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Background

4

% Compressed sensing (CS)

Low-cost, fast, sensitive
optical detection

— New signal acquisition techniques [Donoho06],
cited >4000 times.

Xmtr

Compressed, encoded
image data sent via RF
for reconstruction

— MIT 2007 Tech Review, “Top 10 Emerging

)] Image encoded by DMD
Technologles and random basis

4

** CSisto find sparse solution from an under- = = <((
determined linear system.

D)

— Real, complex field

** Many application areas: Cameras, Medical
Scanners, ADCs, Radars, ...
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Sparse Representation
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Focus Areas in this talk
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Decoding A+ X|F2| SR/

OF2 pecoder’ A 71 E £ =

— Gaussian, FFT, Bernoulli P& ™
ERSE T

s ENM ZX0| £E2t=l Decoder 7HE E R B

— Photonics, Spectrometers, Electronic Eyes, ...
— Non negative sighal sensing
— No general sensing matrices



FUNDAMENTAL QUESTIONS ON
DECODING PROBLEM



Shannon’s Sampling Theorem



Shannon Nyquist Sampling Theorem

** Consider taking samples of continuous time signal.

» The Sampling Theorem: Any band-limited signals can be represented

with the uniform spaced samples taken at a rate greater than twice
the max. frequency of the signal.

Proof: A train of impulses is a train of impulses in frequency

Zk:-]_l S(t'kTS) y fS Zn=_1l S(f — N fS)
where f, = 1/T,

1]

= N A



Shannon 1948 paper

“*Theorem 13: Let f(t) contain no frequency

over W. Then, . ( ; jSin(ZﬂW[t—{v‘v )

fR)=> f

2W ) 22W [ t—55 |

N=—o0

— AT N g >
d f/2

f = 1/T,

14



F.T. vs. Discrete Fourier Transform

<* Now, consider taking samples of a frequency spectrum at every f  in
the frequency-domain.
¢ Thus, in both domains we have periodic and sampled signals.

*** Suppose choosing Tp/Ts = T,W=N, an integer.

** Then there are N distinct samples (in each domain).

** The discrete samples of the signal x(k), k=0, 1, 2, ..., N-1.

*** The discrete samples of the Fourier spectrum X(n),n=0, 1, 2, ...,

” : L » L
el et T 1] m Rl

To



Discrete Fourier Transform

% DFT

X(k) = 2., ;N1 x(n) ed@e/Nink 2 X = Fx
“*Inverse DFT

x(n) = 1/N 2, ;N1 X(k) el@/Nink=p x = F'X

*** Using DFT, one can represent the time domain
sequence x with the frequency domain sequence X.

*** Note that in both domains, we have N signal samples.



What given so far

“**Are covered in Systems and Signals in
Electrical Engineering...

*Let’s now move on to the issue of
Compressive Sensing



Sparse Signals, Recovery with L1
Norm Minimization



Sparse Signals

** Now suppose that the signal x is K-sparse.
— Only K elements of x are non-zero (K << N)

A A A A A A

[ R e e

v

7}
v
—h

The Big Question: Do we still need all N uniform spaced Fourier samples to represent
the signal after knowing that it is sparse?

v



References

/
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Atomic Decomposition by Basis Pursuit [Chen, Donoho, Saunders 96]

/
0.0

Uncertainty Principles and Ideal Atomic Decomposition [Donoho01]

/
0’0

Neighborly Polytopes and Sparse Solution of Underdetermined Linear Equations
[Donoho04]

** Robust Uncertainty Principles: Exact Signal Reconstruction From Highly Incomplete
Frequency Information [Candes, Romberg, Tao 06]

** Near-Optimal Signal Recovery From Random Projections: Universal Encoding
Strategies? [Candes, Tao 06]

** Many other papers available at http://dsp.rice.edu/cs.

‘*These guys say there is a better way to
represent the sparse signal!

20


http://dsp.rice.edu/cs

M<N is good enough!

/
0.0

DFT again:
X(k) = 1/N X Nt x(n) e12e/N)nk forallk=0,1,2, ..., N-1

X =Fx
“* We know x is sparse. Then,

*» Taking only several Fourier |.p. measurements of x is good enough :
y(m) = 1/N anON—l x(n) e (2n/N)nm
= <x, m-th tone>form=1, 2, .... M
where M is the total number of measurements.
McZ,
We let y = F,,x be a subset of Fourier coefficients of signal x,
where size of the subsetis M < N,

/
0‘0

** M rather than N Fourier samples are good enough to represent x!



L1 norm?

** The L-p norm of x is defined for
p>0 1
N P
4, = Sl

** The LO norm is not well defined
as a horm.

— Donoho uses it as a “norm” whi
ch counts the number of non-z
ero elements in a vector.

% Let x=[1 -1 0] andy=[05 -05 03]
Which one is bigger?
— LO sense
— L1 sense
— L2 sense

15
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L, vs. L, Solution

H={x:F, x=y]

L2 ball
L1 ball
o

N

X

L, min =L, min

P

PN

x=argmin|x’|, s.t.y=Fx x=argmin|x, s.ty=Fx

=FT(FF") "y

L2 is not suitable but L1 is
when the exact solution is sparse.



L, vs. L, solutions

** L2 solution has ener
gy spread out to eve
rywhere.

+¢* L1 solution attains t
he sparse signal.

-0.8

100

24



Good vs. Bad

H={x:F,x=y]

X, ~minL, =X, +h:F, (% +h)=y] X, ~ minL,

= i

X, ~minL X, ~minL

<» When the hyperplane cuts through the L, ball, L, min
does not attain the L, min.

“* We aim to make F,, so that the bad does not occur
(often).

25



“Uniform Uncertainty Principle”
[Candes, Tao 06]

* IfM >cKA, then for any K-sparse signhal x, the
following inequality holds with probability
close to 1,

SIS < I, < 23]

2 2 2 N 2"

***For the Fourier matrix, the bad case won’t
happen frequently if 1=0(logN)’



Basic Decoding Problem

** How many number of measurements M is required for
successful recovery?

** (PO) A K-sparse signal x can be recovered using the exhaustive
search (L, min search) [Theorem 1.1, CRT 06].

min|x|| st y=F,, X

M > 2K < unigue solution



Key CS Results (2)

*** As long as the solution is unique, a search algorithm can find it
exactly.

*** Proof: Suppose two K-sparse solutions x, x". Then, we have

]
An M dimensional map A vector of dimension <=2K

** This map is injective. Thus, RHS can’t be zero unless (x-x’)=0.



Canonical CS Results (3)

“* There are \C, different ways to choose a set of K columns that

accounts for the observation y.
V()

"~/

“* The complexity of L, min search is ( E ) ~ 2

% (P1) A relaxed approach is L; minimization:

min|jx| st y=F, X

M >cKlog N = unique L1 sol. = LO sol.



When the support set is known

A, X,
_ [l T a Y AT
- xs =(AA ) ALY
2Knonzero
2K columns clements 2K columns

*** Decoding is easy!!
— as long as 2K columns ~ linearly independent

* If any 2K selections of columns of A ~ lin. Ind., the solution
IS unique.
** Spark of A = the size of the smallest subset of columns of A
that are |.d.
— Of|: Spark of A =5.

30



Spark of Sensing Matrix

** It determines how good the sensing matrix is
in a fundamental way.

“*Suppose an A with Spark = 5.

“*Then, any 2-sparse signal can be uniquely
transformed into y.

**This means an exhaustive search (LO decoding)
will give perfect recovery.

**Note that M>=Spark-1 (Singleton bound)



Loose Thoughts on the Number of
Measurements

*** Suppose random A

***Total number of support
sets ~ 2 "M

“*M ~ Klog N/K

A measurement is either
Zero or non-zero.

**A zero measurement ™
useless

**A non-zero measurement
~ useful measurement
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L1 Minimization Algorithms

Linear program!

Basis Pursuit (Chen, Donoho, Saunders
95’)

min|x, st y="Fx
Recast as an LP

miny u =1u+0"x= |0 1T](Xj

(xu) 4 u

st x—u=[e _e]m

~x-u=-fe o ]
[A O][Xj—bzo

u

0,

A

— There are many ways to solve
this LP problem.

— L1 magic (Candes-Romberg)
— CVX (Boyd-Vandenberghe)
— Sparselab

— Many others at RICE CS reposi
tory

AN S A\

Basic approach
1.

Write the KKT equation

Linearize it (Newton’s method)

Solve for a step direction

Adjust the step size (stay interior : u>0, A > 0)
Iterate until convergence



L)

L1 Minimization Algorithms (2)

% Algorithm

The LP approach is to build the sp
arse solution from an initial guess
which is dense.

— O(NS)
If the exact solution is known to b
e sparse, why don’t we start from
a null set and build up a sparse sol
ution?
Homotopy [Donoho-Tsaig08’]

min 3y - Ax|, + 4],

— The correct solution is approached
when lambda gets smaller.

— Osborne et al.
— Tibshirani’s LASSO

*» K-step property: Algorimthm fi

nds the solution in K-step if
K=(u'+D/2.

1.

2.
3.
4

40

Given Fandy = Fx, set x, = 0.
Find residual correlation, ¢; = F' (y— FX,-)
Determine the step direction and size

Update the active set, sol. estimate xj and the
step size.

Stop when the residual correlation is zero;
otherwise repeat 2 — 4.

2
lly - AXI + 2 [xll,

35

30

20

15
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Compressed Sensing Narrative
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*

Compressed Sensing Narrative

Any natural signal x can be sparsely represented in a certain basis:

X = Bs (s Is K-sparse)
A sparse signal can be compactly described via a linear transformation:
y = Fx = FBs (yisM x1, M<N)

Possible linear transformation matrices for F are many, including

— Randomly selected rows of the F.T. matrix
— i.i.d. Gaussian ~ M0, 1/M)
— i.i.d. Bernoulli {+1, -1}

The L1 minimization recovers the signal x perfectly with probability close t
o 1 as long as the number of measurements are sufficiently large,

N>M>cKA>2K

— Where the oversampling factor is

A
A

(log N )6 for the FT matrix
(logN)  for the Gaussian and Bernoulli matrices



Key Ingredients in CS Theory

*** Incoherence between F and B
— It is desired to select an F so that it is incoherent to B (imagine the con

sequence of the opposite case.)
— Thus, F is usually constructed with the random Gaussian matrix since t
he statistical property of FB remains the same as that of F when B is un

itary (orthogonal).

** Restricted Isometry Property (RIP): Candes and Tao define that the K
-restricted isometry constant of the sensing matrix is the smallest

guantity such that | H2

for any K-sparse vector v sharing the same K nonzero entries as the K-

sparse signal x.
— Ifa small5K <1 exists, then Fx should behave like a unitary transformat

ion (i.e., y and x are one-to-one)
— If 6, <1, then LO solution is unique.
- Ifs, < J2 -1, then L1 solution attains the LO solution.



Key Ingredients in CS Theory

*** RIP is useful for large deviation results as well.
— Another way to write RIP is : {“||:X||§ e 5||x||§}

— Then, one can ask for the probability that a sensing matrix F selected
randomly from an ensemble of M x N matrices (say i.i.d. Gaussian) to
have a given RIP constant §.

— This gives a large deviation analysis which then leads to the
probabilistic statement of the following form: for any K-sparse x

Pr{{IFxl: -

< 5\\xH§} <exp| ~¢(M —Klog(N/K))]

+*» Stable recovery of L1 minimization.
— Signals are not exactly sparse (model mismatch).
— Observations are noisy.
— L1 recovery provides stable recovery results.

— The model mismatch and observation noise do not pathologically add i
n L1 recovery.

— L1 recovery results are not much worse than the model mismatch and
observation errors.



Recasting CS to Channel Coding
Theory context



Compressive Sensing

*»*CS Basic Equation i

Y=FX

<
N

—h —h  =—h
N
=y

—_— =R —p
N
N

—h  —h =k
N
w

—h  =—h  =—h
N
SN

—h  =—h  =—h
N
()]

—h  —h  =—h
N
o

E

“*How to design F?
**How to recover x, fast and robust?

o?<C)O(3<C)C)




Recast of CS in Channel Coding Context

- 1( 0
y,) [1001107( ¢
Y, |=1010101 || 7
y;) |001011](¢

*“* Group testing done during the 2" World War in the US
— Do not want to call up syphilitic man for service.
— Do not want to test out all men’s blood samples either
— What to do?

— Group test
* Index the blood samples of each man, i=1, 2, ..., N.
* Add blood samples of randomly selected men and test them, M tests.
* Solve the under-determined set of equations and find all the syphilitic men.

*** yis called Syndrome.
** Fis a parity-check matrix.
— A K-error correcting code if SPARK(F)=2K + 1.
— Any K-error patterns can be found and corrected.



/
*

Channel Codes

Purpose: Add redundancy symbols and offer error-protection
Message: m

Codeword: c = Gm
— Generator matrix G

Encoding: c = Gm
Channel output: z=c + x (x is the channel errors)

Decoding: find F where FG=0
— Apply Fto z: Fz=FGm + Fx = Fx
— What's left is y=Fx



L)

e

*

0’0

Example of a Channel Code in GF(2)
(1 1 0 1 0 0 0]

et G=15 0 1 101 0
0001 10 1

— . ()

Using FG=0,findF= |1 0 1 1 1 0
01 0 11 0
0O 0 1 0 1 1

Note that SPARK(F) = the size of the smallest subset of columns of F that
arel.d.=3=d_,.
— The example is a single error correcting code
= Every single error pattern can be detected

= All 1-spase signal can be recovered using F.
— SPARK <= M+1 (The singleton bound)

Note that UUP is met for F.

— For all 1-spare signal x, Fx is non-zero. When SPARK is deflr'1ed
— M=3>2K=2. for real valued matrix, and

d...is for binary field.
Then, SPARK >=d_..
See [Luil3]
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Probabilistic Method: GF(2)

.o.oootocoo.ooo--ooo.....
ecscece ooooo-oooo.........
0o b4
.
.
.
.
.
.
.

®eee,
. . ee0ccccee, oo e,
o® . eeccceccccccce . .
. XX EX] .
. . S eeecscccccccccoe
H esccccccee
AR T ®®%ccecccccccccnlon
.

' . + + Pr(S|x,=0) = Pr(él x,=0)
+ + +,,/ ‘
© O G
- =1
P11 P21 P31 Pa1 P51 Pe1 P71 P81 Poi pi1 = Pr{xi }

P(S|x =1y)=Pr{odd # of 1s in x, and X, }x Pr{odd # of 1s in x; and X, }
| = { Py (1= Pra) + A= Pyy) p7,1} X { Ps1(1— Pgs)+ (1= Psy) p9,1}



Let’s do this problem

< Determine the pdf at x; 1.0 ‘ z.‘o ‘ 1.0

given the pdfs at x,, X7, Xs,

Xg and y. —_—
% Find the pdf at x, glk' i 3.0 |
OOOLE OO

B

-2-10 12

L)

46
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0’0

J J
0’0 0’0

Let’s do this problem (2)

Determine the pdf at x, given the pdfs at x,, x5,

1.0 2.0 -1.0
Xs, Xg andy. ‘ ‘ ‘
How to find pdf at x,
An example at x; at -2 - - - _— - -
2.0 >» - 1.0 |
Via the first check (1.0 = 2x, — x,— 2x,) 1.0 ] e

1.0 I~ 20 3.0
P(S|x;=-2,y,=1.0) = P(1.0 = -4 — x,— 2X;) = P(5=—x,— 2x,;) =
SUM_ X, P(5= = X, = 2%,) = 1/5{P(5 = 2~ 2x,) + P(5 = 1— 2x,) + @ @ @ @
P(5=0-2x;) + P(5 =-1-2x;) + P(5 =-2 — 2x,)}

= 1/5{P(x; = -3/2) + P(x, = -4/2)+ P(x,=-5/2) + P(x,=-6/2) +

P(x,=-7/2) = 1/5(0+1/5+0+0+0) = 1/25 1/5

Via the 4t check (2.0 = x; + Xg— 3X,) T T T T T
P(S|x,=-2,y,=2.0) = P(2 = -2 + X5 — 2X,) 21012
= P(4=x5— 2x,)

=sum_Xs P[Xq = (x5-4)/2]

= 1/5{P[xq = -6/2]+P[xq = -5/2]+

P[xq = -4/2]+P[xq = -3/2]+P[x, = -2/2]}
=1/5{0+0+1/5+0+1/5} = 2/25

Combine the two P(S|x; =-2,y) = (1/25)*(2/25)

Further examples at other points in x, is straight Leads to BHT and AMP
forward ~ the product of the convolutions of

two pdfs (The 4t Discussion in this presentation)

Pdfs of other variables can be similarly obtained
47



Reed Solomon Codes

*»» Design of (N, NR, K) RS code
— Selecting the 2K consecutive n-
th root of unity as the roots of
the generator polynomial g(x).
— The resulting syndrome equation
is Vandermonde system
e Spark=2K+1

* Achieves the Singleton bound (ma
X. spark for given N and code rate

R.

¢ Decoding is done in 2 step
— Error locator polynomial

— Qver determined matrix
inversion

info

=
e
)
©
(9]
o
—

48



Generator/Parity Check of BCH codes

% g(x) = LCM of minimal polynomials for the D consecutive powers of
Q.

— LCM 1s the sufficient condition that the roots of g(x) are the D consecutive
powers of a.

% A code polynomial ¢(x) 1s a multiple of generator polynomial. (<=
c(ab)=c(al) = ... =c(aP)=0forsomeb=1.2,..)

— Nomenclature: Narrow sense (b= 1) and primitive (n=q¢™ — 1)

*» Consider s = He®:

'a ™
1 b 26 36 o (-1)b Co — 0
C
1 abtl o 2B+ S ECes ) NP O § (-3 ) c:
1 e Lar” o 2(+2) g3 D) -
1 o btD-1 q2@®+D-1)  3(+D-1) g r-D(E+D-1) \_ Con-) y,
©201x Heung-No Lee 7
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Are you now being convinced to witness
the relation between the compressed
sensing and channel coding theory?

Let us discuss some specific examples.



Wb

~

Several Examples

Prony method [Prony1795]
Eigenvalue distribution of Gram matrix and RIP
Super-Resolution

Support set detection using hypothesis testing on belief propagation
results

Number of measurements needed in multiple correlated
measurement cases

Sparse vs. dense matrices for compressed sensing over GF
Brain Computer Interface with EEG and SR Classification

Turbid lens imaging, Communications Problems, Radars, Comp-
Eyes, X-ampling



Gaspard Clair Frang¢ois Marie Riche de Prony

(July 22, 1755 - July 29, 1839)
FIRST ONE - -

52


http://en.wikipedia.org/wiki/File:Gaspard_de_Prony.jpg

Prony’s Method [1795] in CS framework

Classical Prony’s method can be cast into CS framework [Vetterli07]

The signal model in Prony’s method consists of linear combination of K ex
ponentials with unknown amplitudes {c;}

E KZ ceR ueC m=12--M
i=0 p=0

Given {y,,,}, our aim is to find the unknowns non-zero coefﬁments{cl }
and its locations{i ,}.

The above equation is similar to CS system with K non-zeros values {c; },
which can be written in matrix-vector formas y = Vc.

The Vandermonde matrix V, which acts a sensing matrix, is known at the
recovery point.



Prony’s Method Contd.

“* Prony gave a solution to find the unknowns in 1795 called the annihilation
filter method.

— Annihilation filter is a sequence which when convolved with a given sequence
results in zero always. It can be constructed for the measurement {y,,, } as well.

< Call {h,,} the filter with Z-transform H(z) = ZK:hiZ“ = ﬁ(l—uiZ‘l)

i=1

— {u;} are called (zeros) roots of the filter, that is, H (u;) = 0.

“ If the roots of the filter are the same as K exponentials that constitute {y,,, },
then y_*h =0, i.e.,

K1
= Z N Yo

K-1 K-1
h,( c, Uy ]: cu™ dhu'=0

=0

x
th
x
N

©
I
o
I
o



Prony’s Method Contd.

/

“* Given {y,,} how to find an annihilation filter {h,,}?

< What we needis y_*h_ =0, which can be written as

ym ym—l yO | hO ]
yrr:1+1 y:m )fl _ O
Yomr Yom—2z 0 Yo _hK—l_
Let m = K here. : . :
Y

/7

«» If at least 2K + 1 values of y are available, then the above system admits a solution
when rank(Y)=K

/7

*» Taking hy=1, the above system can be solved for {h, ..., hx_1}.



Prony’s Method Contd.

“* Given the coefficients {1, h4, ..., hx_1}, we can get the unknown
locations {i,,} by polynomial root finding [Vetterli02].

% That is, by finding the zeros of the filter H(z) as {hg, hq, ..., hx_1} a
nd {u; } are related by
p

H(z) = ZK:hiz“ = f[(l—uip z‘l)

\/

%+ Polynomial rooting can be done in O(K?) operations.



Prony’s Method Contd.

\/

** K non-zeros values {c;} can then be obtained by solving linear system of equati
ons (Classic Vandermonde system)

— l 1 .o 1 __Cio— —yo_
uio u|1 cee uiK_l Cll _ yl
K-1 K-1 K-1

U, U o U G | LYk

“* The above system has the unique solution when u,, # u,, forp # q.

“* In summary, by using Prony’s method, only 2K +1 measurements are needed t
o decode a K-sparse signal.



Summary

“*Sensing a real-valued sparse signal with the
Vandermonde system is very good.

**This method gives the best performance with
the least number of measurements, M > 2K.

*** This works for real valued unknown sparse
signal.

*** The recovery process of sparse signal is
similar to RS decoder.



Eigenvalue distribution

SECOND ONE

59



Eigenvalue in Compressive Sensing

< In CS, restricted isometry constant (RIC) of a sensing matrix has an
Intriguing connection to the eigenvalues

< RIC of a sensing matrix measures the goodness of the matrix for
sensing and recovery of sparse signals

F
(1—5K)s” = 3‘2” <(1+05,) 1min(|:;|:%)sHF%XﬁH < e (FYFy ) -

< 5 denotes the support set

<+ We can say probabilistic statements about the RIC 9k if we know the
eigenvalues of the KxK matrix F/F,

“» Aim: To derive novel, tractable eigenvalue distributions



Wishart Matrices and RIP

<» When F is an M xK Gaussian matrix, FTF is a Wishart matrix
(popular in multivariate statistics and MIMO communications)

“» We derive the extreme eigenvalue distributions f(Amax) and f(Amin)
of the Wishart matrix from the joint distribution (1) of the
eigenvalues:

K2/2 —KM/2 K
B T yo (M-K-1)/2 211
f(’i)_ oKM/2 - (M T ‘V ﬂ')‘ —[2’1 ’
K ( 2 ) K ( 2) \\'=l
Vandermonde Matrix of
p - Vz?riance of Multivariate elgenvalues
Gaussian random Gamma function A ﬂ,z /’13 A
variable




Maximum and Minimum Eigenvalues

< Maximum eigenvalue is obtained by
Anax

o= j"f FO) dA - dAdA,

0

< Minimum eigenvalue is obtained by

FO) = [ [ I dr i,
R S

«+ After substituting the joint distribution in the above expressions, we
follow two key steps:

1. Expansion of the Vandermonde determinant along the desired
eigenvalue.

2. Multiple integration of sub-determinants using the theory of sk
ew-symmetric matrices.



Maximum and Minimum Eigenvalues

< Maximum eigenvalue distribution
K i
.I: (21) _ CZ (_1)!’1-1—1 /f{lK—n+(M—K—l)/Ze_$ PF(Bn)
n=1

— PF is a Pfaffian of skew-symmetric matrix (A= —A")

— PF(A)=./det A

— The (i,j)th entry of B _forodd Kis

b, | _“9 J)san(4,-4)dadA,

A
6, (A4)=A4" AN V%= r . isan non-negative integer

| n,l

< Minimum eigenvalue distribution
K K
f (zK ) _ CZ (_1)n+K AKK—n-l-(I\/I—K—l)/Ze_Z PF(Dn)



Plots of Eigenvalues

** Simulation set-up

K=51, M=300,500and 700

25 ? ? ? ? 12
8,,
o 151
3 g
s 2 o
= Q.
< 10 E
4,,
sl
2,,
0 i i i i 0 ; ; ‘ ;
0.2 0.3 0.4 Values 0.5 0.6 0.7 15 14 16 18 > 29
Values
Minimum eigenvalue of Wishart matrix Maximum eigenvalue of Wishart matrix
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Role of RIC in Compressive Sensing

“* Asensing matrix with a good RIC is deemed good for sensing and
reconstruction of sparse signals

< If asensing matrix F satisfies the RIP

F X, |
(1—5K)s” ”5;( ~‘|7|52” <(1+5,)
H

with o, <1, then F is said to satisfy RIP of order K.

“» We aim to state RIP of order K using eigenvalues



Eigenvalue in Undersampling Analysis

** Since

ao (FIR ) <Xl 5 (RrE)

the RIC can be related to minimum eigenvalue as

1-5, =min A, (FXFy )
K
“» We say that a matrix F satisfies the RIP of order K if
- T
Pr{mﬁgn Ain (F Fi ) > a} >1-n

and we call such matrix a well-conditioned matrix



Probability of Well-Conditioned Matrix
Pr{Well-conditioned matrix} = Pr {mgjn Aein (FAFy ) > a}
=Pr{l-5, >a}

>1—g N

<+ The exponent is a function sparsity ratio & .=
ratio @ := M

K

N and undersampling

| Wellconditioned matrix " |

- 11l conditioned matrix

0 0.05 0.1 0.15 0.2 0.25



Under-sampling Analysis

< Undersampling analysis : Aims to find the minimum number of
measurements needed by using a matrix with a specific RIC: 6, <o .

Pr{s, <o}=1-e "
< For OMP, [Davenport10] advised that a matrix with %<3z is

good for sparse signal recovery. R
. NE, 9t I// —
PI’{5K+1 < ﬁ} >1—e K+ 0.8} N x=10§ 1
07} : ,’ =107 ]
06} : ! — N=10% |
£ s !
@ As lim Pr{s <>l 0-6; X -
“* Thus, M >¢7N are sufficient for a \ 3 | | ]

Gaussian matrix to recovery a sparse signal 0



Summary

“* We have derived new eigenvalue distributions of Wishart matri
ces

» Our distributions are exact, compact and are useful for the eig
envalue analysis of small and large systems

“* We have related the RIC of a sensing matrix to its eigenvalues
for the purpose of undersampling analysis

“* We have shown that for every RIC condition there exists a thre
shold above which finding a Gaussian matrix Is easy.



) )
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THIRD ONE



Compressive Spectrometers for Super Resolution

*» Spectrometer: Used to find the spectrum of an optical signal

\/
0’0

It takes in the light, breaks it into its spectral components, and displays them in
a portable device such as smart phones

Applications
State-of-the art portable spectrometers

Light source

alysis of Behavior of Chemicals

Object of Interest Filter Array

’_/_/_/
_/_/_/

Smart Phone with Digital Signal Processing Chip

CCD Array

Absorbance from Oil ve Clean Air Spectra

] - e

et R
s [ S O
xR AN E R R B8R 1

& \\/Vg
Wi
Analog to Digital Converter ] itisrraray
1
Raw Spectrum, y ]

|

< The ability of the spectrometer in revealing fine information is determined by its
“Resolution”

o

Problem: Resolution is limited by the number of filters
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L)

*

L)

*

Compressive spectrometers Contd.

How to improve the resolution for a fixed set of filters in a spectrometer?
Solution: Compressive Spectrometers!!!

Innovations

*» Spectrum acquisition using random filters design (using thin-films) [Lee13s]
¢ Analog domain acquisition (Our design is first of a kind)
s A set of M filers with good auto and cross covariance

% Spectrum reconstruction using a new L, algorithm [Lee12s]
We model the spectrometer output as underdetermined linear system y=Dx

The matrix D is transmittance matrix is determined from the filter manufact
uring process

— MEMS, non-ideal filters (conventional)

— Thin-film, random filters (our method)
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Various Transmittance Functions

Conventional
Design

1. Stringent ‘

filter design
2. Local
sampling

® [
8 qF ; 8 F " "
c c "
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E 05) . J
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© ©
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[72}
5 8
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Our approach

1. Ease of filter
design
2. Holistic sampling

—

Transmittance Transmittance

Transmittance
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(b)

1 Filter-5
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Digital Vs. Analog-design-first Approach

7

*** How to design random transmittances, analog or digital? Analogis the
answer!

L Our approach

Analog Design First

Digital sampling:
width of ACF preserved

’ e -

[ Analog Optical Filters ] [ Random Digital Filter ]

Samples

S
-~ e P |
i -

-

Analog implementation:

\‘n\ width of ACF may notbe
Tl preserved __.--"~

Digital Design First

/7

+ Digital filter design first approach
*  May not preserve the auto-covariance function (ACF)
*  May result in a random structure that cannot be implemented via analog designs



Light Intensity

Mercury lamp spectral lines estimation

The least separation among the 7 mercury spectral lines (Fig. (a)) is 2.106
nm ( which is between the wavelengths 576.959 nm and 579.065 nm).

Thin-film filter based spectrometer resolves the least separated spectral
lines (Fig. c).

Where as the MEMS based non-ideal filters cannot resolve even the
dominant spectral lines (Fig. (b)).

Resolution limit = 10nm, whereas compressive spectrometer achieves 0.99
nm, 10 times better!!!

—— Original sparse spectrum ‘

—— Estimate by non-ideal TFs (MEMS) | 1 . — —- Thin-film estimate

Light Intensity

450

) T AL .
500 600 650 700 400 450

500 550 8¢ 300 350 450 550 500
Wavelength (nm) Wavelength (nm) Wavelength (nm)
(@) (5)

(©



Summary

& M@K 2| E hardwarel| THE =2 E2t0I=
A28 702 Needs”/t S7+ &

S E2 M2 X a2 S AFESHY MA
S MA A[ABRIZ ZHEES F AN E H=5HA

AFES I-A OI7—” ot /\ Ol
_IOE AAI:I

% Lensf | | =9
¢ Lensfree camera, single pixel cameras =

. . o
application & O| /=



Future works

** Implementing random filters with thin-film technology varying thickness
and reflective indices

** Ultimate Goal: Smartphone attachable high resolution spectrometers and
microscopes
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FOURTH ONE

J. KANG, HEUNG-NO LEE, K. KIM, “PHASE TRANSITION ANALYSIS OF SPARSE SUPPORT DETECTION FROM NOISY
MEASUREMENTS, HTTP://ARXIV.ORG/ABS/1303.6388/.



http://arxiv.org/abs/1303.6388/

Message Passing:
State, Value, Matrix, Observation

F.

L.

The Message Passing Algorithm

The message passing algorithm is given as the following:

Initialization: Set P(x,=7,|y)=%/(x=1)+(1-%)/(x=7) for all 7. Determine a

threshold & for stopping criterion.

Run message passing routine: Do the convolution (or the FFT/IFFT) routine for each ¢,
obtaining P(x, =7, |y,C) forallz.

Run the active set recovery routine. An index 7 will be decided to be added to the active if

the log ratio, LR(S,).for 1=0.12,---.N -1, is greater than zero. 1.c..

I={t: LR(S,)>0.0}
Check if 7is K:Run x, = (47 4)" Ay When this value is good enough, i.c.

H.V—AXI_

, <& the threshold, the iteration can be put to stop. Otherwise, return to step 2

and repeat.
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Signal Detection Algorithms

The sparse signal can be reconstructed from the following criterion

% =argmaxP(x =7|y,C) st y=Fx
7,€GF(q)
Theorem 2 : The aposteriori probability (AP) that the first value, %, =7, € GF(q)

Given the observation y and enforcing the checks (checks should be satisfied),

IS given by

Gy L PRI




Sparse Support Detection first!

Once the sparse support is known, the uncertainty to the recovery of

X € RY is confined to the additive noise W € RM,

Y D; Xs w
\g K non-zero K columns

K COIumnS elements
@, : Support aware matrix

X :Signal on the support

Nevertheless, most recovery algorithms, such as LASSO [ribshirani9g],
OMP [troppos) and CS-BP saron10], t0 date for the problem have been
developed under auspices of signal estimation rather than support
detection.
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Difficulties and Breakthroughs

“* In LDPC decoding, only binary messages are usually decoded.

*** In compressed sensing, non-binary cases as well as real-valued and
complex valued codes are used.

** Our approaches
— Non-binary cases, i.e., GF(q): can do up to block lengths of thousands.

— Real- or complex-valued:
* Use quantization
* Do the belief propagation and obtain the posteriors
* Find the support set from the posterior
* Form the over determined set of equations and find the signal values

*** Breakthrough: Approximate Message Passing algorithm by Donoho



Marginal posteriors, spike-and-slab again!
FromTh. 1

llllllllllllllllllllllllllllllllllllllllllll

Spike-and-slab 1 : : Each message from check

: prior is assumed ‘ : converges to
P(xt = 1|y) : - Gaussian PDF :
Xi - . 2 :

=gN(7;0,08) + (1 — )6(’[) : i N(T; xo,t, ojyy) by CLT

(sl CYeP(x :;‘y)ﬁ{ZP(Cip‘XI :';(‘)’X’[,p’ Y)P(Xo,o‘y)}

p=l| X%.p

---------------------

L 2 2 2
,occh(r; 7019 “XC’W j+<1—q)c25(x)

2
Lol +o) Lok +op

5 Gaussian PDFs .
: is a scaled : A slab density A spike

%, Gaussian PDF

lllllllllllllllllllll

- Marginal posterior has a shape of spike-and-slab PDF !
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Sharp Comparison with PT Analysis

New observation: State detection failures occur only at non-zero states
(5; =1)

It led to a sharp transition
analysis between estimation
based approach and the
detection based approach.

(b):6, =5,4=0.05,BHT-BP

Namely, it shows how much
benefit there is with the
detection based approach
(BHT-BP), compared to the —
estimation based approach | Y
(CS-BP). | (c)l:o-Xfl(),qI':O.QS,C?-BP‘

35 4 45 5 15 2 245 35 4 45 5

3
[l
(d):c, =3,4q=0.05,CS-BP

The PT-diagram provides an
exact border line between i
success and failure of the
algorithm on the plane of the = =
noise level and the signal
magnitude it




Approximate-Message Passing (AMP)

Donoho developed a remarkable low-computational solver to
compressed sensing recovery, called AMP [Donoho'09] [Donoho’10-1] [Donoho’10-2].

Comparison of Different Algorithms
AMP algorit J=5 -
I h —t
algorithm oo =1,

_ _ Af—= 08F
Init.: set x*=0 = 0,2t=0 = y,Tt 0

At-1

~ N Al
Threshold update: rt :L—§Zn'((AT ZH)i:Tt 1)

i=1

Signal update  : x' =77(AT ;H+>_<H;}tl) Z:
Residual update :z' =y—AX +%gt’l <77'((AT X )> 2L
AMP has the following properties CToomEoes o m s e er ey
Experimental phase transition diagram comparing
Iterative soft thresholding (IST), L1-solver (L1), AMP
1) Working with dense measurement [Donoho’10-2]
matrices, e.g., standard Gaussian matrices 1
2) Achieving the equivalent phase transition g o5
performance to I__asso [Tibshirani’96] %
as N — oo under noise/noiseless cases E
]
3) O(M + N) computation per 5 o5
iteration for the recovery _ A A
(cf) Lasso has 0(MN?) computation) o2 4 88 W 22 W 6 18 20

Xindex
An example of AMP recovery when N=20, M=10, K=2
20 iterations.



Construction of AMP [Donoho’10-1]

Step I: Construct a joint distribution over the signal s = [s4,..., sy]:
VL) ze e 0s)

1 N M
p(o3)= 5 [ Texn(-1s D] Texo[ -2 v, - (A9))'
cLu(5) = forp - (1, (9" | TV )05

A joint distribution i
Classical BP update rule
Step II: For large system limit (N, M—), the classical BP message
a—>L(Sl) can be approxmated to a Gaussian PDF with mean z¢
and the variance ¢

a-i

a-i-

Ze i 2 Y. - D AX L., Toi 2 2> Air,, Mean and variance of Cfl_,l-(sl-)

j#i J#i

— Then, the message v} (Si) Is approximated by the product of a

Gaussian and a Laplace PDF, given as

_Z 'Abizé—n)zj

27 b=a

.tila(S)NC—eXp( Bls;

B

t+1 t+1 t+1 t+1
Set E .. st =X, var,.. [si"|=7%, Mean and variance of viti(s))
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Construction of AMP [Donoho’10-1]
Step lll: Take the limit f — co and get a thresholding function n()

for calculation of mean x;5; = E_t+1[s;].
1—-a
ZAJiztt)—)i _;t if Z A)i Ztt)—>i Z ;t
b=a b=a
as oo at At t —ft
Ev_m (Sit+1) ~ ’7(2 Abiztg—ﬂ;z- ) =1 Z'Abizg—n +7, If Z'Abizé—ﬂ -7

b=a b=a

0,

b=a ¢
otherwise / T

Soft thresholding

Step IV: With large N (M/N fixed) and thelst order-Taylor series
approx of n( ), AMP is obtained.

The mean-passing rule

|—>a - (Z 'Ablzb—n./\t 1]

b=a

aal ya Z Aajxjea

j#i

At-1
N

N T
T —N—5277

i=1

(a2

The AMP rule

j‘> 2 —y-Ax 422 (A2 e )




Summary of the fourth one

Sparse support detection is most crucial for signal recovery in CS.

We introduce a new detection-oriented belief propagation algorithm
for CS.

Show how much the proposed method is superior to conventional
estimation based approach.

AMP is considered a breakthrough, taking only O(M+N) computation,
and working for real- and complex-valued CS parity check problems.

Possible for application in ADCs, network codes, distributed
compression, radars, tomography, medical imaging, microscopes, ...



FIFTH ONE



Multiple Sensor Problems

“+» One more application on multiple sensor systems
— Correlated measurement: H(X,, X,) < H(X;)+H(X,).
— Slepian Wolf, Wyner-Ziv coding ~ distributed source coding and joint decoding.
— We aim at using sparse representation and achieve distributed source coding.

Sensor Node Fusion center -
o= ’F = Fusion

sensor | — : 2
My Modulation Joint 412 22 Modulation Center

;H\f n

o

o o/ o o J. o  Physical field

Sensor node array
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Multiple Measurement Vectors

Xs (I)‘

. N \with X... = min
x; € RY with X, o

1T T

niERM

wherei=1---,S

¢ MMV vs. EMMV

— The same support set for all sensors -- A new way to represent correlation.
— When all measurement matrices are the same, the EMMYV model is the MMV model.

¢ Our goal

— Is to jointly reconstruct the support set of each sparse vector, with the knowledge of the
sensing matrices

— Determine how many measurements M are needed as S scales up?
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A Joint Typical (JT) decoder[Leel2] [Leel3] -1

A decoder used in here is called joint typical (JT) decoder which explores
all possible subsets to find the correct support set.

It yields a set as decoded output, when all measurement vectors and all
measurement matrices are known. Namely,

JT decoder :{V, :(y,.F,)} — J,
where J < {L,---,N}and|J| =K.



A Joint Typical (JT) decoder[Leel2] [Leel3] - 2

If a following condition is satisfied for a set 7, then this set becomes the
output of the JT decoder

2

Zs:||Q(Fs,j)ys C(MK)od|
1 SM M
where Q(F):=1-FF", o, is the noise variance, 5 > 0 and F, , is constr

ucted by collecting column vectors of F, corresponding to indices of 7.



The probability of the failure event - 1

< Afailure event E(Dfgi1ure ) Of the JT decoder is

£ (Due) =E(Y. L8] U E(Y.7.9)

VY 7#1 | 72K

where E(Y, ) )C is an event where the JT decoder makes failure such that

the correct support set Z is not & — jointly typical with Y, E(Y,J # Z,5)is

an event where the JT decoder declares that an incorrect support set 7 is o
—jointly typical with Y.



The probability of the failure event — 2

%+ Owing to the union bound, we have

P{E(De )} SPIE(Y.Z,6) |+ Y P{E(Y,T.6)}

Y 7#1 | T]=K

<+ Obtaining the exact probabilities at the right hand side in the equation is
non-trivial.

“+ Thus, we deiced to obtain their upper bounds by using the Chernoff bound.



The probability of the failure event -3

2
2
/an.

< Then, it is readily seen that this random variable is a quadratic random
variable.

% Also, its mean, variance and moment generating functions are

Q(FS,I )ys

< Let us define a random variable by 7_ = Z;

M-K)/2

E[Z,]=S(M -K),V[Z,]=25(M -K), E[eXp(tZI)]z(l—zt)‘S(



The probability of the failure event - 4

“ Then, the following probability is bounded by

PIE(Y,Z,8) | =P{Z; <W}+P{Z; >W,}

@Z E[exp ) eXp(—tW ) (a) : the Chernoff bound.

=1 (W)

_Z—l t"W

where W, = S((M —K)+(-1) M&/o? ] i=12

<+ The function f(t;;W,) is convex with respect to t;.

% Thus, the optimal value t; is obtained by investigating the first derivative of
this function.



The probability of the failure event -5

“* Let the optimal values be

; These optimal values are obtained
)/2,i=12 P

ti* :(1_S(M _K)/W from ti*:argf(l)(ti;Wi):O.

% Then, we finally have

IP{ Y,Z,5) }<Z_1 (t. ,W) (a) : due to f (W, ) < f (G:W,).
(i)zf(tz,w)
S(M-K)
G I

<+ Similarly, an upper bound on the probability P{E(Y,.7,5)} for a given set 7
IS obtained.



The probability of the failure event — 6

<+ Then, the failure probability is given by

P{E(D e )} < P{E(YZ5)} J;\:{I}P{E(Y,j,(s)}

S(M-K)
(M-K)oZ+Ms | 2
gz( e ) exp( - 322
SM-K)
N[ (M-K)oZ+Ms | ° _ 8(M&~(M-K)xiin)
(K)((M_K)(xz. +02)j eXp( 2 ) )
=p(S.N.M,K,o%,%,.5)

_|_

n?'“min?

*» Detailed explanations are given in [Leel2][Leel3].



L)

A sufficient condition for infinite S [Leel3]

Theorem 1: M = Q(%Iog(N/K)+ K) Is sufficient to jointly reconstruct the
support set as N goes to infinity if x,, >MJ&/(M - K).

min

The above theorem suggests an inversion relation between M and S.

In [Hyder09], the authors empirically show that M Is decreased as S Is
Increased.

Thus, the theorem verifies this empirical result.

Note that similar relations are given in [Nehorai09][Raol3]. But, these
relations are made under more general conditions.



A sufficient condition for a finite S [Leel3]

“» Theorem 2: M > K s sufficient to jointly reconstruct the support set as S
goes to infinity if x7,, >M&/(M —K).

min

% The above theorem suggests that K + 1 measurements suffices to jointly
reconstruct the support set when S goes to infinity.

< In [Duartel3], the authors show that K + 1 measurements are sufficient to
jointly reconstruct the support set as well. But, these authors do not
consider the presence of noises.

It suggests that taking more measurements vectors reduces effects of noises.

*» Asimilar conclusion is given in [Raol13].



Summary of the fifth one

“* We have verified the empirical simulation results as reported in [Hyder09]
— Mis decreased as S is increased

— K+ 1 measurements suffices to jointly reconstruct the support set when S is suf
ficiently large.

< We have shown that taking more measurements vectors reduces effects of n
0ises.

— The sufficient condition given in Theorem 2 is accordance with that in
[Duartel3].

— Asimilar result is given in [Rao13]



SIXTH ONE



Recovery Bounds on Sparse Signals over Finite Fields

+¢» Research Goal

— Theoretical performance limits of compressive sensing problems over

finite fields

“» Approaches

— Upper and lower bounds on recovery performance using L, minimization
— Impact of sparseness of sensing matrices on recovery performance

-
X
\_

-

H
-

=

-

ot

y

—_—

LO
recovery

— where X is sparse, A is a sensing matrix, y is a measurement signal, Xis an

estimated signal.

System Model
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Compressed Sensing over Finite Fields

%+ The measured signal y is given by
y = AX.
<+ The elements of the sensing matrix are i.i.d.,

1-v a=0,

Pr{A =a}=
W =a3 {7/(q—1) a #0,
< The sparse signals x is randomly and uniformly selected form the set £

— L= U:lzlﬁkl , Where L, denotes the set of signals x of length N with sparsity
kl.



Probability of Error for L, Minimization

«» L0 Minimization decision,
(L) X=min||X||, subjectto AX=Yy,
“» The error event is for X # X

E (X X)={A: Ax=AX}

“ This error event is upper bounded as follows

&R,

“+ Probability of error averaged on all sparse signals X,

50 ‘= Uxeﬁgo (X’ )A() &= deUsz:AX:ng (X,X)

& (X, X)

t AX=y

“ Thus, dueto & <&, Pr{&}<Pr{&}



Upper Bounds on Probability of Error

Pr{SO}SPr{U U So(x,i)}

xeL XeL: AX=y ¢ (a): Union bound
(a)
<—ZZ Pr{A:Ax=AX|x|
| |Xe£Xe£ ..
X#X < (b): Partition of the set

:|£|ZZZ Pr{A AX = AX|X} < (c): The probability is identically the

xeLl h=1 XeL i
same with each other,
:|£|XZ£;(‘£ ‘Pr ) Pr{A:Ax:AX‘x}:Pr{Adh :0}
| L kz_lxé ;(‘L ‘Pr ) <+ (d): Collection of N, difference

vectors with the same Hamming

(d) 1 2K :
[:ﬁZNhPr{Adh:O}, ] weight




Upper Bounds on Probability of Error

Theorem 1 (Upper Bound) : For any sensing matrix with i.i.d. elements,

an upper bound of probability for L, recovery is given by

_ Nk K K, —t -
where Nh,kl,kzyt‘( t j(q_l) (kz—t](h—Zt—kﬁkz @=2r "



Upper Bounds on Probability of Error

“* When the sensing matrix is uniformly random, the upper bound is

Pr{€}< _| |Zth

= (| L£]-1)gq™
<Kg™ [Ej(q -1)"

logoK—-M log~g+NH,, (K/N)+Klo -1
<2 do g0 b (K/N) 9,(9-1)

Corollary 2 (Sufficient condition on M) : If the following holds,

 Jog K+ NH, (K /N)+Klog,(q-1)
log g

then Pr{&} >0 as N —> o



Lower Bounds on Probability of Error

“* Using the Fano’s inequality, the probability of error is lower bounded
H(xly,A)-1_ H(x)-H(y|A)-1
log,|[£ log, ||

Pr{&}>

— using H(y|A)<H(y)<MH(y,)<Mlogq=M

+¢» The lower bounds is

Prig,}>1- A *+1

~log, ||

Theorem 3 (Necessary condition on M). For a probability of error

arbitrarily small, the following
S NHb(K/N)+ K Iogz(q—l)—logz(N +1)
log,

IS a necessary condition.



Upper and Lower bounds

* Results 1 | - @Qﬁ'e'e_o
o
o b
0.8
<
=
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o
c
O
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o
S 0.4f
=
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y -@-q= Etthper,?=ﬂ-ﬂﬁﬂl
5 / — g = 4 (Lower)
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Sparsity ratio (K/N)

Lower (solid) bounds, and upper (dashed) bounds for N = 1000 with sparse
factors y =0.069
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Upper and Lower bounds

< Results 1
0.8}
z
=3
506
©
L -
Q
o
o 0.4}
o
=
(]
O
0.2 ~©-q =4 (Upper, y=0.014)
—é—q 4 (Upper , v= 0.021)
4 (Upper , y= 0.028)
0 —Erq 4 (Lower)

0 0.1 02 03 0.4 0.5
Sparsity ratio (K/N)

Lower bounds and upper bounds for N = 1000 with different sparse factors.
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Shannon’s CC Theorem vs. CS Theory

Shannon’s Channel Coding Theorem

¢ Rate=1- M/N

¢ “Rate < Capacity” IFF “A matrix F with R and P(e) - 0”

¢ |f Rate < Capacity, there exists a matrix F such that P(e) = 0.

¢ |f Rate < Capacity is not holding, P(e) cannot be 0.

Application to Compressed Sensing

¢ Channel ~ Discrete Memoryless Channel with error rate K/N
¢ Capacity of DMC is well known

e 1-M/N < Capacity - M/N> 1 — Capacity.

¢ For a matrix F with small P(e), M/N > 1 — Capacity

P(e) S 2_N[pcomp_(1_c):|



Summary

*** Novel information theoretic results
— Entropy of sparse signals
— Mutual information between signal and the measurement
— Led to Fano’s inequality

** Novel results on the number of measurements needed
over GF

— Simplified decoders
— Upper bounds
— Combinatorial analysis technique

*** New results on the density of sensing matrix
— To measure sparse signals, a sufficiently dense matrix is needed!



Sparse Representation based Classification
Method for Motor Imagery based BCI Syste
ms
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Agenda

¢ EEG based BCl system

**» Sparse Representation based Classification [Shin 2012 JNE]
— Introduction
— Motivation and purpose
— Methods
— Results
— summary

+¢* Evaluation of SRC method [current work]
— Motivation and purpose
— Methods
— Results
— Discussions
— Summary

‘:, Future WOrk Brain Computer Interface




EEG based BCls

Signal Processing

Feature Classification
Extraction

Output
(Commands)

Application Control

=  \/jsual —
Feedback

N 4"1!

BCl is a novel communication and control channel between person and external world.

BCls allow user-to-computer communication only using user’s intention or imagination instead
brain’s normal output pathways of peripheral nerves and muscle.

In the BCls, classification is needed to transform the extracted feature of a user’s intention into
a computer command to control the external device.

However, EEG signals are very noisy and have non-stationary characteristics. Therefore,
powerful signal processing methods are needed.

In this study we focus on BCI classification method.
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Sparse Representation based
Classification
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Sparse Representation (SR)

“* Recently, Sparse Representation has received a lot of attention in
signal processing and machine learning field.

“» The problem of SR is to find the most compact representation of a
signal in terms of linear combination of atoms in an over-complete
dictionary [Huang 2006].

43 ¥

yeRM A e RMN

Input Dictionary

Sparse coefficient
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Sparse representation for brain signal processing
[Yuanqing 2014]

¢ Blind source separation
— EEG signals can be considered as linear mixtures of unknown sources with an
unknown mixing matrix.

— The brain sources can be assumed to be sparse in a certain domain such as the
time or the time-frequency domain

— The true sources can be obtained through sparse representation-based BSS

— The mixing matrix is estimated using, e.g., a clustering algorithm.

Blind Source Separation

] - i

I l

EEG/MRI/ M'xmg Matrix
Neural Spike Estimated
Form Data

Sources

(a)
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Sparse representation for brain signal processing
[Yuanqing 2014]

** EEG inverse imaging

— The brain sources can be obtained and localized by sparse representation-
based EEG inverse imaging where the mixing matrix A is first estimated based
on a head model, and the brain sources are then separated and localized

ay
. = A Mg S
(I ‘ JIL 1] - ani
EEG Weights
jth Sensor
-
2 ay; 3 * < ith Source Sources
~ 1
’ ani



Sparse representation for brain signal processing

*¢» Feature selection and classification

— Sparse representation-based classification (SRC) can be conducted as shown
below [see Figure 1(d)].

— The target function is a test sample/feature vector and each column of the
data matrix is a training sample/feature vector of a certain class

— These problems in brain signal processing can be solved under the framework
of sparse representation.

Feature Selection/Classification

w
o

X = A s -

o

=

L]

| S— LE-
Target Signal/Feature Matrix %

Function (EEG/fMRI/Neural Spikes)

(d)
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Motivation and Purpose

Sparse representation can be used for a number of applications

Including noise reduction, source localization, and pattern recognition.

Recently, classification based on Sparse Representation has received

a lot of attention in face recognition and image processing [Wright 2009].

This SR based classification shows satisfactory classification

performance in many applications.

In this study, we firstly apply SR to the motor imagery based BCI

classification.

Using Mu and Beta rhythms as a feature of Ml BCI, we aim to develop

a new Sparse Representation based Classification (SRC) method.



* Five healthy subjects(average age = 22+6.85)

Data acquisition

e \We use two different datasets
— INFONET dataset

Right hand and left hand imaginations
16 EEG channels

80 trials per class

— Berlin dataset

BCl competition dataset (Data set IVa)
Five healthy subjects

Right hand and right foot imaginations
118 EEG channels

140 trials per class

Instruction Rest
0 1 2 4 5 6 7
i) [sec]
Cue
1.75~2.25
Instruction Rest

0 1 2 3 35 4 5 6

T [sec]
Cue
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Proposed SRC scheme

. Feature

| Preprocessing [~==jr==""""" N I SRC T
i Extraction i ]

1
! i 5
Training i: o CSP .| Band Power i .| Dictionary i
set Il Freq. | filtering [ ~| computation :i g design !
I} selection i i

1 1]
] 1 !
Band Pass h H _ :
filtering Ii \'2 ii Yy = AXx i
i i !
i y i v H
i CSP Band Power | 1] L1 L i
h > . > . 1T —> . »  Classification !
i filtering computation I min. H
i i i
e e e Lo e ] N

We use a band pass filtering as a preprocessing method.
We designed dictionary A using CSP filtering.

To use a mu rhythm as a BCI feature, we compute the power of mu
band.

To find coefficient vector x, we use the L1 minimization tool for test
signal y.
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Incoherent Dictionary

Left class Right class
|

A
[ | |

o T[T W  A=[A:Al
¢ | e o
Number of | i i i i Ai :[ail,aiz,---vaiN ]
CSPfiters | |+ ** * 1§ | | 5 S o .
.| | ; where, 1is class, N, is total trials
¢ | @
- | [ ' )
Band Power Number of
(8-15Hz) training trials

A L os
M (A, ,Ag)2 max{ (ayjark) | ik=12..., Nt}
M is the measure of mutual coherence of two component dictionaries; when
M is small, we say that the dictionary is incoherent .

The incoherent dictionary promotes the sparse representation of the test
signal under the L1 minimization [Donoho 2003].

We use the CSP filtering to design an incoherent dictionary.

When a dictionary is incoherent, a test signal from one particular class can
be predominantly represented by the columns of the same class.



Uncertainty Principle for Sparse
Representation

¢ In quantum mechanics, Heigenberg’s uncertainty principle (UP) state
s that the momentum and the position of a particle, say of an electr
on, cannot be simultaneously determined precisely.

Ap AX > h

** In sparse representation where the goodness lies in parsimonious re
presentation of a signal of interest, there is an UP as well.

¢ Suppose a signal x which can be represented by a basis A with sparsi
ty K, and by a basis B with sparsity K. That is,
— x=As,, the sparsity of s, is K,, and x = Bs, the sparsity of s; is K.
** Then,
1
KiKg ==, or (K,+Kg>2)

2

reSIE\)/\./here U= mla}x {Kai ,b; >

} and a; and b; are the columns of A and B

** A signal cannot be represented sparsely in both domains!



UP and L1 Recovery

*** Donoho-Stark in 89’ then suggested the use of a combined matrix, a
dictionary, and of the L1 min routine to represent the signal x:

(PD) Find the most sparse representation s,
given a signal x = Ds, using the dictionary D =[ A; B].

*¢* This will be useful when one does not know which basis is more sui
table for representing the signal.

¢ Using the UP, they show that
— |If ||s||os%, then the equation has the unigue solution (LO solution unique)

— If ||s||0§%[l+%j<% , then the L1 solution attains the exact solution.

*** These classic works done in 80s and 90s provides the foundation for
the Compressed Sensing theory.



CSP(Common Spatial Pattern) filtering

CSP filtering is a powerful signal processing technique suitable for EEG-
based BClIs [Blankertz 2008].

CSP filters maximize the variance of the spatially filtered signal for one
class while minimizing it for the other class.

The CSP filtering was used to produce high incoherence between the two
group of columns in the dictionary.

Using the CSP filter, we form maximally uncorrelated feature vectors
between the two classes.

6 0.6
| |
4 | 04 i
[ ]
2 %. 0.2
o® oo
0 : 0| 8 @ ® o
o O @
-2 ' L -0.2 L
- .
-4 -04 H
-6 -0.6
-4 -2 0 2 4 -04 -0.2 0 0.2 04
® Left WRight @ Left WRIight

[ before CSP filtering ] [ after CSP filtering |
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Sparse Representation and Classification

Coefficients

Test signal Band Power of Scalar
estsignal - cop filtered signal
y o A X
o] CEEEEE BEl
@% | | | |
). | o ff | | |
ol = |1 | | |
“Jright| | ® .l | | |
| | | | o
| ] |
O O L] |
0 T
First training Last training o
signal signal
[ ]
®

as the training signals of the right class.

the indices corresponding to the left class.

We use a minimum residual classification rule.

Classification

r(y)=|y-Ax|.i=L.R

If »(y)<rn(y), left class
else right class

The sparse representation can be solved by L1 minimization [Candes 2006].

For example, a test signal y of the right class can be sparsely represented

However, EEG signals are very noisy, nonzero coefficients may appear in
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Sparse representation results

“» EEG Sparse representation

Sparse representation of real EEG signals for one subject.

X-axis represents the number of total training trials (the number of
columns of dictionary A).

Y-axis represents the recovered coefficients x in Y = AX.

The class of the test trial was the right hand imagery.

The test signal of the right class is sparsely represented with several
training signals of the right class.
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Classification accuracy of INFONET dataset

SRC LDA
Accuracy [%] Accuracy [%]

95.63 93.13

63.75 61.87

68.14 67.50

80 76.25

71.25 68.12
75.75 (12.60) 73.37 (12.18)

e \We use 2 CSP filters out of 16.

e For all subjects, the accuracy of the proposed SRC is better than
conventional LDA method.
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Classification accuracy of Berlin dataset

SRC LDA
Accuracy [%] Accuracy [%]

98.93 96.43
100 97.14
95.71 95.36
97.86 94.64
91.79 87.86
96.85 (3.25) 94.29 (3.72)

e \We use 32 CSP filters out of 118.

¢ For all subjects, the accuracy of the proposed SRC is better than
conventional LDA method.
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Classification results

¢ Berlin dataset

— We examine classification accuracies of SRC and LDA as a function of
the number of CSP filters (feature dimensions) for each subject.

100% 100%
95% - 95%
90% = 900% /¥’
o\° / 2 1
> 85% > 85% ¢
7) 7
& E
8 80% 8 80% -
< <
o 75% o 7%
o o))
] : (]
o - o
g 70% g 70%
]
- i < —+—ay_src
65% fio ! L - I 65% S I S S S— -
—e—aa_src
60% 60% | | --+--ay_|da
aa lda
55% | | | 55% | » | | | , | |
2 12 22 32 42 52 62 2 12 22 32 42 52 62
Number of CSP filters Number of CSP filters
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Summary

We propose a sparse representation based classification (SRC)

method for the motor imagery based BCI system.

The SRC method needs a well-designed dictionary matrix made of a

given set of training data.

We use the CSP filtering to make the dictionary uncorrelated for two

different classes.

The SRC method is shown to provide better classification accuracy
than the LDA method.
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Compressive Sensing for Imaging
through turbid media



Compressive Sensing for Imaging through turbid

media

+ See object hidden under turbid media [Mosk2012]

— Turbid media: biological tissues, white paint
— It may become possible to have an early disease diagnosis with optical imaging

turbid CCD

object .
medium array

e

illumination

<+ Due to the multiple scattering, the outgoing object waves are spatially
scrambled and become a speckle field (SF) at an observation plane

< For image recovery, the multiple scattering should be suppressed; the
object image should be recovered
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Compressive Sensing for Imaging
through turbid media

The wave propagation is a time reversible (TR) process [Mosk2012],
[Yaqoob2008]

The multiple scattering in turbid media can be reversed by a TR operator

Phase conjugation (PC) is the monochromatic version of the TR operator
— A de facto standard method to date for imaging through turbid media

— PC compensates the phase variations due to multiple scattering in turbid
media by recording the SFs and back-propagating the complex conjugates of
them through the media so that the phase variations are cancelled; a
photorefractive crystal is used as a phase conjugate mirror.

Computational PC

— PC can be done virtually through computational estimation
* This requires the so called transmission matrix (TM) of the medium [Popoff2010]
* TM-based image recovery

— SFs are recorded at the CCD array and the recovery is made in digital signal
processing

— A number of advantages over the optical PC for it has an image data format
which is reproducible [Cui2010]



Compressive Sensing for Imaging through turbid

i

(k.. k)
ZnO Objective
Layer Lens
©  sp
I%
SLM:

*» TM acquisition: (a) and (b)

(b)

CCD
Array

media

((x,y;k, k)

(d)

T=[t.t, t, - t,]

y(x, )

y

(k,,

k)

SP: sample plane,
BS: beam splitter,
SB: sample beam,
RB: reference beam,
SLM: spatial light
modulator

— A collection of plane waves each with different incident angle is used as a basis
— The SF for each plane wave is obtained and stored as a column in TM

*» Object speckle field acquisition: (c) and (d)

— The object SF (OSF), which is the output SF of turbid medium with the object
wave, instead of the plane wave, is then obtained
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Compressive Sensing for Imaging
through turbid media

“**System model
y=Ta+n
wherey € C",a € C, n € CM are the vector
representations of y(x,y), a(k,, ky), n(x,y), and
each column of T € CM*V is the vector

representation of the for a given (kx, ky). Each
element of T is a CSCG random variable.



Compressive Sensing for Imaging
through turbid media

** The estimate by PC:
éPC =Ty
=T Ta+Tn

L/

“* PCis not good

— For correlated cases, each element of the estimated angular spectrum is contributed not only
from the angular spectrum element with the considered angle but also from those with the
other angles whose SFs are correlated to that with the considered angle.

— Thus, erroneous estimation is made even in noiseless cases.
— Note that turbid media do not provide orthogonal TMs for they have memory effects among
the SFs of the input waves whose incident angles are not separated enough [Freund 1988]
\/

“* It appears to have insufficient speckle suppression in the image recovered by PC
[Popoff2010]

— This requires an additional procedure such as temporal ensemble averaging over multiple
exposures

— In time-critical cases or in the case of imaging a moving object, its applicability can be limited



Compressive Sensing for Imaging
through turbid media

** CS framework is suitable for imaging through turbid media
— Compressibility
* Most natural object images are well approximated by only several
terms in the Fourier domain [Bruckstein2009].

* We see that the basis signals in TLI are plane waves with different
angles and the image is an angular spectrum in the Fourier domain

* Thus angular spectrum is expected to be well approximated by small
number of elements
— Isometry

* Checking the isometry of a matrix is a NP hard problem.

* But, the Gaussian distributed matrices are proven to have an optimal
isometry [Bruckstein2009], [Candes2011]
— Through the random walk analysis, it was found that the SF in the

transmission geometry is complex-valued Gaussian distributed provided that
the number of elementary contributions is large [Goodman1976]



Compressive Sensing for Imaging
through turbid media

**The SSE, an oracle-like estimation, can be made

by solving the following L1 norm minimization
problem [Bruckstein2009], [Candes2011]

&sse =argmin|a|, subjecttoy =Ta.
a

— The SSE aims to find the solution which has the
smallest number of nonzero elements, [|a||y, (with a
compact representation)

* This is NP hard problem

— But, the L1 norm minimization promotes the estimate
to be close to a compressible signal which has a
compact representation.

Jall, = 2_la]
|
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Compressive Sensing for Imaging
through turbid media

** Angular spectrum estimation

Conventional Sparse representation

(a) PC (b) PINV (c) SSE

Estimated angular spectra using (a) PC, (b) PINV, and (c) SSE, respectively. Here, M =
4389, N = 20000. All angular spectra are represented in log scale for better visibility.

*** Most error terms in the estimated angular spectrum by SSE are
reduced considerably
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** Image recovery

— Recovered amplitude
images averaged over
one, three, five, and
seven samples

— Cross sections of them
averaged over seven
samples

— Constrast-to-noise
ratios (CNRs) are
calculated in the
subsets (red arrow
lines) of the cross
sections.

* Here, M =4389, N =
20000 and K is less
than 147.

* Scale bar: 10 pm.

Conventional Sparse representation

(a) PC (b) PINV (c) SSE

. ~
VST o TV
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Cell-lmaging Thru Biological Tissue

Conventional Sparse representation

Fig. 5. Recovered quantitative phase images of a live cell averaged over one, three. five, and
seven samples using (a) PC, (b) PINV. and (c) SSE. respectively. Here. M = 696, N = 5000.
Color bar: phase in radians. Scale bar: 10 pm. 148
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Motivations of compressed sensing radar
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Surprising results of compressed sensing radar

<

< 7|E9| et H(matched filter) 7|8t 0| & A= 2| CHH = (B)0
oI5l 2| ol & = (range resolution,4r > ﬁ ,c~3x10%)7 €&

<o YA 718 Y O|G = d7|e] AZ| A& EE FI H= = AULCH=
A7t 230 [Strohmer09][Pi11][Ender10]

[Strohmer09] : A. Herman and Thomas Strohmer, “High-Resolution Radar via Compressed Sensing”, IEEE Trans.
On Signal Processing, 2009, 21- 83| : 4683]

2. [Pi11] : J. Xu and X. Pi, "Compressive Sensing in Radar high Resolution Range Imaging”, Journal of
Computational Information System, 2011, 21-82|%: 72|
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1. "our stylized compressed sensing radar which under appropriate conditions can “beat” the classical radar
uncertainty principle!”

2. "the benefit of employing compressed sensing recovery manifests itself as a dramatic increase in resolution.”
3. "Experimentally confirm that compressed sensing radar can achieve much higher resolution than traditional
techniques
Sl
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System model — sparse signal
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System model — sensing matrix
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Summary of compressed sensing radar

** Compressed sensing radar yields better resolutions that cannot be
achieved by matched filter radar

— It break out fundamental limits on the rage resolution of matched filter radar

Ar> S 3 x 108
r=5p'¢~

— where B is the bandwidth

*» A few papers analyzed the performance of compressed sensing radar

— It gives bounds on the number of Tx and Rx to achieve a proper resolution...

[Strohmer14] : Thomas Strohmer and Benjamin Friedlander, "Analysis of sparse MIMO radar”,
Applied and Computational Harmonic Analysis, 2014,



Compressed Sensing Channel
Estimation and Multi-user Detection
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Applications in Communication (1)

“* In the problem of channel estimation,

— Tx transmits its signal vector x to Rx through a multipath channel.

— The aim is to estimate an unknown channel impulse response based on the transmitted
signal vector x and the received signal vector y at Rx.

Multipath channel

Convolution Ng_ise _
\/ il Xi— f,, f,-- T, >(+) > V.
TX Rx M
yi = Z fmxi—m + ni
%+ The received signal vector is represented by i
i Y, ] _fM .o f, 0 . 0‘"Xl‘
0 f f 01| x
y= N L ] ]+
_yN—M_ i 0 0 fM fo _XN_




Applications in Communication (2)

%+ The received signal vector y can be represented by

Y1 XM 41 Xy e X, fO
y = y.z — XN[+2 XIV.| 1 X.2 .I.:]_ n
 Yaem | L XN Xaar 0 Xnow _fM_
éxec(NYM HM+) afecM1

% An unknown sparse channel impulse response vector f is estimated by

f =argmin|[f|, subject to||Xf -y| ’<e
f

%+ The following papers also consider channel estimation problems
— Ultra-wideband channel estimation based on compressed sensing [Wang07]
— An optimization of the pilot placement for sparse channel estimation in OFDM system
[Wull]

— To get the benefits such as small phases, low PAPR and low-rate sampling, a compressed
sensing framework for OFDM channel estimation was proposed in [Yul4]



Applications in Communication (3)

“* In the problem of multi-user detection,

The 1St user

The 2”0' user

Each user has its own signature vector.
The number of users sending its own signature to the base station is sparse.
The active users transmit their signatures with their messages to a base station.

The aim is to estimate the active users and their transmitted signals based on the received
vector y.

Base Station
(] EJ The N user

\g y=> xf+n=Fx+n
ieP

The received vector y at the base station is

x; 1S the message by the ith user.
f; is the signature vector by the it user.

/ P is an index set of active users.
n is the additive white Gaussian noise vector.
The (N-1)1 user



L)

Applications in Communication (4)

The active users and their messages are identified and estimated by solving

% =argmin x|, subject toly —Fx| ;<e.

Suppose that the ith coefficient of X is non-zero. Then,
— the ith user is active, and
— the nonzero coefficients is the transmitted message by the ith user.

The following papers also consider multi-user detection problems.
— Assimple on-off random multiuser detection was analyzed in [Goyal09]

— The hybrid method that combines the OMP algorithm and the LMMSE (linear minimum
mean square error) estimation was proposed in [Shim12]

Tanaka [Tanakal3] introduces communication applications based on compressed
sensing.
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COMPutational Compound EYE
(COMP-EYE) imaging system



Hemispherical Apposition Compound Eyes

** Implemented by stretchable microlens array and photodiodes

** Limitation: 180 pixels (16x16 photo diodes)

Compound eye camera

(a) Elastomeric
= Microlens array
L p( o Combine,
N\ stretch

SIS ) .
L o
’,: ‘o‘:".'::
e 53 AN
R RGNS
; & = Hemispherical
mpoun camera
Stretchable Compound eye
PD/BD array




Computational Compound EYE imaging system

“* Eyes in nature
— Camera-type eye vs. Compound eye

Camera-type Eye Compound Eye

lenses

s&condary pigment
cells

- Single lens system - Multi-lens system
- High resolution - Wide field of view (FOV),
- Pattern recognition Infinite depth of field (DOF)

- Motion detection

“* Due to diffraction limit and low density of photoreceptors, the resolution of
compound eyes is limited.
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Computational Compound EYE imaging system
< COMP-EYE

— We aim to improve the resolution of the compound eye imaging system
by designing larger acceptance angles of ommatidia and using a digital
signal processing (DSP) technique

— Larger acceptance angles enable each ommatidium to observe multiple
pieces of information all at once.

— Each piece of information is observed multiple times by multiple
ommatida each with different perspectives.

— By exploiting this, the DSP technique recovers the object image with
high resolution.

L)

Conventional System

Computational Compound Eye
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Computational Compound EYE imaging system

¢ . .
** Simulation results
— M=80 x 80 ommatidia, N= 160 x 160 pixels

Conventional Compound Eye Computational Compound Eye
Ap = 60°

4 times
Resolution
Improvement !

Observed Image Observed Image  Recovered Image



Sub-Nyquist Sampling/Xampling
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Modulated Wideband Converter(MW(C) [Eldar10]
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