
 
 

 
Abstract—Compressed Sensing (CS) is one of the hottest topics in 
signal processing these days and the design of efficient recovery 
algorithms is a key research challenge in CS. Whereas, a large 
number of recovery algorithms have been proposed in literature, 
the recently proposed Approximate Message Passing (AMP) [19] 
algorithm has gained a lot of attention because of its good 
performance and yet simple structure. Although Belief 
Propagation (BP) algorithms were previously considered to give 
good performance only in Sparse graphs, AMP algorithm is based 
on the application of BP on dense graphs. The application of BP 
in dense graphs asks for a re-look on the design of BP algorithms 
over graphs which can have a bearing on many applications 
including coding theory, neural networks etc. This paper aims to 
compare different existing variants of Message Passing 
algorithms on sparse and dense graphs for the CS recovery 
problem.  

Index Terms—Compressed Sensing, Bipartite graph, Belief 
Propagation, Sparse Matrices, Channel Coding 
 

I. INTRODUCTION 
Compressed Sensing (CS) is a novel paradigm in signal 

acquisition and processing recently proposed by Candes and 
Donoho [1-3]. It has completely changed the way of how 
signals were classically acquired and processed. Compressed 
Sensing replaces the classical two-step signal processing 
philosophy of 1) signal sampling (Nyquist-rate) and 2) signal 
compression with a single step of ‘compressed/low-rate 
sampling’ (sub-Nyquist sampling) without having a 
performance loss, subject to the constraint that the signal to be 
recovered is sufficiently sparse. The idea of CS has already 
been applied to a number of applications [6-10]. If  x is our 
target K-sparse signal of dimension N×1 which we want to 
compressively acquire. The phenomenon of CS can then be 
represented as the following set of linear equations.  

( 1) ( ) ( 1)m m N Ny A x
                     ( 1) 

where A is an m×N dimensional matrix, called as the 
Sensing matrix, representing the linear combinations of 
compressed sensing and  y is the vector of resultant samples of 
size m×1 commonly referred to as measurements.  

 
 

A large number of recovery algorithms have also been 
proposed in literature having their origins in diverse fields and 
areas e.g. convex optimization [2-4], linear programming [2-
4], bases decomposition [23], combinatorial methods [24], 
iterative shrinkage [25], graphical models [16] etc.  

One such recovery algorithm recently proposed by Maleki 
and Donoho [19] and known as the AMP (Approximate 
Message Passing) algorithm has shown to achieve very good 
performance with large reduction in complexity in comparison 
with existing approaches. AMP has its roots in Graphical 
Modeling concept. Graphical Modeling is a popular technique 
and is being used extensively for modeling and decision-
making in a variety of applications including Inference 
problems, error correction codes and learning Algorithms [14] 
etc. Whereas Sparse Graphs/Matrices have been classically 
used for signal inference/estimate, AMP advocates the use of 
dense graphs for the signal recovery problem in CS using the 
Message-Passing (MP) algorithms. This is of particular 
interest as previously, except for a few works [15], Message-
Passing algorithms were generally considered to perform 
poorer as the sparsity of the underlying graph was reduced.   A 
fundamental understanding of the AMP algorithm can thus 
lead to its application in a variety of fields. This article not 
only aims to provide the connection of the final form of AMP 
with the underlying dense graph and its associated Message-
Passing algorithm but the comparison with associated 
approaches for Sparse graphs will also be explored and the 
merits and de-merits of the different approaches will be 
outlined. Section II will present the algorithms for signal 
recovery in dense graphs, section III will provide the different 
algorithms for sparse graphs, section IV will provide the 
simulation results while conclusion will be given in section V. 

 

II. SIGNAL RECOVERY VIA DENSE GRAPHS 

A. Sum-Product MP Algorithm for CS Signal Recovery 
 
Classically, when MAP estimate is desired of the unknown 

signal, the Sum-Product (SP) [12] variant of the MP algorithm 
is used. As the AMP algorithm is derived from the classical 
MP algorithm, the first step is to formulate a Sum-Product 
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algorithm that aims to find the MAP estimate of the unknown 
x in the compressed sensing framework y=Ax as given in eq. 
1. This requires maximizing the A-Posterior-Probability 
(APP) p(x|y) which is equivalent to maximizing the joint 
distribution p(x,y) by the application of Bayes rule, given in 
the following equation. 

 
ˆ arg max ( | )

( , )arg max ~ arg max ( , )
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We will equivalently represent p(x,y) as py(x) to indicate the 

joint distribution of all the unknown variables  x parameterized 
by the known vector y. Thus the problem boils down to 
maximizing the joint distribution of the unknown vector x. The 
concept of ‘postulated prior distribution’ is used here to 
postulate a desired prior distribution on the unknown vector x 
which can be different than the ‘actual prior distribution’ of 
the signal x but nonetheless is used to promote sparsity in 
solution. 
 
The performance of the resultant SP algorithm heavily relies 
on the goodness of the postulated prior distribution. One such 
postulated prior distribution which has several nice 
characteristics such as it models well the sparsity in the signal, 
its distribution function factors perfectly with respect to a 
factor-graph [13] etc. is given below.  

1 1

1( ) exp( ) ( )
N M

i j j
i j

p x y A
Zy x x

          (3) 
 
Where Z is a normalization constant to make the probability 

sum equal to unity and Aj represents the jth row of matrix A 
which corresponds to the measurement yj. There are two 
distinct components of this distribution; 1) the negative 
exponential component parameterized with the parameter β. It 
can be observed that this is a sparsity promoting/enforcing 
component whose combined1 value will get smaller as the 
signal becomes less sparse i.e. more non-zero values. 2) the 
dirac delta distribution δ(.) which is only non-zero when the 
solution satisfies the constraint y=Ax. Thus the product in eq. 
3a will assign weights to the solutions of the linear system 
y=Ax that will decay exponentially with the l1 norm of the 
solutions. 

The marginals of the distribution given in eq. 3 will give the 
APP distributions of individual xi which can be individually 
maximized to find a symbol-by-symbol MAP estimate of the 
unknown sparse-signal x. SP algorithm is a low-complexity 
alternative to find the marginals of such functions which 
factorizes over a factor-graph. First we represent the CS 
framework y=Ax via a factor-graph/bi-partite graph, like the 
one shown in figure below, with y, x and A being represented 

 
1 The product of all N factors 

by the measurement-nodes, variable-nodes and the edges 
respectively.  

 

 
 

Fig1: Bi-partite graph corresponding to a dense adjacency 
matrix 

 
We can observe the joint distribution function given in eq. 3 

is a product of N+M factors and thus factorizes perfectly with 
respect to such a factor/bi-partite graph. The SP algorithm for 
calculating the marginals of the function given in eq. 3 on the 
associated bi-partite graph is given in table 1. 

The presence of an ‘integral’ in eq. 5 instead of a 
‘summation’ is because the unknown values xi are generally 
considered to be continuous in the CS framework. 

 

B. Approximate Parameter-Passing Algorithm for CS Signal 
Recovery 

 
The SP MP algorithm given in table 1 is of no practical use 
because it involves passing over a large no. of messages in 
each iteration (dense graph), where the messages are density 
functions over the real line which makes it computationally 
prohibitive. Fortunately, however, the situation gets simplified 
when certain approximations which are valid only in large 

 
2 Although in many application of SP algorithm e.g. in LDPC decoding, 

the variable node to measurement node message is  only a product of all 
incoming extrinsic messages, but here they are also multiplied with the 
corresponding variable local function i.e. the negative exponential component 
because the objective function/distribution is factorized in this manner 

Table 1 – SP MP Algorithm 

At Each Iteration: 

1. At Each Variable-Node: 
Variable (xi)-to-Measurement (yj) Node message2 = 

 
'

' { ( )\ }
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2. At Each Measurement-Node: 
Measurement (yj) –to-Variable (xi) Node message 
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system limit3 simplify the MP algorithm without compromising 
in performance. Thus we can simplify/approximate the 

messages i jx ym
and 

ˆ
j iy xm

 in the SP MP algorithm by 
assuming they belong to a particular structure/distribution. 
This makes it possible to track the behavior of these messages 
as instead of keeping track of all the values of all the 
probability densities (each message will be a density function 
in this case as explained previously), we will only be required 
to keep track of the parameters of these representative 
probability density functions e.g. mean and variance for a 
Gaussian distribution. 

For large system limit, it was shown that the measurement-

to-variable node messages 
ˆ

j iy xm
can be approximated by 

Gaussian distributions while the variable-to-measurement node 

messages i jx ym
 can be approximated by a distribution which 

is a product of Gaussian and Laplace distributions. The proof 
of these approximations is beyond the scope of this paper and 
we refer the interested reader to [22]. The resultant algorithm 
can be termed as the Parameter-Passing (PP) MP algorithm, 
and is given in the table 2 below 

 
 
Where 

i jx y  and ˆ
j iy x  represent the mean of the 

variable-to-measurement node and measurement-to-variable 
node messages/densities respectively, as given in eq. 4 and 5, 
and ˆt  is a parameter which represents the variance of the PP 
MP algorithm messages in iteration t. The calculation of these 
parameters/messages have been simplified via use of the soft-
thresholding function ( , )x  which is defined for a variable x 

 
3 Large system limit assumes large values for M and N and is a valid 

assumption for CS framework as many applications involve thousands and 
possibly millions of variables 

w.r.t a threshold θ as follows 
       if  

( ; ) 0              if  -
       if   

x x
x x

x x        (9)

 

And '( , )x  is defined as the derivative of the  soft 
thresholding function  
 

1              if  
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x

x
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C. Approximate Message-Passing (AMP) Algorithm for CS 
Signal Recovery 

 
Although the Parameter-Passing algorithm given in table 2 

has less complexity than the classical SP MP algorithm of 
table 1, it still involves updating 2MN messages per iteration 
which can result in huge complexity for large N. Fortunately, 
via application of first order Taylor approximations [22], the 
PP MP algorithm can be reduced to the Approximate Message 
Passing (AMP) algorithm, as given below 

 
  

Where δ is defined as M/N and .  is the averaging operator4. 

The interesting thing to observe in the above AMP algorithm 
is that the same message is sent from a given 
 

4 .  for a vector x of length N is defined as  
1

N

i
i

x
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Table 2 – PP MP Algorithm 

At Each Iteration: 

1. At Each Variable-Node: 
Variable (xi)-to-Measurement (yj) Node message = 

'

lim

'
'

ˆ ˆ( , )
i j j i

t
x y j i y x

j j
A                (6) 

2. At Each Measurement-Node: 
Measurement (yj) –to-Variable (xi) Node message 

'

lim

'
'

ˆ
j i i jy x j ji x y

i i
y A              (7) 

3. Variance Update once per iteration (Same for all 
the nodes) 

lim
1

.
ˆˆ ˆ ˆ' ,

j i

t
t t

ji y x
i j

A
N
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Table 3 – AMP Algorithm 

At Each Iteration: 

1. At Each Variable-Node: 

' '
' 1

ˆ ˆ( , )
M

t
i j i j i

j
A

 
        In vector notation           

1 ˆ ˆ( , )t T t t tμ A μ μ
                     (11) 

2. At Each Measurement-Node: 

' ' ' ' ' '
' 1 ' 1 ' 1

ˆ
ˆ ˆ ˆ ˆ' ,

N M M
j t

j j ji i j i j j i j i
i j j

y A A A
 

       In vector notation           
1

1 1

Onsager Term

ˆˆ ˆ ˆ' ,
t

t t T t t tμμ y Aμ A μ μ

(12) 
3. Variance Update once per iteration (Same for all 

the nodes) 

1
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variable/measurement node to its neighbors and hence this 
results in reducing the total no. of messages from 2MN to 
M+N thereby greatly reducing the complexity. The Onsager 
Term is what makes the performance of AMP algorithms 
superior to other [21] iterative thresholding algorithms and 
have been named so because its links with similar sort of terms 
in statistical mechanics[19] 
  

III. SIGNAL RECOVERY VIA SPARSE GRAPHS 
 

The nature of the MP algorithms proposed for CS Signal 
recovery via use of Sparse graphs is very similar in nature to 
the different forms of Message-Passing and Parameter-Passing 
algorithms we saw in the last section for dense 
matrices/graphs. The reason for this is that the goal in 
this/sparse case remains the same i.e. to iteratively update and 
finally maximize the posterior density ( | )ip x y  by exchanging 
probability messages across the edges of the bi-partite graph 
given by measurement/adjacency matrix A.  

In the classical [2] l1-magic approach for CS signal 
recovery, the shape of the l1-ball plays a role to pursue the 
sparse solution. In the MP approaches, the postulated prior 
density ( )py x  is chosen so as to enforce the sparsity in 

recovered vector. Hence, proper choice of prior density 
significantly affects the sparse recovery, as was the case for 
dense matrices as well. Thus, several types of prior densities 
have been experimented in different MP-based algorithms for 
signal recovery in CS, as will be mentioned below.  
 
 The first application of MP algorithms for the CS signal 
recovery came in the form of Density Passing (DP-Sparse) 
algorithms over Sparse graphs, initially proposed by Baron et 
al [16]. The idea was simple i.e. to pass the samples of the 
density of the unknown variables xi  as messages along the 
edges of the associated bi-partite graph and then to update the 
densities via application of the SP MP update rules. It is 
important to mention here that although the DP-Sparse 
algorithm is very similar in nature to the famous Density-
Evolution (DE) approach, the DE approach was classically 
used for determining the performance  of the LDPC codes, 
while the DP-Sparse algorithm is used as a practical signal-
recovery algorithm in this case of CS Signal recovery. 

IV. SIMULATION RESULTS AND ANALYSIS 
 
We compare performance of the algorithm associated with 
sparse graphs i.e. the DP-Sparse CS- BSD algorithm with 
another recently proposed sparse-graph based algorithm [17]. 
It is derived by combining SP MP algorithm and Expectation 
Maximization (EM) algorithm, and thus we denote it by EM-
Sparse. Like PP-MP, in EM-Sparse only parameters of the 
concerned distributions are passed as messages in the MP 
framework which results is less complexity. The performances 

of the algorithms associated with dense graphs, i.e. the PP-MP 
algorithm and the AMP algorithm are also evaluated in terms 
of their MSE convergence rate with respect to iterations. The 
parameters were kept uniform for all the algorithms i.e. 
N=1000, M=500, K= 50,100,150 and 200 and all the 
performances of all the algorithms were evaluated in the 
noiseless setting. 
 

 
Amongst the sparse graph based algorithms, it can be  
observed from figure 2 and 3 that although the MSE 
convergence rate for the EM-Sparse algorithm is better than 
the DP-Sparse algorithm for the cases with high sparsity i.e. 
K= 50 and K=100, the  EM-Sparse  algorithm failed to 
converge when the sparsity is decreased to K=150 and K=200. 
In terms of complexity, the DP-Sparse  algorithm has 
significantly higher complexity than the EM-Sparse algorithm 
due to the simple fact that the messages in the former case are 
the vectors containing the samples of the message densities 
while in the latter (EM-Sparse) case, the messages consist only 
of the parameters of a given distribution.  
Amongst the dense graph based algorithms, it can be observed 
from figure 4 and 5 that the MSE convergence rate with 
respect to iterations for both the PP-MP and AMP algorithm is 
approximately same for all levels of sparsity. This is of great 
interest because AMP algorithm is an approximation of the 
PP-MP algorithm and even for such moderate lengths as in our 
case of N=1000, this approximation is very valid. In terms of 
complexity, there is a huge difference between the complexity 
of the AMP algorithm and the PP-MP algorithm. This can be 
understood from the fact that the number of messages in an 
iteration of the PP-MP algorithm are on the order of O(2MN) 
in comparison with the order of messages of O(M+N) for the 
AMP algorithm. When comparing AMP algorithm with the

Table 4 – DP-Sparse Algorithm 

At Each Iteration: 

1. At Each Variable-Node: 
Variable (xi)-to-Measurement (yj) Node message = 

 
'
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j n x y s
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2. At Each Measurement-Node: 
Measurement (yj) –to-Variable (xi) Node message 
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                                                                                (15) 
Where |s indicates the uniform samples of the continuous 

distribution, and (.)F and represent the Fourier and 
convolution operator respectively 
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sparse-graph based approach DP-Sparse, it is observed to give 
superior performance with much reduced complexity 
especially for the cases with reduced sparsity.  
 

 
Figure 2: MSE convergence for DP-Sparse [16] Algorithm 

 

Figure 3: MSE convergence for EM-Sparse [17] Algorithm 

 
 
AMP algorithm thus emerges as winner amongst the plethora 
of Message-Passing giving the best performance-to-
complexity tradeoff for all values of signal sparsity.  

V. CONCLUSION 
In this paper, we have reviewed, analyzed and compared 
different variants of the Message-Passing algorithms for the 
Compressed Sensing signal recovery problem. Special 
emphasis has been put to the recently proposed Approximate 
Message Passing algorithm which goes against the commonly 
accepted wisdom and apply Belief Propagation / Message-
Passing algorithms on dense graphs for Compressed Sensing 
signal recovery problem. The algorithms based on dense-

graphs were compared with those proposed over Sparse graphs 
and the advantages and disadvantages of different approaches, 
along with the performance and complexity comparison, were 
analyzed in this paper.    
 

 
 

Fig 4: MSE Convergence for the AMP [19] algorithm for 
dense graphs 

 ` 
 

  
Fig 5: MSE Convergence for the PP algorithm [22] 

for dense graphs  
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