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1.1 Authentication in IoT Environment

 In Internet of Things (IoT) environment :
 The devices needs to be connected to the application server for its intelligence.
 The IoT environment has the following properties : 

• Existing lots (hundred / thousands) of devices
• Connecting over the air 
• The communication protocol needs to be simples

 The effective authentication process is required.

 For authentication process…
 (For usual) encryption key based approaches on a MAC layer is used.

• If the key was eavesdropped, 
 Serious malfunctions can be caused by malicious intent.

• Even pursuit the perfect authentication process, 
 The complexity of algorithms are not suitable for an IoT environment.

 The physical layer authentication can be a great alternative in IoT
environment.

• It has great attention from researchers as a pre-authentication process [A.4].
• It is simple but effective.
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1.2 The Radio Frequency Fingerprinting

 The Radio Frequency (RF) Fingerprinting
 It is an identification method that utilizes a signal fingerprint (SF) in the RF signal to identify its unique transmission

source.
 As a physical layer authentication, emitter information is identified using the RF fingerprinting method.

• The RF transmission emitted from an unauthenticated emitter is blocked.
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1.2 The Radio Frequency Fingerprinting

 Why simple and effective? - The Signal Fingerprints (SF)
 SF can be defined as an any numerical value calculated from the received RF signal that can distinguish each emitter ID.
 It caused from the nature characteristics during manufacturing process, which means :

• The characteristics of components on a emitter are slightly different, such as power amplifier or frequency oscillator, etc.
• It is not possible to duplicate in H/W manners.

 Recently, GAN based duplication methods in S/W manners are reported [27, 42]
 The differences are coming from…:

• (On time domain of raw signal) Differences in Rising Transient (RT), Falling Transient (FT), and Steady State (SS) signal
• (On demodulation domain) I/Q constellation differences
• (On spatial domain) : Beam pattern differences of beacon signal.

[RT signals] [SS signals - Preambles] [I/Q constellation errors] [Beam pattern] 
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1.3 Contributions of this study

 RF fingerprinting in Military usages
 Knowing the unique transmission sources can greatly benefit SIGINT purposes in electric warfare.

• (In case of Alliance) Secured communication is possible only with authenticated devices.
• (In case of Enemy) Tracking the target enemy’s emitter is possible.

RF fingerprinting usages of SIGINT purpose
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1.3 Contributions of this research

 Researches and Contributions 
 Thesis goal : 

• Studying the RF fingerprinting application for military usages.
 Research objects: 

• The RF Fingerprinting system targeting for fast frequency hopping (FH) signals.
• [Self-learning system] Abnormal or Outlier signal detection algorithms with its Incremental learning system targeting for FH signals

 Contributions:
• Studying and Categorizing the RF fingerprinting algorithms from literatures
• Analyzing the RF Fingerprinting performance even for the highly secured signals, such as FH signals.
• Considering the system scalability as considering Abnormal or Outlier signal detection with its Incremental learning.
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2.1. RF Fingerprinting for FH signals - Introduction

 Frequency Hopping Spread Spectrum (FHSS)
 FHSS is one of the highly secured communication protocol frequently used in military system [47].

• The hopping patterns are known only to transmitter-receiver pairs.
• For eavesdropping on FH signals, the patterns should be estimated correctly
• The blind estimation methods in literatures are designed to estimate the hopping frequency or hopping timing [A.5]. 

 To estimate the transmission sources in FHSS : 
• Bit level decoding and decryption of the MAC header are required.
• On the eavesdropper side, the decoding process is complicated without knowing the protocol details.

Emitter Identification process 
on a MAC Layers
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2.1. RF Fingerprinting for FH signals - Introduction

 Early identification of emitter’s ID on the Physical Layers
 The first priority is to determine if the current FH signal is emitted from the target emitter. 

• If it is the target device : 
 The attacker can invest more resources in eavesdropping. 

• If it is not the target device : 
 The attacker can search for other FH signals.

 [Research Object]   
• We aim to identify the emitter information of the FH signal without the decoding process.

Emitter Identification process 
on a Physical Layers
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2.2. RF Fingerprinting for FH signals - Contributions

 Contributions
 We apply the RF Fingerprinting algorithms targeting for identification of the FH signals sources before the decoding process. 

• It is first time to apply the RF Fingerprinting for High-speed FHSS emitters. 
• The performance of each Signal Fingerprints were compared on same dataset.

 i.e., Rising Transient (RT), Steady State (SS) and Falling Transient (FT)
• Ensemble approaches which utilize the RT, SS and FT at the same time showed the best results.

 The algorithm works well without any signal decoding process, such as preamble detection or data demodulation.
• We analyze the activation maps of deep learning based classifiers.

 The algorithm can automatically learn the position of headers and tails of the signal. 
 Additional decoding steps to extract these information are not required.
 Preamble extraction[23] , Calculating the difference between ideally modulated and received signals [11], etc.



13
13 / 38

2.3. RF Fingerprinting for FH signals – Related works

 Related works – Categorization of the literatures [A.6] 
 The possible SFs without decoding steps

• Targeting for the RT, SS and FT features
 Literature is focused on these two ways : 

• Calculating the sophisticated hand-craft features from the SFs
• Training the SF signals on a deep learning classifiers

Signal Fingerprints

Feature Extraction

RT

SS

FTRegion Of Interest (ROI)

Preamble Data payload

Hand-craft features [4][36][44] [35] [23] [24][31] [46]

Time domain (raw) signal [45] [40] [11][14][33]

Frequency domain signal [2] [38] [2] [2]

Time-Frequency domain signal [34] [28][30]

Other approaches:
- I/Q Connotation domain: [20] [41]
- GAN approach: [27], [42]
- Beam pattern approaches : [43]
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 Frequency Hopping (FH) Dataset Generations – Signal Acquisitions
 Acquisition of FH signals from FHSS devices

• # of Target devices : 7 devices
• Hopping performance : 105 hops / sec
• Hopping ranges : 30 ~ 88 MHz
• FM modulated secure voice communications.

 Custom-made data acquisition (DA) system 
• (PX1400 digitizer) up to 400M samples/sec
• (Raid-0 setup with 8 SSDs) real-time data storage applicable

2.4. RF Fingerprinting for FH signals – Dataset generation
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 Frequency Hopping (FH) Dataset Generations – Dataset Generation
 Signal processing in S/W (Matlab)

• Hop extraction
 Energy detection approach

• Down conversion to Baseband 
 Decimation factor D, 20

 The FH datasets
• Baseband hop signals with I/Q values at a 20MHz sampling rate

2.4. RF Fingerprinting for FH signals – Dataset generation

Class Model Type # of Acquisitions # of samples

Device 1 Model 1

5 times

170
Device 2 Model 1 168
Device 3 Model 1 170
Device 4 Model 1 171
Device 5 Model 2 160
Device 6 Model 2 169
Device 7 Model 2 168

Total classes 7 Total samples 1176

The FH signal Hop signal
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 Problem Formulation – the RF fingerprinting algorithms
 It is the classification problem by following expressions : 

)y = FRFFP(𝐱𝐱
• 𝐱𝐱 ∈ ℂN×1 is the FH signal 

 N is the length of complex-valued FH signals
• y ∈ ℝC×1 is the output vector of algorithm 

 C is the number of emitters
• )FRFFP(⋅ is a mapping function from the signal space to ID space.

 i.e., RF fingerprinting algorithm.

2.5. RF Fingerprinting for FH signals – Methods
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2.5. RF Fingerprinting for FH signals – SF extraction

 The signal fingerprints extraction process
 The SF could be represented by :

)𝐱𝐱SF = gSF(𝐱𝐱
• 𝐱𝐱SF ∈ ℂMSF×1 is the SF selected from a possible set

 i.e., }SF ∈ {RT, SS, FT
 MSF is the length of the SFs

• )gSF(⋅ is the extraction function for the SFs
 [Extraction rule] 𝐥𝐥𝟐𝟐 norm energy differences within sliding windows

• [RT / FT signal]: a signal in which the l2-norm energy of the sliding 
window is increased / decreased by 10% or more. 

• [SS signal]: the signal between the RT and FT signals.
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2.5. RF Fingerprinting for FH signals – Feature extraction

 The feature extraction process
 The feature extraction process is expressed as follows :

)𝐗𝐗Feature = qSF(𝐱𝐱SF
• )qSF(⋅ is the extraction algorithm for designed feature, 𝐗𝐗Feature ∈ ℝKSF

f ×KSF
t

 KSF
f and KSF

t are the size of the designed feature in frequency and time indices.
 [Spectrogram] The power-density behavior of the SF in the time-frequency domain.

}𝐗𝐗Feature = spectrogram{𝐱𝐱SF
= |STFT{𝐱𝐱SF}|2

• Time-frequency analysis method to visualize the change of frequency components as time has gone.
 4096 point FFT with the window size of 1024 is preformed
 The frequency range are limited up to 4 times of signal bandwidth (i.e., |f| < 100kHz)
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2.5. RF Fingerprinting for FH signals – Classification

 The classification process
 The emitter ID can be obtained by :

y = fClassifier(𝐗𝐗Feature)
• fClassifier(⋅) is the classification algorithm with the output vector y

 [Basic classifier] Inception block based deep learning classifier 
• There are two main sub-structures for constructing a deep learning classifier.

 The Residual block [52]
- It allows the features to operate flexibly at depths through the network.
- It was designed to handle the degradation problem as the network goes deeper. 

 The Inception block [53]
- It allows extracting the features separately for different filter sizes.
- It was designed to operate in parallel for different receptive field sizes.

3x3 Conv

3x3 Conv

Residual block [52]

3x3

Inception block [53]

1x1 5x5Pool

1x1
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2.5. RF Fingerprinting for FH signals – Classification

 The classification process – Basic classifiers
 The emitter ID can be obtained by :

y = fClassifier(𝐗𝐗Feature)
• fClassifier(⋅) is the classification algorithm with the output vector y

 [Basic classifier] Inception block based deep learning classifier 
• We construct the deep inception networks as a basic classifier 

 To measure the features in spectrogram with multiple filter scales 
 Inception-A, Reduction-A blocks of Inception_v4 classifier [53] are applied

Inception-A block

1x1, K1x1, K 1x1, KAvg Pool, 
3x3

1x1, K 3x3 3x3, K

3x3, K

Reduction-A

Max Pool, 
3x3, /2

3x3, K, 
/2

1x1, K

3x3, K

3x3, K, /2
Architectures of used 

Deep Inception Network



21
21 / 38

2.5. RF Fingerprinting for FH signals – Classification

 The classification process – Ensemble approaches
 The emitter ID can be obtained by :

y = fClassifier(𝐗𝐗Feature)
• fClassifier(⋅) is the classification algorithm with the output vector y

 [Ensemble approaches] Ensemble approaches utilizing the RT, SS, and FT based basic classifiers
• Final decision rules :

argmax
k

p(ck;𝐱𝐱) = argmax
k

�
SF

p(ck; 𝐱𝐱SF)

 p(ck; x) is the probability of target emitter ID, ck.
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2.6. RF Fingerprinting for FH signals – Baselines

 The Baseline algorithms
 Baseline 1 : Statistical moments approach of [23]

• [Signal fingerprints]: Targeting for SS signals segmented by 10.
• [Feature extractions]

 (Sub-features) the instantaneous amplitude, phase, and frequency [23], the time, frequency, and time–frequency axes of the 
spectrogram [4]

 (Hand-craft features) the statistical moments (i.e., mean, variance, skewness, and kurtosis) and its entropies were extracted from each 
sub-feature.

• [Classification] the linear SVM [4] is applied.

 Baseline 2 : Raw signal approach of [11]
• [Signal fingerprints] : Targeting for SS signals segmented by 10.
• [Feature extractions] : Two-channel I/Q vector signal and segmented by 10. 
• [Classification] 

 1D-CNN classifier described as an identification network for outdoor data is trained for each segments. 
 (Ensemble approaches) Final decision was performed using an ensemble approach, as in [11].

 Baseline 3 : Spectrogram approach of [28]
• [Signal fingerprints] : Targeting for SS signals.
• [Feature extractions] :  Spectrograms are calculated.
• [Classification] : The Residual block based deep learning classifier 
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2.7. RF Fingerprinting for FH signals - Results

 Results : Accuracy Results
 On the signal fingerprints side : 

• The SS signals shows the better performances than others
 On the feature extraction side : 

• The spectrogram approach shows its effectiveness than raw signal or hand-craft feature extractions. 
 The ensemble approaches shows its effectiveness by outperforming the accuracy of other baselines.

Rising Transient Steady State Falling Transient

Mean Accuracy (%)  Standard Deviation
Statistical moments 

– SVM *
61.8 ± 0.0 92.6 ± 0.0 66.4 ± 0.0

Raw signal 
– 1DCNN** 17.7 ± 1.3 89.5 ± 0.7 20.4 ± 2.1

Spectrogram 
- ResNet*** 83.7 ± 2.0 93.7 ± 1.2 93.9 ± 1.2

Spectrogram 
- Inception [Ours]

84.6 ± 1.5 95.3 ± 1.2 92.8 ± 1.1

Ensembles [Ours] 97.0 ± 0.6

Table II. Classification Accuracy of Algorithms

*: [Baseline 1] Statistical moments approach of [23]
**: [Baseline 2] Raw signal approach of [11]
***: [Baseline 3] Spectrogram approach of [28]
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2.7. RF Fingerprinting for FH signals - Results

 Results : Accuracy Results over the SNR ranges
 On the accuracy results for different SNRs : 

• The spectrogram approach shows its effectiveness than raw signal or hand-craft feature extractions.
• Ensemble method outperform the baselines with toe overall SNR ranges

 The RF fingerprinting for FH signals could operate above 10dB SNR, with an accuracy of 94.9%.
• The operating SNR of the FHSS emitter : 10 ~ 20 dB
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2.7. RF Fingerprinting for FH signals - Results

 Results : Hop signal approach vs Ensemble based approach
 The RT, SS and FT signals are extracted from Hop signal

• The Question is : 
 The ensemble based approaches could outperform the direct usage of the hop signals?

 The results show that : 
• The ensemble approach shows better performance than hop signal approach for both feature extraction approaches.
• The Inception block based model could effectively lean the signal fingerprints than ResNet based block.

Hop signal Ensemble approach 

Mean Accuracy (%)  Standard Deviation
Spectrogram 
- ResNet*** 94.4 ± 1.1 96.4 ± 0.7

Spectrogram 
- Inception [Ours] 95.1 ± 1.0 97.0 ± 0.6

Hop signal approach vs Ensemble approach

***: [Baseline 3] Spectrogram approach of [28]
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2.7. RF Fingerprinting for FH signals - Results

 Results : The Class Activation Map (CAM) of the classifier
 The averaged Gradient-weighted CAM (Grad-CAM) for positive samples that produced the correct classification.

• It is a feature visualization method that highlights the signal areas that offer positive information for class inference [54].
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2.7. RF Fingerprinting for FH signals - Results

 Results : The Class Activation Map (CAM) of the classifier
 On the averaged Grad-CAM (AGCAM) results :

• The CAM region is located on the header and tail of the input signal.
 Usually, the control information, such as preamble or checksum data, is contained in these regions.
 In literatures, the researches try to extract these control information, especially in preambles.

• Our approach can automatically learn the signal region for correct emitter identification where the control information might be located. 
 This property can be used to alternate the pre-processing step for extracting control information,
 The meaning for these CAM results will be studied further in future study.
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2.8. RF Fingerprinting for FH signals - Conclusion

 Conclusion
 In this work, we aim to apply the RF fingerprinting algorithms targeting for identification of FH signal sources. 
 As comparison the performance of algorithms at SAME dataset, the results shows that the Steady State signal based approaches 

was effective at the overall SNR ranges.
 Finally, we found that the Ensemble-based approach, using RT, SS, and FT at the same time, is more efficient than any other 

baselines.
 Also the activation maps of deep learning classifier are visualized to demonstrate the automatic feature-learning ability of the 

proposed algorithm. 
 These results indicate that additional pre-processing steps, such as preamble extraction or data demodulation, are no longer 

required. 
 The properties of the Grad-CAM results will be investigated as a future work.
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3. Disclosed

 It will be updated After the paper publications.
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4. Conclusions

 Conclusions
 In this thesis, we aim to study about the RF fingerprinting application for military uses.
 As a researches : 

• We study about the RF fingerprinting algorithms and also categorizing the algorithms from the literatures.
• Also we apply the RF fingerprinting targeting for highly secured signals, such as FH signals.
• Finally, we try to consider the RF fingerprinting in Real-Word applications, i.e. Self-learning system.

 By completing the future works of these searches,
• We could construct the emitter identification system for monitoring the enemy’s RF emitter.
• Also, by considering the position of eavesdropper’s side, 

 We believe that this research will also have a great impart on a physical layer authentication system on IoT environments.
 Finally, we believe that our works could help understand how the distribution of trained data is working.
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A.4. Literatures - Radio Frequency Fingerprinting

 The physical layer authentication – literatures
 In recent days, physical layer authentication receives great attention from researchers as a pre-authentication process before 

verifying the encryption key.
 [Search Keyword] Radio Frequency Fingerprinting, Specific Emitter Identification, Physical layer identification
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A.4. Literatures - Radio Frequency Fingerprinting

 Related Literatures

Feature Signal Approaches Contents References

Transient signals
approach

Raw signal 
approaches

Transient signal, Instantaneous Amp. 에 PCA 적용및 PNN / K-NN classifier [1], Telatar 17, ELECO 17, 17.12

Rising Transient, Steady State, Falling Transient에 FT, Concatenated feature 에 PCA , SRC Classifier 적용 [2], Lee 19, IEEE Comm. Letter, 19.05

Feature
Embedding 
approaches

Transient signal 에서의 inst. Amp 및 Phase 를이용한 Quadratic feature를정의하고, 여기서의 Difference 를 feature 로사
용

[3] Ureten 04, Can. J. Elect. Comput. Eng., 04.07

Transient signal 에서의 TFED를구하고, 13개가량의 Statistic feature 를계산, Classifier 수행 [4] Kara 19, IEEE Access, 19.05

Inst. Amp, Phase, DWT Coefficient 에대한 15개가량의 statistic feature 계산 [5] Kranakis 06, Int. Conf. on Comm. And Comp. 
Networks, 06.10

Preamble 을이용한 T.R. extraction, Amp, Phase 및 evolution time, tendency, profile rage 등계산, PCA 사용및 K-NN [6], Valenzuela-Valdes 13, Elect. Letters, 13.10

Transient signal 에서의 TFED, 15개가량의 Statistic feature 계산 [7], Yuan 14, IET comm., 14.04

Transient에서의 Polyfiting계산및 Coefficient 에대한 PCA, SVM [8] Yuan 13, Progress In Elect. Reserch, 2013.08

T.R.에서의 Amplitude 및 Phase 정보에대한 PCA [9] Serinken 07, Can. J. Elect. Comput. Eng., 07.12
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A.4. Literatures - Radio Frequency Fingerprinting

 Literatures Survey
Feature Signal Approaches Contents References

Steady State 
signal
approaches

Raw signal 
approaches

S.S. signal 에의 Segmentation 및, I/Q signal 을 LSTM에넣은논문 [10], Liu 18, Elect. Letters, 18.12

S.S. signal 에서의 Error signal generation, Segmentation 을통한 CNN approach [11], Nousain 18, IEEE J. of Selected Topics in Sig. 
Processing, 18.02 

SS 에서의 Error signal, Segmentation 에대한 CNN+ LSTM 구조 [12] Nousain 19, MILCOM 19, 19.11

S.S., I/Q signal, Deep learning approach (DNN, CNN, LSTM) [13] Qian 18, MILCOM18, 18.11

SS 에서의 I/Q signal, + Deep learning approach [14] Chris 18, IEEE J. of Radio Frequency 
Identification

SS 에서의 preamble, FFT with bins (varied), Log spectral feature, [15] Buddhikot 08, IEE Symp. On New Frontiers in 
Dynamic Specturm, 08.10

SS 에서의 preamble, FFT, Log spectral feature, [16] Buddhikot 08, IEEE VTC, 08.09

SS + Error signal generation, + deep learning approach (GAN 영향) [17] Nousain 19, MILCOM 19, 19.11

SS + Error signal generation, + Deep learning approach (Receiver 영향) [18] Nousain 19, GLOBCOM 19, 19.12

Feature 
Embedding
approaches

SS signal, Wavelet transform, Relief (weigh algorithm), PCA [19], Wen  18, IEEE Conf. on CNS, 18.05

SS Signal, Constellation domain 을이용한 DCTF, Freq. Offset, CTF 로의 feature embedding 수행 [20] Yan 19, IEEE IOT J. 19.02

SS signal, Preamble, Matched filter 를이용한 Feature embedding method [21] Russell 06, NDSS 06, 06.01

SS, Preamble, Freq. Avg., Mutual Info. 로의 Feature embedding 수행 [22] Liu 10, Bell Labs Technical Journal,10.12

SS, I/Q, Segmentation, Statistical Feature embedding [23] Baldwin 15, IEEE Trans. On. Reliability, 15.03

SS, Original data 에대한 low-rank matrix 계산, Optimization 수행을통한 classification [24] Gan 17, IEEE Comm. Letters,17.08

EPC code 에의 SS extraction (preamble), Wavelet transfer에대한 higher order statistics feature [25]  Hinders 12, IEEE Trans. On Industrial 
Electronics, 12.12

SS, I/Q Demodulation 단에서의 Feature embedding (Freq. offset, e.t.c.) [26] Sangho Oh 08,  MobiCom 08, 08.096
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A.5. Literatures – Tracking the FH signals

 Related literatures – blind estimation methods for FH signals
 On the attacker side, many researchers have investigated blind estimation methods to extract useful information from frequency 

hopping (FH) signals, such as dynamic programming [48] and autoregressive moving average [49]. 
 These methods were designed to estimate parameters for accurate signal tracking, such as hopping timing and frequency. 
 But, the signal demodulation and decryption of the packet load are required to extract useful details about the transmitter, such 

as its identification (ID) information.

Paper Summary Publisher 비고

[48]
Dynamic programming modulated wideband converters에기반한도약주파수추적및분류
방법을제안함. 추적을위해시간축에서의 power estimation method를제안하였으며, 

분류를위한 dynamic programming 기반 feedback control algorithm 제안함.
MDPI 2019

[49] 도약주파수신호에대한 Autoregressive moving average (ARMA) model 및
FFT, multi channel clustering을기반으로하는도약주파수추정알고리즘을제안함. 2019 ICSPCC 2019

[50] Multiple sensor에기반한 Multi-channel 환경에서, Overlap 되는주파수도약신호를
ARMA 모델을통해모델링하고, 도약하는주파수를감지하고추적하는방법을제안함. IET Communications 2012

[51]
Cognitive Radio 환경에서, Secondary User 의 Spectrum sensing 환경을

Sparse Represented FH signal 로모델링하고, Learned Exemplar Dictionary 를구성하여
느리게도약하는주파수에대한 Spectrum sensing 방법을제안함.

2014 SPCOM 2014
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A.6. Categorizations - Radio Frequency Fingerprinting

 Categorization of the Literatures
 Signal Fingerprints

Feature Signal type Sub type References

Transient signals approach Transient Signals 1, 2, 3, 4, 5, 6, 7, 8, 9, 

Steady State signal approaches

Preambles 2, 15, 16, 21, 22, 24, 25, 26

I/Q (with Nyquist Sampling) X

I/Q (with Over Sampled & Data information) 10, 11, 12, 13, 14, 17, 18, 20, 23, 

S.S signals (언급 X) 19,

Falling Transient signals approaches Falling Transient signals 2, 
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A.6. Categorizations - Radio Frequency Fingerprinting

 Categorization of the Literatures
 Feature Extraction approach - Signal Profile

Feature Signal type Signal Profile Type References

Transient signals approach

Instantaneous Amplitude 1,3,4, 5, 6, 7, 9, 

Instantaneous Phase 3, 4, 5, 6, 7, 9, 

Instantaneous Frequency 4, 7, 

Frequency info (FT) 2, 

Wavelet Transform coefficient (DWT) 5,

Time-Frequency info (TFED) 4, 7, 

Steady State signal approaches

Frequency info (FT) 2, 15, 16, 21, 22, 

Error sig. generation (with Data information) 11, 12, 17, 18, 

Wavelet Transform 19, 25, 

Instantaneous Amplitude 23,

Instantaneous Phase 23,

Instantaneous Frequency 23,

Falling Transient signals approaches Frequency info (FT) 2, 
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A.6. Categorizations - Radio Frequency Fingerprinting

 Categorization of the Literatures
 Feature Extraction approach - for T.R. approach

Feature Signal type Future Extraction Method References

Transient signals approach

PCA 1, 2, 6, 9, 

Difference on Amplitude-Phase trajectory 3

Lower order Statistical feature (mean, variance, e.t.c.) 4,  5, 

Higher order statistical features (Kurtosis, Skewness) 7, 

Entropy of signals 4, 7, 

Polyfitting coefficients info. 4, 8, 

Diff. on a DWT coeff. 5, 

Duration of transient signals 6, 

Tendency (1st, 2nd, order of derivatives) 6, 

Sum of energy 4, 7, 

Centre of distribution 7, 
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A.6. Categorizations - Radio Frequency Fingerprinting

 Categorization of the Literatures
 Feature Extraction approach - Signal Profile for S.S. approach

Feature Signal type Future Extraction Method References

Steady State signals approach

Log spectral energy features 15, 16,  

Relief 19, 

PCA 19, 

Differential Constellation Trace 20

Frequency Offset Feature 20

Contellation Tract figure features 20

Matched filter coefficient 21

Mutual info. For freq. 22, 

Lower order Statistical feature (mean, variance, e.t.c.) 23, 25, 

Higher order statistical features (Kurtosis, Skewness) 23, 25, 

Low Rank Representation 24, 

Entropy of signals 25, 

Maximum Cross Correlation results 25

Phase, mag, error vector magnitude  error 26

I/Q origin offset, Frequency / Sync error 26
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A.7. Self-Studying system for RF Fingerprinting – Mismatch Problem

 [ODIN] : ‘Enhancing the Reliability of Out-of-distribution Image Detection in Neural Networks’ [57]
 Core Idea : 

• Temperature Scaling [58]
 [목적] : Classification task 속 Confidence score 를 calibration 하기위함.
 [방법] : (Training) T = 1, (Testing) T = N
 [효과] In-distribution 및 Out-of-Distribution 간의 score 차이를크게만들수있음.
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A.7. Self-Studying system for RF Fingerprinting – Mismatch Problem

 [ODIN] : ‘Enhancing the Reliability of Out-of-distribution Image Detection in Neural Networks’ [57]
 Core Idea : 

• ‘Input Preprocessing’ := Adversarial attack
 [목적] : In-distribution 에대한 Confidence Score 를높여주기위함.
 [Reference] Adversarial attack, ‘Fast Gradient Sign Method (FGSM)’ [59] 

- 극소량의 perturbation 을Ascent(i.e. loss 를증가시키는)방향으로더해줄경우, input class 에대한 Softmax score를낮출
수있다.

 [방법] : Perturbation 을 Descent(i.e. loss를감소시키는) 방향으로더해줄경우, Input class 에대한 Softmax score를높일수있
다.

 [효과] : In-distribution 및 Out-of-Distribution 간의 score 차이를크게만들수있음.
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