same accuracy, the 

classification accuracy of the SRC was better than the 

SVM_RBF method for four subjects. 

 
Fig. 17. Comparison of the classification accuracy of the SRC and 

SVM_RBF for online experimental dataset. 

 

5. Conclusions  

In this paper, we evaluated and analyzed the robustness of the 

SRC method against the non-stationarity of EEG signal 

classification. For this purpose, we generated noise corrupted 

EEG test signals using two noise sources such as random 

Gaussian noise and scalp recorded background noise. Then, we 

assessed the classification performance of the SRC when the 

noise power was varied. Using the experimental motor imagery 

based EEG and generated noisy test signals, we compared the 

classification results of the SRC with that of the SVM method, 

which has been considered as a robust classifier in many BCI 

studies. From the results, it was evident that the SRC showed 

superior noise robustness than the SVM for both Gaussian and 

background noise. Furthermore, the results of the online-

experimental dataset showed that the classification accuracy of 

the SRC was better than the SVM. We analyzed that the robust 

classification accuracy of the SRC was due to a different 

classification approach compared with the conventional decision 

rule based SVM. Thus, the SRC showed an inherent adaptive 

classification mechanism for each test trial via optimal sparse 

representation of the training trials. In addition, we showed that 

the computation time of the SRC for a robust classification was 

on the order of milliseconds, which was acceptable for real time 

BCI systems.  
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