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Abstract—In this paper, we will analyze the performance limit for 
a multiple sensor system (MSS) based on compressive sensing. In 
our MSS, all of the sensors measure signals from a common 
source. There exists the redundancy in the measured signal 
because the measured signal comes from the common source. To 
reduce communication costs, this redundancy must be removed. 
For this purpose, we use compressive sensing at each sensor to 
obtain compressed measurements. After all of the sensors obtain 
compressed measurements, they transmit them to a central unit. 
A decoder at the central unit receives all of the transmitted 
signals and attempts to jointly estimate the correct support set, 
which is the set of indices corresponding to the locations of the 
non-zero coefficients of the measured signals. In order to analyze 
our MSS, we present a jointly typical decoder inspired by recent 
work [4]. We first obtain the upper bound probability that the 
jointly typical decoder fails to estimate the correct support set. 
Next, we prove that as the number of sensors increases, the 
compressed measurements per sensor (per-sensor measurements) 
can be reduced to sparsity, which is the number of non-zero 
coefficients in the measured signal. We present the sufficient 
number of sensors required with the increase in the noise 
variance.  

Keywords–Multiple Sensor System, Joint Typicality, 
Compressive Sensing, Sparse Signal, Per-Sensor Measurements 

I.  INTRODUCTION 
We consider a multiple sensor system (MSS), where all of 

the sensors measure signals from a common source in a limited 
region. Each sensor in the MSS independently transmits the 
measured signal to a central unit. At the central unit of the MSS, 
all of the transmitted signals can be used to recognize the 
common source. 

The distribution of several sensors is a good way to 
precisely knowing about a common source. However, this 
approach has a drawback: The coverage area for each sensor 
can significantly overlap with that of other sensors. As a result, 
there may be a high level of redundancy in the measured signal 
at each sensor. This redundancy must be removed to reduce 
communication costs before all of the sensors transmit the 
measured signal to the central unit. Thus, we need a 
compression technique to remove the redundancy. 

Recently, compressive sensing [3] (CS) has been 
extensively studied since it has been proven that a sparse signal, 
which is highly dimensional and contains a small number of 
non-zero coefficients, can be recovered from a small number of 
compressed measurements with dimensions much smaller than 

the sparse signal. Compressive sensing can be considered to be 
a compression technique that exploits prior information that 
any signal can be sparse in a certain transform domain. 

In the MSS, each sensor compresses the measured signal to 
remove redundancy. One way to accomplish this is to allow the 
sensors to communicate with each other. However, an 
exchange of signals incurs additional communication costs and 
should hence be avoided. Therefore, we need another 
compression technique that allows sensors to remove 
redundancy without any communication with other sensors. 

In order for all of the sensors to compress the measured 
signal, we propose the use of compressive sensing. 
Compressive sensing can be effectively used to remove 
redundancy without communication of sensors, by exploiting 
the fact that the locations of non-zero coefficients are shared. 
Thus, sensors can compress their measured signals by using 
compressive sensing independently. Subsequently, they 
transmit their compressed measurements to the central unit. A 
decoder at the central unit jointly estimates the locations of 
non-zero coefficients, which are a support set, by using the fact 
that the locations of the non-zero coefficients are shared. 
Eventually, the decoder computes all of the measured signals 
by using the estimated support set. 

Using compressive sensing in the MSS provides many 
advantages. First, as has been mentioned, it allows the sensors 
to remove the redundancy. Another advantage is the ability to 
control the performance of the MSS by controlling the number 
of compressed measurements. For example, if we increase the 
number of compressed measurements, the decoder at the 
central unit tends to accurately estimate the support set. On the 
other hand, if we decrease the number of compressed 
measurements, the decoder may fail to estimate the correct 
support set.  

In order to investigate the performance limit for an MSS 
based on compressive sensing, we present a jointly typical 
decoder inspired by recent work [4]. Then, we will define some 
failure events where we consider that the jointly typical 
decoder fails to estimate the support set. We will also provide 
the probabilities for these events. Finally, we will show that as 
the number of sensors increases, the number of compressed 
measurements per sensor (PSM) converges to sparsity, which is 
the number of non-zero coefficients in the measured signal or 
the cardinality of the correct support set. We will determine the 
number of sensors required with the increase in noise variance 
as well. 
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The rest of this paper is organized as follows. In Section II, 
the system model is described. The jointly typical decoder and 
events are described in section III. The main results and 
discussion are presented in section IV, and the conclusions of 
this study and plans for future works are described in Section 
V. 

II. SYSTEM MODEL 
There exist S  sensors measuring a signal from a common 

source. Let the measured signal at each sensor be N
sx N , 

where {1,2, , }.s S, }.,  The measured signal at each sensor is 

a K sparse signal, which implies that 0s Kx , where 0x  

is the number of non-zero coefficients in x . The notation of a 
support set is defined as 

 supp { | 0}.i x ixpsupp  

The support set supp x consists of indices corresponding 
to the non-zero elements of x . Because of the redundancy, we 
assume that all of the support sets are the same. Thus, we have 

1supp supp Sx xsupps ppsupp . The compressed measurements at 
each sensor are given as 

 s s sy F x , (1) 

where sy  denotes the compressed measurements, and all of the 
elements of sF  are i.i.d. Gaussian random variables with zero-
mean and unit variance. Then, the received signal from the sth 
sensor is defined as 

 s s sr y n , (2) 

where all of the elements of sn are i.i.d. Gaussian with zero-

mean and variance 2
noise . We also assume that all of the noise 

vectors and all of the sensing matrices are mutually 
independent. 

III. JOINTLY TYPICAL DECODER AND EVENTS 
 The aim of the jointly typical decoder is to estimate the 

support set. 

Definition 1: The jointly typical decoder gives us the set by 
employing all of the received vectors and all of the sensing 
matrices. 

Clearly, if the output from the jointly typical decoder is 
different from the support set, it is a failure. Next, we introduce 
the notation of a joint typicality. 

Definition 2: We say that an 1SM  vector 
TT T

1 Sr r r
TT

S
T
SS  and a set  with KK  are jointly 

typical if ,s srank KF K  and 

 
,

2 2
noise

1
s s

s
M K

SM FQ rsrs , (3) 

 where 
1T T

FQ I F F F F  and ,sF  is constructed by 
collecting a set of the column vectors of sF  corresponding to 
the indices of . 

For simplicity, we denote a jointly typical event as 
E , ,r , . For example, if E , ,r ,  occurs, then the jointly 
typical decoder provides  as the estimated support set. 

Now, we define a couple of failure events. The first is when 

,E srank KF K  occurs. Clearly, for such an event, the 
jointly typical decoder cannot estimate the support set because 
we cannot evaluate (3). The second is when E , ,r ,  
occurs. In this case, the jointly typical decoder yields an 
incorrect support set. Thus, it must be a failure event. The last 
is when E , ,r

p
,  does not occur. The jointly typical decoder 

is not aware of the correct support set in this case. 

The jointly typical decoder definitely gives an incorrect 
support set decision whenever any one of these three events 
occurs. Thus, an event where the jointly typical decoder fails to 
estimate the correct support set is defined as 
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By using the union bound approach, the probability of (4) is 
upper bounded. Thus, we have 
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Now, our aim is to obtain a couple of probabilities. In fact, 
the last term, i.e., ,Pr E srank KF K , in (5) is 
considered to be zero, which implies that the rank for each 
matrix ,sF  is K  with a high probability because all of the 
entries in matrix ,sF  follow a Gaussian distribution. Thus, we 
can remove it in (5). Now, we consider the remaining terms. 
Let us consider the first term, i.e., E , , cr , c . We notice that 

E , , cr , c  is random because of all the noise vectors. Thus, 

we can obtain the probability of E , , cr , c . Lemma 1 

provides the upper bound on the probability of E , , cr , c . 

Lemma 1: Let  be the correct support set and 

,s srank KF K . Then, for any 0,  
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Similarly, we notice that E , ,r ,  is random 
because of all of the noise vectors as well as all of the sensing 
matrices. Thus, we can compute its probability. Lemma 2 
provides the upper bound on the probability of E , ,r , . 

Lemma 2: Let , ,s srank KF K , and 

0 KK . Then, for any 0,  
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where 2 2
noise min , 22 2

, noise
\

s s
i

x i
\

, and 

2 2 2
min 1, ,min , , ss

2
, . 

The proofs of both Lemma 1 and Lemma 2 are given in [2]. 
Using these two lemmas, we have the upper bound on the 
probability of E failure . Before we introduce our theorems, 
we would like to emphasize the fact that all of the upper bound 
probabilities converge to zero as the number of sensors 
increases. 

Proposition 1: LetM K , ,s srank KF K , and 0 . 

Then, Pr E , , cr , c  converges to zero as the number of 

sensors increases. 

Propositions 2: Let M K , ,s srank KF K , 0 , 

and 22
noise min ss i

x i . Then, Pr , ,E r ,  converges 

to zero as the number of sensors increases. 

Clearly, if 22
noise min ss i

x i  occurs, the jointly 

typical decoder yields  as the correct support set because this 
decoder cannot distinguish between the noise components and 
the signal components. Thus, 22

noise min ss i
x i  must be 

satisfied. The proofs of both Proposition 1 and Proposition 2 
are also given in [2]. 

IV. MAIN RESULTS 
In this section, we introduce our two theorems. The first is 

related to the relationship between PSM and the number of 

sensors. The second shows the relationship between the 
number of sensors and the noise variance. 

Theorem 1: Let ,s srank KF K , 0 , and 
22

noise min ss i
x i . Then, Pr E failure  converges to 

zero as the number of sensors increases till M K . 

Proof: The complete proof of this theorem is given in [2]; 
however, we would like to provide a brief description of the 
same here. Using Proposition 1 and Proposition 2, we know 
that all of the upper bound probabilities converge to zero as the 
number of sensors increases. When we carefully examine (5), 
we notice that the number of sensors does not impact the 
summation operation. Therefore, the upper bound on 
Pr E failure  converges to zero as the number of sensors 
increases. 

Theorem 1 states that PSM converges to K  as the number 
of sensors increases. Similar results were reported in [1][5]. In 
[5], it was reported that PSM converges to K  under the 
noiseless case. In [1], it was reported that PSM converges to 
2K  under the noisy case. However, in [1], it was assumed 
that all of the sensing matrices were the same, i.e., 

1 SF FSFS . In our work, we consider the noisy case and 
assume that all of the sensing matrices are different. 

Theorem 2: Let 2
1,noise , 1S , and 1E failure  be the noise 

variance, number of sensors, and failure event of the 1st MSS, 
respectively. Let us assume that 1Pr E failure , where 

0,1 . Let 2
2,noise , 2S , and 2E failure  be the noise 

variance, number of sensors, and failure event of the 2nd MSS, 
respectively. If we suppose that 2 2

1,noise 2,noise  and 
22

2,noise min ss i
x i , then the sufficient condition for 

2Pr E failure  is 
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where M
M K

, log 1f x x x , and 

log 1g x x x .  

Proof: The proof is given in [2]. 

Theorem 2 provides the sufficient number of sensors for the 
jointly typical decoder to accurately estimate the correct 
support set even if the noise variance increases. It is an 
interesting theorem because it can be used to make the MSS 
robust against noise by sufficiently increasing the number of 
sensors. 
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V. CONCLUSIONS AND FUTURE WORKS 
Our contributions in this paper are as follows. First, we 

showed that PSM converges to K  as the number of sensors 
increases. This result is slightly better than the result in [5]. 
Duarte et al. obtained the same result, but they did not consider 
the presence of noise. On the other hand, we obtained our result 
under the noisy case. The second contribution was to providing 
the sufficient number of sensors for the MSS to make it robust 
against increases in the noise variance. This is important 
because it allows us to adaptively respond to the variation in 
the noise variance. 

In future works, we would like to consider more practical 
models. For example, each signal uses the shared support set 
and an individual support set. In addition, we would like to 
consider our model again with the different assumption that all 
of the sensing matrices are the same. As already mentioned, a 
previous paper [1] showed that PSM converges to 2K  under 
the assumption that all of the sensing matrices are the same. 
Thus, determining whether PSM converges to K  or 2K  
would be beneficial. 
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