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강의 요지 및 방향 

 올 해 강의는 2014년에 이어
Seeing through Computation 
(StC) 부제로 진행하고자 합니
다. 
 

 전 세계적 연구동향을 살펴 보
니 Breakthrough에 해당하는 
StC 결과가 많이 나왔습니다. 
 

 StC 의 여러 예를 들고 연구자들
의 주의를 환기 시키고, 정보, 
통신, 신호처리 이론, 전기전자 
기초 이론 교육의 중요성을  강
조하고자 합니다.  
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 Compressed sensing (CS)  

– New signal acquisition techniques [Donoho06], 
cited >4000 times. 

– MIT 2007 Tech Review, “Top 10 Emerging 
Technologies” 

 CS is to find sparse solution from an under-
determined linear system. 

– Real, complex field 

 Many application areas: Cameras, Medical 
Scanners, ADCs, Radars, … 
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전세계적 연구 동향 

 (압축센싱이란) 2006년 정보이론과 신호처리 분야에 소개된 압
축센싱이론은 응용 측면에서 한 마디로 요약하면 ‘영상 및 음성 
등의 자연신호를 압축적으로 센싱(Encoding) 할 수 있으며, 그렇
게 했을 때 적은 량의 측정샘플 만으로도 신호를 복원(Decoding)
할 수 있다’ 정도로 표현 할 수 있음.  
– 2008 Rice대학 Single-Pixel Camera, 단 한 개의 포토센서로 영상을 압

축하고 복원할 수 있음 시연하고 이론의 실제성 입증. 

 
 압축적 샘플링(Encoding)과 신호 복원(Decoding) 문제는 하나의 

간단한 연립방정식 y = Ax 으로 표현 가능함.  
– A ~ M x N 측정행렬이라 칭함.  
– M<N 일 때 압축이 일어남.  

 

 신호복원은 측정행렬 A를 알고 있는 상황에서, y 로부터 x를 찾
아내는, 즉 역문제를 푸는 문제임. 
 

 이 역문제가 잘 풀리는 경우는? 5 



혁신 기술 출현 

 (혁신기술 출현) 압축센싱은 또한 “적은 수의 센서로도” 혹은 “짧
은 시간 동안의 측정으로도” 신호를 높은 해상도로 복원하는데
에도 응용 가능함이 밝혀졌음.  
 

 레이더, fMRI, 현미경등 영상장치들은 신호가 센서에 도달하기
까지 어떻게 변화하는지를 나타내는 광물리학적 전달 함수가 
잘 알려져 있는데, 이 점을 사용하여 Decoding에 필요한 측정행
렬 A를 만들어내고, Diffraction Limit등을 돌파하는 초 고해상도 
신호복원이 가능함이 알려짐.  
 

 이런 응용연구 결과의 발표는, 2010년 전후로부터 현재까지 지
속적으로 이루어지고 있으며, 초 고해상도 레이더, 초 광대역 신
호 측정, 촬영시간이 크게 단축된 fMRI 머신, 초 고해상도 현미경 
등의 혁신 기술의 출현을 가능케 하고 있음. 
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Sparse Representation 

 압축센싱분야에서 개발된 Decoder 알고리즘은 또한 신호를 희소하게 
표현 하는 방법 (Sparse Representation) 으로도 응용되어 왔음.  
 

 즉, 신호의 고유정보를 잃지 않고 신호의 Dimensionality를 크게 
Reduction 하는 방법으로 쓰이고 있음. 
 

 나아가, 신호를 알려진 몇 가지의 클래스로 구분하는데 뛰어난 성능을 
보임이 보고됨.  
 

 CCTV 카메라에 찍힌 사람의 이상 행동 양식 구분, 사람의 얼굴 검색 등 
Big Data 처리 및 분석 등에도 Sparse Representation Classification이라는 
이름으로 응용되고 있음.  
 

 한 예로, 사용자의 뇌파 신호를 구분하여 컴퓨터 명령을 내릴 수 있는 
Brain-Computer Interface 용 분류알고리즘을 들 수 있음. 
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Focus Areas in this talk 
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Encoding 연구의 혁신성 

압축센싱의 Encoding 문제는 아날로그 신호 x(t)를 아날
로그 도메인 상에서 압축적으로 샘플링하여 디지털 샘
플 벡터 y를 얻는 전기/전자/재료 공학적 장치를 만들어 
내야하는 문제임.  
 

다시 말해, 압축센싱이론 논문에서 흔히 다루는, 이미 디
지털 샘플링이 완료된 신호 벡터 x를 측정행렬 A와 곱하
여 y를 얻는 것은 Encoding 문제가 아님.  
 

아날로그 도메인에서 연속적인 신호 x(t)를 랜덤한 반응
패턴을 가진 함수와 곱하고, 그 결과를 더해서 샘플을 취
하는 장치를 만드는 연구 및 실제 구현이 혁신적 성과를 
내기 위해 꼭 필요함.  
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Decoding 연구 지속의 중요성 

많은 Decoder가 현재 개발 되었음 

– Gaussian, FFT, Bernoulli 센싱등 문제가 수학적으
로 잘 알려진 형태 일 때 

 

 특정 문제에 특화된 Decoder 개발 필요 함 

– Photonics, Spectrometers, Electronic Eyes, … 

– Non negative signal sensing 

– No general sensing matrices 
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FUNDAMENTAL QUESTIONS ON 
DECODING PROBLEM 
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Shannon’s Sampling Theorem 
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Shannon Nyquist Sampling Theorem 
 Consider taking samples of continuous time signal. 

 

 The Sampling Theorem: Any band-limited signals can be represented 
with the uniform spaced samples taken at a rate greater than twice 
the max. frequency of the signal. 

 

 Proof:  A train of impulses is a train of impulses in frequency 

   k=-1
1 d(t-kTs) , fs n=-1

1 d(f – n fs) 

  where fs = 1/Ts  
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Shannon 1948 paper 
Theorem 13: Let f(t) contain no frequency 

over W. Then, 
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F.T. vs. Discrete Fourier Transform 

 Now, consider taking samples of a frequency spectrum at every fp in 
the frequency-domain. 

 Thus, in both domains we have periodic and sampled signals. 

 Suppose choosing Tp/Ts = TpW=N, an integer.  

 Then there are N distinct samples (in each domain). 

 The discrete samples of the signal x(k), k=0, 1, 2, …, N-1. 

 The discrete samples of the Fourier spectrum X(n), n = 0, 1, 2, …, 
N-1.  
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Discrete Fourier Transform 

DFT  

  X(k) = n=0
N-1 x(n) e-j (2/N) n k  X = Fx 

Inverse DFT 

  x(n) = 1/N  k=0
N-1 X(k) ej(2/N) n k 

 x = F’X 

 

 Using DFT, one can represent the time domain 
sequence x with the frequency domain sequence X. 

 

Note that in both domains, we have N signal samples. 
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What given so far 

Are covered in Systems and Signals in 
Electrical Engineering… 

 

 

Let’s now move on to the issue of 
Compressive Sensing 

17 



Sparse Signals, Recovery with L1 
Norm Minimization 
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Sparse Signals 

  Now suppose that the signal x is K-sparse.   
– Only K elements of x are non-zero (K << N) 
 

 
 
 
 
 
 

 
The Big Question: Do we still need all N uniform spaced Fourier samples to represent 

the signal after  knowing that it is sparse? 
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These guys say there is a better way to 
represent the sparse signal! 
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M<N is good enough! 

 DFT again: 
  X(k) = 1/N  n=0

N-1 x(n) e-j(2/N) n k                           for all k = 0,1,2, …, N-1  
 
  X = Fx 
 
 We know x is sparse. Then,  

 
 Taking only several Fourier l.p. measurements of x is good enough : 
  y(m) = 1/N n=0

N-1 x(n) e-j (2/N) n m  
   = <x, m-th tone> for m=1, 2, …, M 
 where M is the total number of measurements. 
 
 We let  y = FMx  be a subset of Fourier coefficients of signal x,  
 where size of the subset is M < N.  
 
 

 M rather than N Fourier samples are good enough to represent x!  
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L1 norm?  
 The L-p norm of x is defined for 

p>0  
 
 

 
 The L0 norm is not well defined 

as a norm.  
– Donoho uses it as a “norm” whi

ch counts the number of non-z
ero elements in a vector.  

 
 Let                       and 
      Which one is bigger? 

– L0 sense 
– L1 sense 
– L2 sense 
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L1 vs. L2 Solution 
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L2 ball 

 : x F x y

L1 ball 

L1 min = L0 min 
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arg min '   s.t. x x y Fx 

L2 is not suitable but L1 is 
when the exact solution is sparse. 



L2 vs. L1 solutions 

 L2 solution has ener
gy spread out to eve
rywhere. 

 

 L1 solution attains t
he sparse signal. 
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Good vs. Bad 

  When the hyperplane cuts through the L1 ball, L1 min 
does not attain the L0 min.  
 

We aim to make        so that the bad does not occur 
(often).  
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“Uniform Uncertainty Principle” 
[Candes, Tao 06] 

 If                ,  then for any K-sparse signal x, the 
following inequality holds with probability 
close to 1, 

 

 

 

For the Fourier matrix, the bad case won’t 
happen frequently if  
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Basic Decoding Problem 

 How many number of measurements M is required for 
successful recovery? 

 

 (P0) A K-sparse signal x can be recovered using the exhaustive 
search (L0 min search) [Theorem 1.1, CRT 06].  
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Key CS Results (2) 

 As long as the solution is unique, a search algorithm can find it 
exactly. 

 

 Proof: Suppose two K-sparse solutions x, x’. Then, we have 

 

 

 

 

 This map is injective. Thus, RHS can’t be zero unless (x-x’)=0.   

28 

( ') 0 F  x x

An M dimensional map A vector of dimension <=2K 



Canonical CS Results (3) 
 There are NCK different ways to choose a set of K columns that 

accounts for the observation y. 

 The complexity of L0 min search is 

 

 

  (P1) A relaxed approach is L1 minimization:  
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When the support set is known 

 Decoding is easy!! 
– as long as 2K columns ~ linearly independent 

 If any 2K selections of columns of A ~ lin. Ind., the solution 
is unique. 

 Spark of A = the size of the smallest subset of columns of A 
that are l.d.  
–  예: Spark of A = 5.  
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Spark of Sensing Matrix 

 It determines how good the sensing matrix is 
in a fundamental way. 

Suppose an A with Spark = 5. 

Then, any 2-sparse signal can be uniquely 
transformed into y.  

This means an exhaustive search (L0 decoding) 
will give perfect recovery.  

Note that M>=Spark-1 (Singleton bound)  
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Loose Thoughts on the Number of 
Measurements 

 Suppose random A  
Total number of support 

sets  ~ 2^M 
M ~ K log N/K 
A measurement is either 

zero or non-zero. 
A zero measurement ~ 

useless 
A non-zero measurement 

~ useful measurement 
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L1 Minimization Algorithms 
 Linear program!  
 Basis Pursuit (Chen, Donoho, Saunders 

95’) 

 
 

 Recast as an LP 
 
 
 
 
 
 
 

 
 

 
– There are many ways to solve 

this LP problem.  

– L1 magic (Candes-Romberg) 
– CVX (Boyd-Vandenberghe) 
– SparseLab 
– Many others at RICE CS reposi

tory 
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 Basic approach 

1. Write the KKT equation 

2. Linearize it (Newton’s method) 

3. Solve for a step direction  

4. Adjust the step size (stay interior :                  ) 

5. Iterate until convergence   

1
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L1 Minimization Algorithms (2) 
 The LP approach is to build the sp

arse solution from an initial guess 
which is dense.  

– O(N3) 

 If the exact solution is known to b
e sparse, why don’t we start from 
a null set and build up a sparse sol
ution? 

 Homotopy [Donoho-Tsaig08’] 

 

 

– The correct solution is approached 
when lambda gets smaller.  

– Osborne et al.  

– Tibshirani’s LASSO 

 K-step property: Algorimthm fi
nds the solution in K-step if  
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 Algorithm 

1. Given F and y = Fx, set x1 = 0. 

2. Find residual correlation, 

3. Determine the step direction and size  

4. Update the active set, sol. estimate xj and the 

step size. 

5. Stop when the residual correlation is zero; 

otherwise repeat 2 – 4.  

 T

j jc F y Fx 

2
1
2 12

min  + 
x

y Ax x



Compressed Sensing Narrative 
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Compressed Sensing Narrative 
 Any natural signal x can be sparsely represented in a certain basis: 

 
 A sparse signal can be compactly described via a linear transformation: 

 
 

 Possible linear transformation matrices for F are many, including 
– Randomly selected rows of the F.T. matrix 
– i.i.d. Gaussian ~ N(0, 1/M) 
– i.i.d. Bernoulli {+1, -1} 

 

 The L1 minimization recovers the signal x perfectly with probability close t
o 1 as long as the number of measurements are sufficiently large, 

 

 
– Where the oversampling factor is  
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Key Ingredients in CS Theory 
 Incoherence between F and B 

– It is desired to select an F so that it is incoherent to B (imagine the con
sequence of the opposite case.) 

– Thus, F is usually constructed with the random Gaussian matrix since t
he statistical property of FB remains the same as that of F when B is un
itary (orthogonal). 

 
 Restricted Isometry Property (RIP): Candes and Tao define that the K

-restricted isometry constant  of the sensing matrix  is the smallest 
quantity such that  

 
    
for any K-sparse vector v sharing the same K nonzero entries as the K-                    
sparse signal x.  

– If a small             exists, then Fx should behave like a unitary transformat
ion (i.e., y and x are one-to-one) 

– If               then L0 solution is unique. 
– If                     ,  then L1 solution attains the L0 solution. 
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Key Ingredients in CS Theory 
 RIP is useful for large deviation results as well. 

– Another way to write RIP is : 
 

– Then, one can ask for the probability that a sensing matrix F selected 
randomly from an ensemble of M x N matrices (say i.i.d. Gaussian) to 
have a given RIP constant    . 

– This gives a large deviation analysis which then leads to the 
probabilistic statement of the following form:  for any 𝐾−sparse 𝑥 

 
 
 Stable recovery of L1 minimization. 

– Signals are not exactly sparse (model mismatch). 
– Observations are noisy. 
– L1 recovery provides stable recovery results. 
– The model mismatch and observation noise do not pathologically add i

n L1 recovery. 
– L1 recovery results are not much worse than the model mismatch and 

observation errors. 
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Recasting CS to Channel Coding 
Theory context 
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Compressive Sensing 

CS Basic Equation 

   y = F x  

 

 

How to design F? 

How to recover x, fast and robust? 
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Recast of CS in Channel Coding Context 

 Group testing done during the 2nd World War in the US 
– Do not want to call up syphilitic man for service. 
– Do not want to test out all men’s blood samples either 
– What to do? 
– Group test 

• Index the blood samples of each man, i=1, 2, …, N. 
• Add blood samples of randomly selected men and test them, M tests. 
• Solve the under-determined set of equations and find all the syphilitic men.  

 
 y is called Syndrome. 
 F is a parity-check matrix. 

– A K-error correcting code if SPARK(F)=2K + 1. 
– Any K-error patterns can be found and corrected. 41 

3

6

1

2

3

0
0

0

0

100110

010101

001011

x

x

y

y

y

    
    

     
           



Channel Codes 

 Purpose: Add redundancy symbols and offer error-protection 
 

 Message: m 
 

 Codeword: c = Gm 
– Generator matrix G 

 

 Encoding: c = Gm  
 

 Channel output: z = c + x  (x is the channel errors) 
 

 Decoding: find F where FG=0 
– Apply F to z:                               Fz = FGm + Fx = Fx 
– What’s left is   y=Fx 
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Example of a Channel Code in GF(2) 

  Let 
 
 

 Using FG = 0, find F =  
 
 

 Note that SPARK(F) = the size of the smallest subset of columns of F that 
are l.d. = 3 = dmin. 
– The example is a single error correcting code  
                  = Every single error pattern can be detected  
                  = All 1-spase signal can be recovered using F.  
– SPARK <= M+1                 (The singleton bound) 

 

 Note that UUP is met for F. 
– For all 1-spare signal x, Fx is non-zero. 
– M = 3 > 2K = 2. 
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When SPARK is defined  
for real valued matrix, and  
dmin is  for binary field.  
Then, SPARK >= dmin 

See [Lui13] 



LDPC Code/Bipartite Graph 
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M/N = 6/9 
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An LDPC code 
that was 
shown to 
achieve  
the  
Shannon 
Limit! 
 
 
Make the 
matrix sparse! 



Probabilistic Method: GF(2) 
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+ + + + + + Pr(S|x1=0) = Pr(S1|x1=0) Pr(S4|x1=0) 

x1 x2 x3 x4 x5 x6 x7 x8 x9 

   
1 4 7 5 9

4,1 7,1 4,1 7,1 5,1 9,1 5,1 9,1

( | 1, ) Pr{odd # of 1s in  and } Pr{odd # of 1s in  and }

                        = (1 ) (1 ) (1 ) (1 )

P S x x x x x

p p p p p p p p

  

      

y

𝑝2,1 𝑝3,1 𝑝4,1 𝑝1,1 𝑝6,1 𝑝7,1 𝑝8,1 𝑝5,1 𝑝9,1 𝑝i,1 ≔ Pr⁡{𝑥𝑖 = 1} 



Let’s do this problem 
 Determine the pdf at x1 

given the pdfs at x4, x7, x5, 
x9 and y.  

 Find the pdf at x1 
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+ + + + + + 

x1 x2 x3 x4 x5 x6 x7 x8 x9 

1.0 

2.0 

1.0 -1.0 -2.0 
-3.0 

1.0 

-1.0 2.0 

-2  -1  0   1  2  

1/5 



Let’s do this problem (2) 
 Determine the pdf at x1 given the pdfs at x4, x7, 

x5, x9 and y.  
 How to find pdf at x1 

 An example at x1 at -2 

 
 Via the first check (1.0 = 2x1 – x4 – 2x7) 

P(S|x1 = -2, y1=1.0) = P(1.0 = -4 – x4 – 2x7) = P(5= – x4 – 2x7) = 
sum_x4 P(5= – x4 – 2x7) = 1/5{P(5 = 2 – 2x7) + P(5 = 1 – 2x7) + 
P(5 = 0 – 2x7) + P(5 = -1– 2x7) + P(5 = -2 – 2x7)} 
      = 1/5{P(x7 = -3/2) + P(x7 = -4/2)+ P(x7=-5/2) + P(x7=-6/2) + 
P(x7=-7/2) = 1/5(0+1/5+0+0+0) = 1/25 

 Via the 4th check (2.0 = x1 + x5 – 3x9) 
P(S|x1 = -2, y4=2.0) = P(2 = -2 + x5 – 2x9) 
= P(4=x5 – 2x9) 
= sum_x5 P[x9 = (x5-4)/2] 
= 1/5{P[x9 = -6/2]+P[x9 = -5/2]+ 
P[x9 = -4/2]+P[x9 = -3/2]+P[x9 = -2/2]} 
= 1/5{0+0+1/5+0+1/5} = 2/25 

 Combine the two P(S|x1 = -2, y) = (1/25)*(2/25) 
 

 Further examples at other points in x1 is straight 
forward ~ the product of the convolutions of 
two pdfs 
 

 Pdfs of other variables can be similarly obtained 
47 
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x1 x2 x3 x4 x5 x6 x7 x8 x9 

1.0 

2.0 

1.0 -1.0 -2.0 
-3.0 
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-1.0 2.0 

-2  -1  0   1  2  

1/5 

Leads to BHT and AMP 
(The 4th Discussion in this presentation) 



Reed Solomon Codes 

 Design of (N, NR, K) RS code 
– Selecting the 2K consecutive n-

th root of unity as the roots of 
the generator polynomial g(x). 

– The resulting syndrome equation 
is Vandermonde system 

• Spark = 2K +1 
• Achieves the Singleton bound (ma

x. spark for given N and code rate 
R.  

 
 Decoding is done in 2 step  

– Error locator polynomial 
– Over determined matrix 

inversion 
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Are you now being convinced to witness 
the relation between the compressed 
sensing and channel coding theory? 

 

Let us discuss some specific examples. 
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Several Examples 
 

1. Prony method [Prony1795] 

2. Eigenvalue distribution of Gram matrix and RIP 

3. Super-Resolution 

4. Support set detection using hypothesis testing on belief propagation 
results  

5. Number of measurements needed in multiple correlated 
measurement cases  

6. Sparse vs. dense matrices for compressed sensing over GF 

7. Brain Computer Interface with EEG and SR Classification 

8. Turbid lens imaging, Communications Problems, Radars, Comp-
Eyes, X-ampling 
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FIRST ONE 
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Gaspard Clair François Marie Riche de Prony 
(July 22, 1755 - July 29, 1839) 

http://en.wikipedia.org/wiki/File:Gaspard_de_Prony.jpg


Prony’s Method [1795] in CS framework 

 Classical Prony’s method can be cast into CS framework [Vetterli07] 

 

 The signal model in Prony’s method consists of linear combination of K ex

ponentials with unknown amplitudes {𝑐𝑖} 

 

 

 

 Given {𝑦𝑚}⁡, our aim is to find the unknowns  non-zero coefficients{𝑐𝑖
𝑝
}   

and its locations{𝑖𝑝}.  

 

 The above equation is similar to CS system with K non-zeros values {𝑐𝑖}, 

which can be written in matrix-vector form as  𝑦 = 𝑉𝑐. 

 

 The Vandermonde matrix V, which acts a sensing matrix, is known at the 

recovery point.  
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Prony’s Method Contd. 
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 Prony gave a solution to find the unknowns in 1795 called the annihilation 

filter method.  

– Annihilation filter is a sequence which when convolved with a given sequence 

results in zero always. It can be constructed for the measurement {𝑦𝑚}⁡as well. 

 

 Call {ℎ𝑚} the filter with Z-transform  

 

– {𝑢𝑖} are called (zeros) roots of the filter, that is, 

 

 If the roots of the filter are the same as K exponentials that constitute {𝑦𝑚}, 
then                    , i.e.,  
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 Given {𝑦𝑚} how to find an annihilation filter {ℎ𝑚}? 
 

 What we need is                        , which can be written as 
 
 
 
 
 
 
 
 
 

Let m = K here. 
 
 
 

 If at least 2K + 1 values of y are available, then the above system admits a solution 
when rank(Y)=K 
 

 Taking  ℎ0= 1, the above system can be solved for {ℎ1, …, ℎ𝐾−1}. 
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Prony’s Method Contd. 
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 Given the coefficients {1, ℎ1, …, ℎ𝐾−1}, we can get the unknown 
locations {𝑖𝑝} by polynomial root finding [Vetterli02]. 
 

 That is, by finding the zeros of the filter 𝐻(𝑧  as {ℎ0, ℎ1, …, ℎ𝐾−1} a
nd {𝑢𝑖

𝑝
} are related by 

 
 
 
 
 
 

  Polynomial rooting can be done in              operations. 
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Prony’s Method Contd. 
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 K non-zeros values {𝑐𝑖} can then be obtained by solving linear system of equati
ons (Classic Vandermonde system)   

 

 

 

 

 

 

 

 

 The above system has the unique solution when 𝑢𝑝⁡ ≠ 𝑢𝑞⁡, for 𝑝 ≠ 𝑞.  

 

 In summary, by using Prony’s method, only 2K +1 measurements are needed t
o decode a K-sparse signal.  
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Prony’s Method Contd. 

0

0 1 1 1

0 1 1 1

0

1

1 1 1

1

1 1 1

K

K K

i

i i i i

K K K

Ki i i i

c y

u u u c y

yu u u c



 

  



    
    
        
    
       



Summary 

Sensing a real-valued sparse signal with the 
Vandermonde system is very good.  

This method gives the best performance with 
the least number of measurements, M > 2K.  

 This works for real valued unknown sparse 
signal.  

 The recovery process of sparse signal is 
similar to RS decoder.  
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SECOND ONE 
 
 

Eigenvalue distribution 
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Eigenvalue in Compressive Sensing 

60 

 In CS, restricted isometry constant (RIC) of a sensing matrix has an 
intriguing connection to the eigenvalues 

 

 RIC of a sensing matrix measures the goodness of the matrix for 
sensing and recovery of sparse signals 

 
 
 
 

        denotes the support set  

 

 We can say probabilistic statements about the RIC      if we know the 
eigenvalues of the          matrix  

 

 Aim: To derive novel, tractable eigenvalue distributions 
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Wishart Matrices and RIP 
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When 𝐹⁡is an           Gaussian matrix, 𝐹𝑇𝐹 is a Wishart matrix 

(popular in multivariate statistics and MIMO communications) 

 

  We derive the extreme eigenvalue distributions             and           

of the Wishart matrix from the joint distribution       of the 

eigenvalues: 
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Maximum and Minimum Eigenvalues 

 Maximum eigenvalue is obtained by  

 

 
 Minimum eigenvalue is obtained by 

 

 
 After substituting the joint distribution in the above expressions, we 

follow two key steps: 

1. Expansion of the Vandermonde determinant along the desired 
eigenvalue.  

2. Multiple integration of sub-determinants using the theory of sk
ew-symmetric matrices.  
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Maximum and Minimum Eigenvalues 

 Maximum eigenvalue distribution 

 

 

– PF is a Pfaffian of skew-symmetric matrix (                 )  

–   

– The (i,j)th entry of       for odd K is  

 

 

 

 Minimum eigenvalue distribution 
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Plots of Eigenvalues 
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  Simulation set-up 

           K = 51 ,    M = 300, 500 and 700 

 

 

 

Minimum eigenvalue of Wishart matrix Maximum eigenvalue of Wishart matrix 
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Role of RIC in Compressive Sensing 

 A sensing matrix with a good RIC is deemed good for sensing and 

reconstruction of sparse signals 

 

 If  a sensing matrix F satisfies the RIP 

 

 

       with             , then F is said to satisfy RIP of order K. 

  

  We aim to state RIP of order K using eigenvalues 
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Eigenvalue in Undersampling Analysis 

 Since  

 

 

     the RIC can be related to minimum eigenvalue as     

 

 

  We say that a matrix F satisfies the RIP of order K if 

 

 

      and we call such matrix a well-conditioned matrix   

   
2

min max2
.T T

F
F F F F  

K K

K K K K

K

x

x

 min1 min T

K F Fd  K K
K

  minPr min 1TF F a   K K
K



67 

Probability of Well-Conditioned Matrix 
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Under-sampling Analysis 

 Undersampling analysis :  Aims to find the minimum number of  

measurements needed by using a matrix with a specific RIC:            . 

 

 For OMP,  [Davenport10] advised that a matrix with                 is 

good for sparse signal recovery.  

 

 

 

 As  

 

 Thus,                 are sufficient for a 
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Summary 
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We have derived new eigenvalue distributions of Wishart matri
ces 

 

 Our distributions are exact, compact and  are useful for the eig
envalue analysis of small and large systems  

 

We have related the RIC of a sensing matrix to its eigenvalues 
for the purpose of undersampling analysis 

  

We have shown that for every RIC condition there exists a thre
shold above which finding a Gaussian matrix is easy. 
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THIRD ONE 
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Compressive Spectrometers for Super Resolution 

State-of-the art portable spectrometers 

 Spectrometer:  Used to find the spectrum of an optical signal 

 

 It takes in the light, breaks it into its spectral components, and displays them in 
a portable device such as smart phones. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 The ability of the spectrometer in  revealing fine information is determined by its 
“Resolution” 

  Problem: Resolution is limited by the number of filters 
 

Air quality monitoring in oil spills Biomedical DNA detection 

Applications 

 Analysis of Behavior of Chemicals 
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Compressive spectrometers Contd. 

 How to improve the resolution for a fixed set of filters in a spectrometer? 
 

 Solution: Compressive Spectrometers!!!  
 

 Innovations 
 

 Spectrum acquisition using  random filters design (using thin-films) [Lee13s] 
 Analog domain acquisition (Our design is first of a kind) 
 A set of M  filers with good auto and cross covariance 
 

 Spectrum reconstruction using a new L1 algorithm [Lee12s] 
 

 We model the spectrometer output as underdetermined linear system y=Dx 
 

 The matrix D is transmittance matrix is determined from the filter manufact
uring process  

– MEMS, non-ideal filters (conventional) 
– Thin-film, random filters (our method) 
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Various Transmittance Functions 
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Conventional  
Design 
 
1. Stringent 

filter design 
2. Local 

sampling 

Our approach 
 
1. Ease of filter 

design  
2. Holistic sampling 



Digital Vs. Analog-design-first Approach 

  How to design random transmittances, analog or digital?  Analog is the 
answer!   
 
 
 
 
 
 
 
 
 
 
 
 
 

 Digital filter design first approach 
• May not preserve the auto-covariance function (ACF) 
• May result in a random structure that cannot  be implemented via analog designs 
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Mercury lamp spectral lines estimation 

 The least separation among the 7 mercury spectral lines (Fig. (a)) is 2.106 

nm ( which is between the wavelengths 576.959 nm and 579.065 nm).  

 Thin-film filter based spectrometer resolves the least separated spectral 

lines (Fig. c ). 

 Where as the MEMS based non-ideal filters cannot resolve even the 

dominant spectral lines (Fig. (b)). 

 Resolution limit = 10nm, whereas compressive spectrometer achieves 0.99

nm, 10 times better!!! 
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Summary 

 신호처리로 hardware의 단점을 보완하는 
시스템 개발 Needs가 증가 함. 

 좋은 신호 처리 알고리즘을 사용하여 센서 
및 센서 시스템을 간단하면서도 정확하게 
작동할 수 있게 할 수 있음. 

 Lensfree camera, single pixel camera등의 
application 등 이 있음. 
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Future works 
 Implementing random filters with thin-film technology varying thickness 

and reflective indices 

 Ultimate Goal: Smartphone attachable high resolution spectrometers and 
microscopes 
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FOURTH ONE 
 
J. KANG, HEUNG-NO LEE, K. KIM, “PHASE TRANSITION ANALYSIS OF SPARSE SUPPORT DETECTION FROM NOISY 

MEASUREMENTS, HTTP://ARXIV.ORG/ABS/1303.6388/.   
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Message Passing: 
State, Value, Matrix, Observation 
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s0 x0 

s1 x1 

s2 x2 

s3 x3 

s4 x4 

s5 x5 

s6 x6 

s7 x7 

+   

+ 

+  

+ 

y0 

y2 

y1 

y3 



 The sparse signal can be reconstructed from the following criterion  
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Signal Detection Algorithms 

 
 : arg max ,      s.t.   

t

t t
GF q

x P x y C y Fx





  

Theorem 2 : The aposteriori probability (AP) that the first value,  

Given the observation y and enforcing the checks (checks should be satisfied), 

is given by 

 

 

 

               

 0 0x GF q 

 
 

 
   0 , 0,0

,1

, , ,
c

t

d
t

t ip t t p

x pp

P x y
P x y C P C x x y P x y

P C y


 



  
   

 

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 Once the sparse support is known, the uncertainty to the recovery of 
𝑋 ∈ ℝ𝑁 is confined to the additive noise 𝑊 ∈ ℝ𝑀. 

 

 

 

 

 

 

 

 Nevertheless, most recovery algorithms, such as LASSO [Tibshirani’96], 

OMP [Tropp’06] and CS-BP [Baron’10], to date for the problem have been 
developed under auspices of signal estimation rather than support 
detection. 

Sparse Support Detection first! 

+ 

𝑌 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝚽⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑋  𝑊 

+ 

𝑊 

+ 

𝑌  𝚽𝑆⁡⁡⁡⁡𝑋 𝑆 

K columns K columns 
K non-zero 
elements 

:Support aware matrix

:Signal on the support

S

SX

Φ
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Difficulties and Breakthroughs 

 In LDPC decoding, only binary messages are usually decoded.  
 

 In compressed sensing, non-binary cases as well as real-valued and 
complex valued codes are used.   
 

 Our approaches 
– Non-binary cases, i.e., GF(q): can do up to block lengths of thousands. 
 
– Real- or complex-valued:  

• Use quantization  
• Do the belief propagation and obtain the posteriors 
• Find the support set from the posterior 
• Form the over determined set of equations and find the signal values 

 
 Breakthrough: Approximate Message Passing algorithm by Donoho 
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 From Th. 1  

 

 

 

 

 

 

 

Marginal posteriors, spike-and-slab again! 

       0 , 0,0

,1

, , ,
c

t

d

t t ip t t p

x pp

P x y C P x y P C x x y P x y  


 
    

 


2 2 2
0,

1 22 2 2 2
; , (1 ) ( )

t X X W

X W X W

Lx
qc q c x

L L

  
 d

   

 
      

Each message from check  
converges to   
Gaussian PDF  
𝑁(𝜏; 𝑥0,𝑡, 𝜎𝑊

2 ) by CLT 

Spike-and-slab  
prior is assumed 
𝑃 𝑥𝑡 = 𝜏 𝑦  
= 𝑞𝑁(𝜏; 0, 𝜎𝑋

2 + (1 − 𝑞 𝛿(𝜏 ) 

The product of 
Gaussian PDFs 
is a scaled 
Gaussian PDF 

A slab density A spike 

 Marginal posterior has a shape of spike-and-slab PDF ! 
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 It led to a sharp transition 

analysis between estimation 

based approach and the 

detection based approach. 

 Namely, it shows how much 

benefit there is with the 

detection based approach 

(BHT-BP), compared to the 

estimation based approach 

(CS-BP).  

 The PT-diagram provides an 

exact border line between 

success and failure of the 

algorithm on the plane of the 

noise level and the signal 

magnitude 

Sharp Comparison with PT Analysis 

New observation: State detection failures occur only at non-zero states                     
(𝑺𝒊 = 𝟏) 
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 Donoho developed a remarkable low-computational solver to 
compressed sensing recovery, called AMP  [Donoho’09] [Donoho’10-1] [Donoho’10-2]. 

 

 

 

 

 

 

 

 

 

 AMP has the following properties 

 

1) Working with dense measurement  
    matrices, e.g., standard Gaussian matrices 
 

2) Achieving the equivalent phase transition 
     performance to Lasso [Tibshirani’96]  

as 𝑁 → ∞ under noise/noiseless cases 
 

3) 𝑂(𝑀 + 𝑁  computation per  
    iteration for the recovery 
    (cf) Lasso has 𝑂(𝑀𝑁2  computation) 

Approximate-Message Passing (AMP) 

Experimental phase transition diagram comparing  
Iterative soft thresholding (IST), L1-solver (L1), AMP 
 [Donoho’10-2] 

AMP algorithm 

Init.: set 𝑥 𝑡=0 = 0 , 𝑧 𝑡=0 = 𝑦  ,𝜏 𝑡=0 

 1 1 11
Residual update : ' ( ) ;

tt t t t tTz y x z z x 
d

  
   A A

 
11 1

Signal update : ;
tt t tTx z x 
 

 A

 
1

11

1

Threshold update: ' ( ) ;

t
Nt ttT

i

i

z
N


  

d






  A
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An example of AMP recovery when N=20, M=10, K=2 
20 iterations. 
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 Step I: Construct a joint distribution over the signal 𝐬 = [𝑠1, . . . , 𝑠𝑁 :  

 

 

 

 Step II: For large system limit (N, M→∞),  the classical BP message 

𝑐𝑎→𝑖
𝑡 (𝑠𝑖  can be approximated to a Gaussian PDF with mean 𝑧𝑎→𝑖

𝑡  

and the variance 𝜏 𝑎→𝑖
𝑡 . 

 

 

– Then, the message 𝑣i→𝑎
𝑡+1(𝑠𝑖  is approximated by the product of a 

Gaussian and a Laplace PDF, given as 

Construction of AMP [Donoho’10-1] 

2

1 1
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A joint distribution 
Classical BP update rule 
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Mean and variance of⁡𝑐𝑎→𝑖
𝑡 (𝑠𝑖  2,

t
t t t

a ia i a aj j a aj j a

j i j i

z y A x A   

 

  

Mean and variance of 𝑣𝑖→𝑎
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 
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 Step III: Take the limit  𝛽  → ∞ and get a thresholding function 𝜂(⁡  
for calculation of mean 𝑥𝑖→𝑎

𝑡+1 = 𝐄𝑣𝑖→𝑎
𝑡+1 𝑠𝑖 . 

 

 

 

 
 

 Step IV: With large N (M/N fixed) and the1st order-Taylor series 

approx of 𝜂(⁡ , AMP is obtained.  

 

 

Construction of AMP [Donoho’10-1] 
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 Sparse support detection is most crucial for signal recovery in CS. 

 

 We introduce a new detection-oriented belief propagation algorithm 

for CS. 

– Show how much the proposed method is superior to conventional 

estimation based approach. 

 

 AMP is considered a breakthrough, taking only O(M+N) computation, 

and working for real- and complex-valued CS parity check problems.  

– Possible for application in ADCs, network codes, distributed 

compression, radars, tomography, medical imaging, microscopes, …  

 

Summary of the fourth one 
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FIFTH ONE 

90 



Multiple Sensor Problems 

 One more application on multiple sensor systems 

– Correlated measurement: H(X1, X2) < H(X1)+H(X2). 

– Slepian Wolf, Wyner-Ziv coding ~ distributed source coding and joint decoding. 

– We aim at using sparse representation and achieve distributed source coding. 

 

 

 

91 



Multiple Measurement Vectors 

MMV vs. EMMV  

– The same support set for all sensors  -- A new way to represent correlation. 

– When all measurement matrices are the same, the EMMV model is the MMV model.  

 

Our goal  

– Is to jointly reconstruct the support set of each sparse vector, with the knowledge of the 

sensing matrices 

– Determine how many measurements M are needed as S scales up? 

 

M N

i

F

  𝐲𝒊 ∈ ℝ𝑀 

𝐱𝒊 ∈ ℝ𝑁 with  

𝐧𝒊 ∈ ℝ𝑀 

where 1, ,i S
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A Joint Typical (JT) decoder[Lee12] [Lee13] - 1 

 A decoder used in here is called joint typical (JT) decoder which explores 

all possible subsets to find the correct support set.  

 

 It yields a set as decoded output, when all measurement vectors and all 

measurement matrices are known. Namely, 

  JT decoder : : , ,

where {1, , }and .

s s s

N K



 

y F
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A Joint Typical (JT) decoder[Lee12] [Lee13] - 2 
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  † 2

,where : ,  is the noise variance, > 0 and  is constr

ucted by collecting column vectors of  corresponding to indices of .

n s

s

 d Q F I FF F

F

 If a following condition is satisfied for a set    , then this set becomes the 

output of the JT decoder 
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The probability of the failure event – 1 

     
, =

E E , , E , , ,
c

failure

K

D d d




 Y Y

 A failure event E 𝐷𝑓𝑎𝑖𝑙𝑢𝑟𝑒  of the JT decoder is 

 

 

where E , ,  is an event where the JT decoder makes failure such that 

the correct support set  is not jointly typical with , E , , is

an event where the JT decoder declares that an incorrect support 

c
d

d d 

Y

Y Y

set  is 

jointly typical with .

d

 Y
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The probability of the failure event – 2 

        
, =

E E , , E , , .
c

failure

K

D d d




  Y Y

 Owing to the union bound, we have 

 Obtaining the exact probabilities at the right hand side in the equation is 

non-trivial.  

 Thus, we deiced to obtain their upper bounds by using the Chernoff bound.  
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The probability of the failure event – 3 
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 Let us define a random variable by 

 

 Then, it is readily seen that this random variable is a quadratic random 

variable.  

 Also, its mean, variance and moment generating functions are  
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The probability of the failure event – 4 
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 Then, the following probability is bounded by  

      

   
 

 
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



Y

(a) : the Chernoff bound.  

 The function f(ti;Wi) is convex with respect to ti. 

 Thus, the optimal value ti is obtained by investigating the first derivative of 

this function.  



The probability of the failure event – 5 
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 Let the optimal values be  

  * 1 2, 1,2.i it S M K W i   

 Then, we finally have 
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(a) : due to    * *

1 1 2 2; ; .f t W f t W

 Similarly, an upper bound on the probability                          for a given set 

is obtained. 
  E , ,dY



 Then, the failure probability is given by  

The probability of the failure event – 6 
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 Detailed explanations are given in [Lee12][Lee13]. 



 Theorem 1:                                           is sufficient to jointly reconstruct the  

support set as N goes to infinity if  

 

A sufficient condition for infinite S [Lee13] 

 The above theorem suggests an inversion relation between M and S. 

 In [Hyder09], the authors empirically show that M is decreased as S is 

increased.  

 Thus, the theorem verifies this empirical result.  

 Note that similar relations are given in [Nehorai09][Rao13]. But, these 

relations are made under more general conditions.  

 2

min .x M M Kd 
  logK

S
M N K K  
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A sufficient condition for a finite S [Lee13] 
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 The above theorem suggests that K + 1 measurements suffices to jointly 

reconstruct the support set when S goes to infinity. 

 In [Duarte13], the authors show that K + 1 measurements are sufficient to 

jointly reconstruct the support set as well. But, these authors do not 

consider the presence of noises.  

 It suggests that taking more measurements vectors reduces effects of noises.  

 A similar conclusion is given in [Rao13]. 

 Theorem 2:          is sufficient to jointly reconstruct the support set as S 

goes to infinity if  

 

 2

min .x M M Kd 

M K



Summary of the fifth one 
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 We have verified the empirical simulation results as reported in [Hyder09] 

– M is decreased as S is increased 

– K + 1 measurements suffices to jointly reconstruct the support set when S is suf

ficiently large. 

 

 We have shown that taking more measurements vectors reduces effects of n

oises. 

– The sufficient condition given in Theorem 2 is accordance with that in 

[Duarte13]. 

– A similar result is given in [Rao13] 



SIXTH ONE 
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Recovery Bounds on Sparse Signals over Finite Fields 

105 

 Research Goal 

– Theoretical performance limits of compressive sensing problems over 
finite fields 

 

 Approaches 

– Upper and lower bounds on recovery performance using L0 minimization 

– Impact of sparseness of sensing matrices on recovery performance  

 

 

 

 

 

 

 

 

– where X is sparse, A is a sensing matrix, y is a measurement signal,     is an    
estimated signal. 
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Compressed Sensing over Finite Fields 
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 The measured signal   y  is given by 

 

 

 

 The elements of the sensing matrix are i.i.d., 

 

 

 

 

 The sparse signals x is randomly and uniformly selected form the set  

–                   , where          denotes the set of  signals x of  length  N with sparsity 

k1. 
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Probability of Error for L0 Minimization 

 L0 Minimization decision, 

 

 

 The error event is for   

 

 

 This error event is upper bounded as follows 

 

 

 

 Probability of error averaged on all sparse signals x,  

 

 

 

 Thus,   due to                    
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Upper Bounds on Probability of Error 
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 (b): Partition of the set 

 

 (c): The probability is identically the 

same with each other, 

 

 

 

 (d): Collection of Nh difference 

vectors with the same Hamming 

weight 
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Upper Bounds on Probability of Error 

Theorem 1 (Upper Bound) : For any sensing matrix with i.i.d. elements, 

an upper bound of probability for L0 recovery is given by 
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Upper Bounds on Probability of Error 

 When the sensing matrix is uniformly random,  the upper bound is 
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Corollary 2 (Sufficient condition on M) : If the following holds, 
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Lower Bounds on Probability of Error 

 Using the Fano’s inequality, the probability of error is lower bounded 
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 The lower bounds is  
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Theorem 3 (Necessary condition on M). For a probability of error 

arbitrarily small, the following 
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Upper and Lower bounds 
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 Results 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Lower (solid) bounds, and upper (dashed) bounds for N = 1000 with sparse 

factors γ =0.069 



Upper and Lower bounds 
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 Results 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Lower bounds and upper bounds for N = 1000 with different sparse factors. 



Shannon’s Channel Coding Theorem 

Rate = 1 – M/N 

“Rate < Capacity” IFF “A matrix F with R and P(e)  0” 

If Rate < Capacity, there exists a matrix F such that P(e)  0.  

If Rate < Capacity is not holding, P(e) cannot be 0. 

 

Application to Compressed Sensing 

Channel ~ Discrete Memoryless Channel with error rate K/N 

Capacity of DMC is well known 

1-M/N < Capacity  M/N> 1 – Capacity. 

For a matrix F with small P(e), M/N > 1 – Capacity 

 

Shannon’s CC Theorem vs. CS Theory 

(1 )
( ) 2 compN C

P e
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Summary 

Novel information theoretic results 
– Entropy of sparse signals 
– Mutual information between signal and the measurement 
– Led to Fano’s inequality 

 

Novel results on the number of measurements needed 
over GF 
– Simplified decoders 
– Upper bounds 
– Combinatorial analysis technique 
 

New results on the density of sensing matrix 
– To measure sparse signals, a sufficiently dense matrix is needed! 



 

 
Sparse Representation based Classification 
Method for Motor Imagery based BCI Syste
ms 
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Agenda 
 EEG based BCI system 

 Sparse Representation based Classification [Shin 2012 JNE]  
– Introduction 

– Motivation and purpose 

– Methods 

– Results 

– summary 

 Evaluation of SRC method [current work] 
– Motivation and purpose 

– Methods 

– Results 

– Discussions 

– Summary 

 Future work 
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EEG based BCIs 
 

 

 

 

 

 

 

 

 

 

 

 

– BCI is a novel communication and control channel between person and external world. 

– BCIs allow user-to-computer communication only using user’s intention or imagination instead 
brain’s normal output pathways of peripheral nerves and muscle. 

– In the BCIs, classification is needed to transform the extracted feature of a user’s intention into 
a computer command to control the external device. 

– However, EEG signals are very noisy and have non-stationary characteristics. Therefore, 
powerful signal processing methods are needed.  

– In this study we focus on BCI classification method. 
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Sparse Representation based 
Classification 
 



Sparse Representation (SR) 
 Recently, Sparse Representation has received a lot of attention in 

signal processing and machine learning field. 

 The problem of SR is to find the most compact representation of a 

signal in terms of linear combination of atoms in an over-complete 

dictionary [Huang 2006]. 
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Dictionary Input 

Sparse coefficient 
y = A x 

My M NA

1Nx

Introduction 



Sparse representation for brain signal processing 
[Yuanqing 2014] 

 Blind source separation  

– EEG signals can be considered as linear mixtures of unknown sources with an 
unknown mixing matrix. 

– The brain sources can be assumed to be sparse in a certain domain such as the 
time or the time-frequency domain 

– The true sources can be obtained through sparse representation-based BSS 

– The mixing matrix is estimated using, e.g., a clustering algorithm. 
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Sparse representation for brain signal processing 
[Yuanqing 2014] 

 EEG inverse imaging 

– The brain sources can be obtained and localized by sparse representation-
based EEG inverse imaging where the mixing matrix A is first estimated based 
on a head model, and the brain sources are then separated and localized 
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Sparse representation for brain signal processing 

 Feature selection and classification 

– Sparse representation-based classification (SRC) can be conducted as shown 
below [see Figure 1(d)].  

– The target function is a test sample/feature vector and each column of the 
data matrix is a training sample/feature vector of a certain class 

– These problems in brain signal processing can be solved under the framework 
of sparse representation. 
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Motivation and Purpose 
 Sparse representation can be used for a number of applications 

including noise reduction, source localization, and pattern recognition.  

 Recently, classification based on Sparse Representation has received 

a lot of attention in face recognition and image processing [Wright 2009]. 

 This SR based classification shows satisfactory classification 

performance in many applications.  

 In this study, we firstly apply SR to the motor imagery based BCI 

classification. 

 Using Mu and Beta rhythms as a feature of MI BCI, we aim to develop 

a new Sparse Representation based Classification (SRC) method. 

 

Motivation and purpose 
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We use two different datasets 

– INFONET dataset 

• Five healthy subjects(average age = 22±6.85) 

• Right hand and left hand imaginations 

• 16 EEG channels 

• 80 trials per class 

 

 

 

– Berlin dataset 

• BCI competition dataset (Data set IVa)  

• Five healthy subjects 

• Right hand and right foot imaginations 

• 118 EEG channels 

• 140 trials per class 

   

                                   

 

Data acquisition 
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Methods 



Proposed SRC scheme 
Methods 
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We use a band pass filtering as a preprocessing method. 

We designed dictionary A using CSP filtering.  

To use a mu rhythm as a BCI feature, we compute the power of mu 
band.   

To find coefficient vector x, we use the L1 minimization tool for test 
signal y. 

 

 

 

 



Incoherent Dictionary 
 

 

 

 

 

 

 

 

M is the measure of mutual coherence of two component dictionaries; when 

M is small, we say that the dictionary is incoherent . 

The incoherent dictionary promotes the sparse representation of the test 

signal under the L1 minimization [Donoho 2003]. 

We use the CSP filtering to design an incoherent dictionary. 

When a dictionary is incoherent, a test signal from one particular class can 

be predominantly represented by the columns of the same class. 
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Uncertainty Principle for Sparse 
Representation 

 In quantum mechanics, Heigenberg’s uncertainty principle (UP) state
s that the momentum  and the position of a particle, say of an electr
on, cannot be simultaneously determined precisely.  
 
 

 In sparse representation where the goodness lies in parsimonious re
presentation of a signal of interest, there is an UP as well.  

 Suppose a signal x which can be represented by a basis A with sparsi
ty KA and by a basis B with sparsity KB. That is, 
– x = AsA, the sparsity of sA is KA, and x = BsB, the sparsity of sB is KB. 

 Then,  
 
 

      where                                      and ai and bj are the columns of A and B 
resp. 

 
 A signal cannot be represented sparsely in both domains! 128 

p x h  

 2

2

1
,   A BA BK K or K K




  

 
,

: max ,i j
i j

a b 



UP and L1 Recovery 
 Donoho-Stark in 89’ then suggested the use of a combined matrix, a 

dictionary, and of the  L1 min routine to represent the signal x: 
 
 
 

  This will be useful when one does not know which basis is more sui
table for representing the signal. 
 

 Using the UP, they show that  
– If          , then the equation has the unique solution (L0 solution unique)

. 
– If                     , then the L1 solution attains the exact solution.  

 

 These classic works done in 80s and 90s provides the foundation for 
the Compressed Sensing theory. 
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CSP(Common Spatial Pattern) filtering 
CSP filtering is a powerful signal processing technique suitable for EEG-

based BCIs [Blankertz 2008]. 

CSP filters maximize the variance of the spatially filtered signal for one 

class while minimizing it for the other class. 

The CSP filtering was used to produce high incoherence between the two 

group of columns in the dictionary. 

Using the CSP filter, we form maximally uncorrelated feature vectors 

between the two classes.  

130 

[ before CSP filtering ] 

Methods 
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Sparse Representation and Classification 
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Methods 

 

 

 

 

 

 

 

 

The sparse representation can be solved by L1 minimization [Candès 2006]. 

For example, a test signal y of the right class can be sparsely represented 

as the training signals of the right class. 

However, EEG signals are very noisy, nonzero coefficients may appear in 

the indices corresponding to the left class.  

We use a minimum residual classification rule.  



Sparse representation results 
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 EEG Sparse representation 

– Sparse representation of real EEG signals for one subject. 

– X-axis represents the number of total training trials (the number of 

columns of dictionary A).  

– Y-axis represents the recovered coefficients x in             . 

– The class of the test trial was the right hand imagery. 

– The test signal of the right class is sparsely represented with several 

training signals of the right class.  
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Classification accuracy of INFONET dataset 

We use 2 CSP filters out of 16. 

For all subjects, the accuracy of the proposed SRC is better than 

conventional LDA method.  
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Subject 
SRC 

Accuracy [%] 
LDA 

Accuracy [%] 

A 95.63 93.13 

B 63.75 61.87 

C 68.14 67.50 

D 80 76.25 

E 71.25 68.12 

Mean (SD) 75.75 (12.60) 73.37 (12.18) 

Results 



Classification accuracy of Berlin dataset 
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Subject 
SRC 

Accuracy [%] 
LDA 

Accuracy [%] 

al 98.93 96.43 

ay 100 97.14 

aw 95.71 95.36 

aa 97.86 94.64 

av 91.79 87.86 

Mean (SD) 96.85 (3.25) 94.29 (3.72) 

We use 32 CSP filters out of 118. 

For all subjects, the accuracy of the proposed SRC is better than 

conventional LDA method.  

 

 

 

 

Results 



Classification results 
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Berlin dataset  

– We examine classification accuracies of SRC and LDA as a function of 

the number of CSP filters (feature dimensions) for each subject.  

 

Number of CSP filters Number of CSP filters 

Results 



Summary  
 We propose a sparse representation based classification (SRC) 

method for the motor imagery based BCI system. 

 The SRC method needs a well-designed dictionary matrix made of a 

given set of training data.  

 We use the CSP filtering to make the dictionary uncorrelated for two 

different classes. 

 The SRC method is shown to provide better classification accuracy 

than the LDA method. 

Summary  
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Compressive Sensing for Imaging 

through turbid media 
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Compressive Sensing for Imaging through turbid 
media 

 See object hidden under turbid media [Mosk2012] 

– Turbid media: biological tissues, white paint 

– It may become possible to have an early disease diagnosis with optical imaging 

 

 

 

 

 

 

 

 Due to the multiple scattering, the outgoing object waves are spatially 

scrambled and become a speckle field (SF) at an observation plane 

 For image recovery, the multiple scattering should be suppressed; the 

object image should be recovered 
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Compressive Sensing for Imaging 
through turbid media 

 The wave propagation is a time reversible (TR) process [Mosk2012], 
[Yaqoob2008] 

 The multiple scattering in turbid media can be reversed by a TR operator 
 

 Phase conjugation (PC) is the monochromatic version of the TR operator 
– A de facto standard method to date for imaging through turbid media 
– PC compensates the phase variations due to multiple scattering in turbid 

media by recording the SFs and back-propagating the complex conjugates of 
them through the media so that the phase variations are cancelled; a 
photorefractive crystal is used as a phase conjugate mirror. 

 Computational PC 
– PC can be done virtually through computational estimation 

• This requires the so called transmission matrix (TM) of the medium [Popoff2010] 
• TM-based image recovery 

– SFs are recorded at the CCD array and the recovery is made in digital signal 
processing 

– A number of advantages over the optical PC for it has an image data format 
which is reproducible [Cui2010] 
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Compressive Sensing for Imaging through turbid 
media 

 TM acquisition: (a) and (b) 

– A collection of plane waves each with different incident angle is used as a basis 

– The SF for each plane wave is obtained and stored as a column in TM 

 Object speckle field acquisition: (c) and (d) 

– The object SF (OSF), which is the output SF of turbid medium with the object 
wave, instead of the plane wave, is then obtained 
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SP: sample plane, 
BS: beam splitter, 
SB: sample beam, 
RB: reference beam,  
SLM: spatial light 
modulator 



Compressive Sensing for Imaging 
through turbid media 

System model 
𝐲 = 𝐓𝐚 + 𝐧 

where 𝐲 ∈ ℂ𝑀, 𝐚 ∈ ℂ𝑁, 𝐧 ∈ ℂ𝑀 are the vector 

representations of 𝑦(𝑥, 𝑦 , 𝑎(𝑘𝑥 , 𝑘𝑦 , 𝑛(𝑥, 𝑦 , and 

each column of 𝐓 ∈ ℂ𝑀×𝑁 is the vector 

representation of the for a given 𝑘𝑥 , 𝑘𝑦 . Each 

element of T is a CSCG random variable. 
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Compressive Sensing for Imaging 
through turbid media 

 The estimate by PC: 
 
 
 

 PC is not good 
– For correlated cases, each element of the estimated angular spectrum is contributed not only 

from the angular spectrum element with the considered angle but also from those with the 
other angles whose SFs are correlated to that with the considered angle.  

– Thus, erroneous estimation is made even in noiseless cases. 
– Note that turbid media do not provide orthogonal TMs for they have memory effects among 

the SFs of the input waves whose incident angles are not separated enough [Freund 1988] 

 It appears to have insufficient speckle suppression in the image recovered by PC 
[Popoff2010] 

– This requires an additional procedure such as temporal ensemble averaging over multiple 
exposures 

– In time-critical cases or in the case of imaging a moving object, its applicability can be limited 
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Compressive Sensing for Imaging 
through turbid media 

 CS framework is suitable for imaging through turbid media 
– Compressibility 

• Most natural object images are well approximated by only several 
terms in the Fourier domain [Bruckstein2009].  

• We see that the basis signals in TLI are plane waves with different 
angles and the image is an angular spectrum in the Fourier domain 

• Thus angular spectrum is expected to be well approximated by small 
number of elements 

– Isometry 
• Checking the isometry of a matrix is a NP hard problem. 
• But, the Gaussian distributed matrices are proven to have an optimal 

isometry [Bruckstein2009], [Candès2011]  
– Through the random walk analysis, it was found that the SF in the 

transmission geometry is complex-valued Gaussian distributed provided that 
the number of elementary contributions is large [Goodman1976] 
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Compressive Sensing for Imaging 
through turbid media 

The SSE, an oracle-like estimation, can be made 
by solving the following L1 norm minimization 
problem [Bruckstein2009], [Candès2011] 
 

 
– The SSE aims to find the solution which has the 

smallest number of nonzero elements, ‖𝐚‖0, (with a 
compact representation) 

• This is NP hard problem 

– But, the L1 norm minimization  promotes the estimate 
to be close to a compressible signal which has a 
compact representation.  
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Compressive Sensing for Imaging 
through turbid media 

Angular spectrum estimation 
 
 
 
 
 
 
 
 
 Most error terms in the estimated angular spectrum by SSE are 

reduced considerably 
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Estimated angular spectra using (a) PC, (b) PINV, and (c) SSE, respectively. Here, M = 
4389, N = 20000. All angular spectra are represented in log scale for better visibility. 



 Image recovery 
– Recovered amplitude 

images averaged over 
one, three, five, and 
seven samples 

– Cross sections of them 
averaged over seven 
samples 

– Constrast-to-noise 
ratios (CNRs) are 
calculated in the 
subsets (red arrow 
lines) of the cross 
sections. 

• Here, M = 4389, N = 
20000 and K is less 
than 147. 

• Scale bar: 10 μm. 
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Cell-Imaging Thru Biological Tissue 
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Summary of turbid lens 

  MIMO 통신에서는, random scattering 채널이 있습니다. Scattering이 많은 지상 
채널이 깨끗한 채널보다 통신 용량이 클 수 있고, degree of freedom이 사용하
는 안테나 수 만큼 커져서, rate-diversity를 trade-off 할 수 있는 여지도 제공하
고, 여러 가지 장점이 있음이 알려졌고, 실제 시스템 개발에 적용되어 왔습니
다. 
 

 광학에서는, 최근에, turbid 매터리얼을 렌즈로 사용하면, 광학시스템의 
resolution 및 field of view등 을 크게 높일 수 있음이 실험적으로 증명되었습니
다.  그러나, 이론적 접근 측면에서 많은 연구가 필요한 부분입니다. 
 

 본 연구에서는 CS를 turbid렌즈 이메징에 적용하고 input신호의 estimation 결
과를 높일 수 있음을 실험적으로 보였습니다.  
 

  정보 및 신호처리이론의 Information-Estimation Theory를 활용하여 estimation
의 검출 능력 한계 분석 및 새로운 검출 방법 등을 제안 할 수 있는 새로운 연구 
분야 입니다.  
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Motivations of compressed sensing radar  

 레이더는 원거리 공간에 있는 표적을 전자기파로 탐색하는 센서 
시스템  

– 레이더의 측정 샘플 수는 한정되어 있고, 탐색해야 하는 공간은 넓음 

– 레이더 문제는 ill-conditioned  선형 역 문제를 푸는 문제 

– 2000년대 중반, 이러한 ill-conditioned 역 문제를 Sparse Representation 과 Compressed 

Sensing을 통하여 푸는 혁신적인 방안이 신호처리 및 정보이론 분야에서 발표 

 

 압축 센싱 레이더는 이 방법을 레이더 문제에 적용한 것 

1. 원거리 공간에 있는 표적은 성긴(sparse) 신호로 표현 (Sparse Representation) 

2. 이러한 성긴 신호는 한정된 압축 샘플로도 완벽하게 복원 가능 

3. 분해능 향상 및 여러 표적 동시 추적 능력 증대 
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Surprising results of compressed sensing radar 

 기존의 정합필터(matched filter) 기반 레이더는 신호의 대역폭(𝑩)에 

의해 거리 해상도(range resolution,𝜟𝒓 ≥
𝒄

𝟐𝑩
⁡ , 𝒄 ≈ 𝟑 × 𝟏𝟎𝟖)가 결정됨 

 

 

 압축센싱 기반 레이더는 상기의 거리 해상도를 뛰어 넘을 수 있다는 
결과가 보고됨 [Strohmer09][Pi11][Ender10] 
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출 처 내 용 실 험 결 과 

[Baraniuk07] 

• 압축센싱 기반의 레이더의 개념
을 처음으로 제안함 

• 제 안 된  레 이 더 는  정합필터
(matched filter)가 필요 없음. 

 

 

 

 

원본 정합필터 기반 레이더 결과 

 

 

압축센싱 기반 레이더 결과 

[Strohmer09] 

• 압축센싱 기반 레이더의 해상도
(range resolution, Doppler 
resolution)의 한계에 대해 분석 

• 압축센싱 기반 레이더의 해상도
가 정합필터 기반 레이더의 해상
도보다  우수한 것을 보임. 

 

 

 

 

원본 

 

 

 

 

정합필터 기반 레이더 결과 

 

압축센싱 기반 레이더 결과 

특히, [Strohmer09] 논문에서 아래와 같이 직접적으로 압축센싱 기반 레이더의 우수성을 강조 

1. “our stylized compressed sensing radar which under appropriate conditions can “beat” the classical radar 
uncertainty principle!” 

2. “the benefit of employing compressed sensing recovery manifests itself as a dramatic increase in resolution.” 

3. “Experimentally confirm that compressed sensing radar can achieve much higher resolution than traditional 
techniques 

참고 문헌 
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Signal Processing, 2009, 인용회수: 468 회 

2. [Baraniuk07] : R. Baraniuk and P. Steeghs, “Compressive Radar Imaging”, IEEE Radar Conference, 2007, 인용회수: 498회 
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출 처 내 용 실 험 결 과 

[Chen08] 

• 압축센싱 기반 MIMO 레이더를 
처음으로 제안함 
 

• 표적의 거리, 방위각, 속도를 탐색
하고자 함 
 

• 실험을 통해 압축센싱 기반 레이
더의 해상도가 정합 필터 기반 레
이더의 것 보다 우수한 것을 보임 
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출 처 내 용 실 험 결 과 

[Poor10] 

• 압축센싱 기반 MIMO 레
이더 제안 

 
• 표적의 위치와 방위각을 

추정하고자 함 
 

• 탐색 공간을 방위각-도
플 러  평 면 상 에  표 시
[Appendix 1 참조] 
 

• Np: Tx의 개수 
• Nr: Rx의 개수 
  

 
 
 
 
 
 
 
 

 

 

• 표적이 격자 점에 존재하는 
경우(왼쪽) 

• 표적이 격자 점에서 어긋나있는 
경우(오른쪽) [Appendix2 참조] 
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출 처 내 용 실 험 결 과 

[Nehorai11] 

• Distributed MIMO Radar 제안 
 

• 복원하는 신호-즉 표적들의 위치와 
속도-를  block sparse signals로 
모델 
 

• 동일한 source에 대하여, Rx의 위
치에 따라 Radar Cross Section 값
이 다르다라고 가정 [그림 7참조] 

 

Block Sparse signals은 Joint sparse signals을 concatenated한 것 

참고 문헌 

1. [Nehorai11] : Sandeep Gogineni, Arye Nehorai, “Target Estimation Using Sparse Modeling for Distributed MIMO Radar”, 
IEEE Trans. On Signal Processing, 2010, 인용회수:  49회 

위 실험 결과 환경 

– 2개의 Tx와 2개의 Rx 위치는 다음과 같음 

 

 

– 1GHz의 carrier frequency, 3개의 pulse 

– 3개의 표적들의 위치 및 속도는 다음과 같음 

수신기1 
수신기2 

수신기 위치 Vs. RCS 
동일한 표적일지라도 수신기의 위치에 따라 
RCS가 다를 수 있다고 가정 

       1 2 1 1100,0 , 200,0 , 0,200 , 0,100Tx Tx Rx Rx   

     

     
1 2 3

1 2 3

110,280 , 80,280 , 100,260

120,100 , 110,110 , 130,130

p p p

v v v

  

  

위치 단위 meter, 속도 단위 meter/sec 

위치 속도 
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출 처 내 용 실 험 결 과 

[Zhang12] 

• 피드백 정보를 이용하여 
레이더의 전송 신호 파형
과 측정 행렬을 갱신 
 

• 갱신된 전송 신호 파형과 
측정 행렬은 표적들 간의 
상관도를 줄임으로써 성
능을 향상시킴 

 

 

 

적응형 레이더 시스템 

참고 문헌 

1. [Zhang12] : J. Zhang, D. Zhu, G. Zhang, “Adaptive Compressed Sensing Radar Oriented Toward Cognitive Detection in 
Dynamic Sparse Target Scene”, IEEE Trans. on Signal Processing, 2012, 인용회수: 34 회 

Range-Doppler 평면 상의 
이미지 복원실험 

 
 

(a) 실제 표적 
(b) 랜덤 신호파형과 센싱 

행렬 사용 
(c) 피드백 없이 최적화한 

신호파형과 센싱 행렬 
사용 

(d) 피드백 된 정보를 
사용하여 최적화한 
신호파형과 센싱 행렬 
사용 

       Scene Information 

– 여기서 피드백 되는 정보는 복원 알고리즘에 의해 복
원된 Range-Doppler 정보임 

Doppler Ranger Doppler Ranger 

Doppler Ranger Doppler Ranger 
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출 처 내 용 이 론 결 과 

[Strohmer14] 

• 압축센싱 MIMO radar 성능 분석 
 

• 표적들의 위치,방위각 및 속도를 올
바르게 복원하기 위한 이론적 툴을 
제시  
 

• 제시된 툴을 numerical simulation
을 통해 올바른 것을 확인 

• Tx의 개수, Rx의 개수, 방위각 해상도, 속도 해상도 등이 결정 되면, 탐지 가능
한 표적의 최대 개수의 바운드를 이론적으로 제시 [해당 논문, 이론 1 참조] 
 

• Tx의 개수, Rx의 개수, 방위각 해상도, 거리 해상도, 속도 해상도 등이 결정 되
면, 탐지 가능한 표적의 최대 개수의 바운드를 이론적으로 제시 [해당 논문, 
이론 5 참조] 

참고 문헌 

1. [Strohmer14] : Thomas Strohmer and Benjamin Friedlander, “Analysis of sparse MIMO radar”, Applied and 
Computational Harmonic Analysis, 2014, 인용회수:  8회 



 색칠해진 부분은 자탄이 해당 탐색 공간 안에 존재 함을 의미 
 공란은 표적이 없음을 뜻함 
 𝑛번째 격자에 자탄이 있으면 벡터의 𝑛번 째 원소 값은 0이 아닌 것으로 모델 
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탐색 공간 
벡터화 

𝛥 
1번째 격자 점: 𝑥1, 𝑦1   

𝑁번째 격자 점: 

𝑥𝑁, 𝑦𝑁   

7번째 격자 점 

: 𝑥7, 𝑦7   

수신기 

송신기 

1번째 

N 번째 

성긴 신호 
벡터 s 

System model – sparse signal 



 열 벡터 𝐟𝑛은 송/수신기와 𝑛번째 격자 공간 사이의 물리적 
반응(physical response) 관계 

 이 물리적 반응은 wave propagation에 의해 제시 
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System model – sensing matrix 

  
  1 12
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rx txj d d

delaye x t t
  

  f
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송신기가 보낸 신
호가 𝑛번째 격자 
공간을 지나서 수
신기에 도착하는데 
까지 걸린 시간 

  
  
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:
rx tx
n nj d d

delay ne x t t n
  

  f

송신기가 보낸 신
호가 𝑛번째 격자 
공간을 지나서 수
신기에 도착 했을 
때의 위상 지연 값 

𝐟1 𝐟𝑁 



Summary of compressed sensing radar 

 Compressed sensing radar yields better resolutions that cannot be 
achieved by matched filter radar 

– It break out fundamental limits on the rage resolution of matched filter radar 

 

 

– where B is the bandwidth 

 

 

 A few papers analyzed the performance of compressed sensing radar 
– It gives bounds on the number of Tx and Rx to achieve a proper resolution… 

• [Strohmer14] : Thomas Strohmer and Benjamin Friedlander, “Analysis of sparse MIMO radar”, 
Applied and Computational Harmonic Analysis, 2014,  
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𝜟𝒓 ≥
𝒄

𝟐𝑩
⁡, 𝒄 ≈ 𝟑 × 𝟏𝟎𝟖 



 

Compressed Sensing Channel 
Estimation and Multi-user Detection 
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 In the problem of channel estimation,  

– Tx transmits its signal vector x to Rx through a multipath channel. 

– The aim is to estimate an unknown channel impulse response based on the transmitted 

signal vector x and the received signal vector y at Rx.  
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Applications in Communication (1) 

Tx Rx 
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 The received signal vector y can be represented by  
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Applications in Communication (2) 

 An unknown sparse channel impulse response vector 𝐟 is estimated by 
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2

21

ˆ arg min  subject to   
f

f f Xf y

 The following papers also consider channel estimation problems 

– Ultra-wideband channel estimation based on compressed sensing [Wang07] 

– An optimization of the pilot placement for sparse channel estimation in OFDM system 
[Wu11] 

– To get the benefits such as small phases, low PAPR and low-rate sampling, a compressed 
sensing framework for OFDM channel estimation was proposed in [Yu14]  

 



 In the problem of multi-user detection,  

– Each user has its own signature vector. 

– The number of users sending its own signature to the base station is sparse. 

– The active users transmit their signatures with their messages to a base station. 

– The aim is to estimate the active users and their transmitted signals based on the received 

vector y. 
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Applications in Communication (3) 

 The received vector 𝐲 at the base station is 

 

 

 
  is an index set of active users. 

 𝐧 is the additive white Gaussian noise vector. 

 𝑥𝑖 is the message by the ith user. 

 𝐟𝑖 is the signature vector by the ith user. 

i i

i

x


   y f n Fx nThe 1st user 

The 2nd user 

The Nth user  

The (N-1)th user  

Base Station 
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Applications in Communication (4) 

 The active users and their messages are identified and estimated by solving  

 

 

 

 Suppose that the ith coefficient of 𝐱  is non-zero. Then,  

– the ith user is active, and  

– the nonzero coefficients is the transmitted message by the ith user. 

2

21
ˆ arg min  subject to .  

x

x x y Fx

 The following papers also consider multi-user detection problems. 

– A simple on-off random multiuser detection was analyzed in [Goyal09] 

– The hybrid method that combines the OMP algorithm and the LMMSE (linear  minimum 
mean square error) estimation was proposed in [Shim12] 

 

 Tanaka [Tanaka13] introduces communication applications based on compressed 
sensing.  
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 [Yu11] C. Qi and L. Wu, “Optimized pilot placement for sparse channel estimation in OFDM Systems”, IEEE Signal Process. 

Lett., vol. 18, no. 12, pp. 749 – 752, Dec. 2011. 

 [Yu14] N. Y. Yu and L. Gan, “Convolutional compressed sensing using decimated Sidelnikov sequences,” IEEE Signal 

Processing Letters, vol. 21, no. 5, pp. 591 – 594, May 2014. 
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IEEE International Symposium on Information Theorey, 2009, Seoul. 

 [Shim12] B. Shim and B. Song, “Multiuser detection via compressed sensing,” IEEE Communications Letters, vol. 16, no. 7, 

pp. 972 – 974, Jul, 2012 
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COMPutational Compound EYE 
(COMP-EYE) imaging system 
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Hemispherical Apposition Compound Eyes 

  Implemented by stretchable microlens array and photodiodes 

 

  Limitation: 180 pixels (16x16 photo diodes) 
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Computational Compound EYE imaging system 

 Eyes in nature  

– Camera-type eye vs. Compound eye 

 

 

 

 

 

 

 

 

 

 

 Due to diffraction limit and low density of photoreceptors, the resolution of 

compound eyes is limited. 
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- Single lens system 
- High resolution 
- Pattern recognition 

- Multi-lens system 
- Wide field of view (FOV), 
  Infinite depth of field (DOF) 
- Motion detection 

Camera-type Eye Compound Eye 



Computational Compound EYE imaging system 
  COMP-EYE 

– We aim to improve the resolution of the compound eye imaging system 

by designing larger acceptance angles of ommatidia and using a digital 

signal processing (DSP) technique 

– Larger acceptance angles enable each ommatidium to observe multiple 

pieces of information all at once.  

– Each piece of information is observed multiple times by multiple 

ommatida each with different perspectives. 

– By exploiting this, the DSP technique recovers the object image with 

high resolution.  
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Conventional System Computational Compound Eye 



Computational Compound EYE imaging system 

 Simulation results 

– M=80 x 80 ommatidia, N= 160 x 160 pixels 
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Conventional Compound Eye 
𝛥𝜑 = 2.25 

Recovered Image 

Computational Compound Eye 
𝛥𝜑 = 60° 

Observed Image Observed Image 

4 times 
Resolution  
Improvement ! 



 

Sub-Nyquist Sampling/Xampling 
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Sub-Nyquist Sampling 

 Compressed Sensing 이론을 적용하여 광대역 신호를 Sub-Nyquist 샘플링 할 수 있음 

 대표적인 CS based Sub-Nyquist 샘플링 시스템은, Random demodulator[Tropp10]와 

Modulated Wideband Converter [Eldar 10]가 있음 

 

 

 

 

 

 두 시스템 모두 아날로그 광대역 신호를 고속 Pseudo Random Binary Sequence(PRBS)와 

혼합(Mix) 압축(Integrator or LPF) 한 후 저속 샘플링 함 

 CS복원 알고리즘을 사용하여 압축 저속 샘플로 부터 Original 샘플을 복원 

 두 시스템의 핵심적인 차이는 구조적으로는 PRBS의 주기성에 있으며, 분석적으로는 

CS모델에서 신호의 희소화 방식에 있음 

 MWC에서 발생 할 수 있는 문제는 CS recovery를 보장하는 고속 PRBS의 디자인과 

제어에 관한 문제, 그리고  광대역 신호간의 비선형적 혼합에 따른 시스템의 non-ideal 

동작에 관한 문제 등이 있음 
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Random Demodulator 
Modulated Wideband Converter 



Modulated Wideband Converter(MWC) [Eldar10]  

 

 

 

 

 

 대상 신호: Blind & Multi-band sparse signal 

– Multi-band sparse: 소수의 협대역 spectral band가 넓은 주파수 영역에서 희소하게 산재함 

– Blindness: 각 협대역 스펙트럼들의 carrier frequency가 알려져 있지 않음 

– 입력 신호는 대역 제한되어있음:  

– 이때,  

– 각 협대역 spectral band의 대역폭은 𝐵[Hz]보다 작음 
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Modulated Wideband Converter(MWC) [Eldar10]  

 Motivation: Random Demodulator [Kirolos06] 

 

– 각 밴드의 주파수 위치를 안다면 IF frequency로 각 밴드를 down convert 한 후 Filtering and 

sampling을 수행 할 수 있지만, 이 경우에는 각 밴드의 주파수 위치를 모르기 때문에, 일정 

주기를 갖는 신호를 시간영역에서 곱해줌으로써 협대역 spectral band들의 aliasing을 유도함 

– 주기가     인 신호         는 다음과 같은 Fourier expansion으로 표현 가능 

 

 

 

– 이때, 주기 신호 𝑝𝑖 𝑡 를 PRBS로 선택 할 경우 Fourier coefficient는 간단하게 계산됨 
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Modulated Wideband Converter(MWC) [Eldar10]  

 Sampling scheme 
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– 시스템은 𝑚개의 channel로 구성되어 있음 

– PRBS의 주기와 Lowpass filter의 cut-off frequecy는 다음과 같은 
관계를 고려하여 결정되어야 함 

– 𝑓𝑠 ≥ 𝑓𝑝 ≥ 𝐵 

– 여기서 𝑓𝑠 = 1 𝑇𝑠 , 𝑓𝑝 = 1 𝑇𝑝  

– 먼저, 혼합단을 통과한 신호 𝑠𝑖(𝑡 는, 
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– 혼합신호의 주파수 표현은, 

 

– Lowpass filter를 통과 한 신호 𝑦𝑖 𝑡 의 퓨리에 변환은, 

 

 

 

– 이때, 입력 신호 𝑋(𝑓 의 대역은 ±𝑓𝑚𝑎𝑥로 제한되어 있으므로 𝑌𝑖(𝑓 의 무한 항은 유한 항으로 감소됨. 
즉, 
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Modulated Wideband Converter(MWC) [Eldar10]  

 Linear CS model 
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– Sampling time 𝑇𝑠마다 matrix Y와 Z⁡의 column이 누적됨 -> MMV Problem 

– Matrix Z의 각 row의 성분은 𝑋(𝑓 의 각 스펙트럼 슬라이스별 샘플에 대응됨 

– 즉, Z의 support set은 𝑋(𝑓 ⁡를 구성하는 협대역 spectral bands의 위치이며, Z의 성분을 획득 한 후 
𝑥(𝑡 ⁡를 복원 가능 
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Channel Estimation and Hybrid Precoding for 
Millimeter Wave Cellular Systems [Heath14] 

 Millimeter wave (mmWave) cellular systems ~ gigabit-per-second data rates ~ the 
large bandwidth available at mmWave frequencies. 
 

 To realize sufficient link margin, directional beamforming with large antenna arrays 
is used at both the transmitter and receiver. 
 

 Due to the high cost and power consumption of gigasample mixed-signal devices, 
mmWave precoding will likely be divided among the analog and digital domains. 
 

 The large number of antennas and the presence of analog beamforming requires 
the development of mmWave-specific channel estimation and precoding 
algorithms. 

  
 This paper develops an adaptive algorithm to estimate the mmWave channel 

parameters that exploits the poor scattering nature of the channel.  
 

 To enable the efficient operation of this algorithm, a novel hierarchical multi-
resolution codebook is designed to construct training beamforming vectors with 
different beamwidths. 
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Channel Estimation and Hybrid Precoding for 
Millimeter Wave Cellular Systems [Heath14] 

 
 The adaptive channel estimation algorithm is then extended to the multi-

path case relying on the sparse nature of the channel.  
 

 Using the estimated channel, this paper proposes a new hybrid 
analog/digital precoding algorithm that overcomes the hardware 
constraints on the analog-only beamforming, and approaches the 
performance of digital solutions. 
 

 Simulation results show that the proposed low-complexity channel 
estimation algorithm achieves comparable precoding gains compared to 
exhaustive channel training algorithms. 
 

 The results also illustrate that the proposed channel estimation and 
precoding algorithms can approach the coverage probability achieved by 
perfect channel knowledge even in the presence of interference. 
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Sensing”, IEEE Trans. on Comm., 63(8), pp. 2936-2947, Aug. 2015. 
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Noise Communication 

 

및 

 

http://socialtimes.com/hootsuite-and-the-rise-of-the-social-media-command-center_b107193


Noise Communication 
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Compressive sensing via OFDM system 
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CS based OFDM system diagram 

  목표: OFDM 시스템에서 PAPR의 감소 

 

 기존의 문제점: 기존 OFDM 시스템은 다중 반송파를 이용하기 때문에 높은 PAPR로 갖을 
수 있고, 이로인해 amplifier의 선형 동작 범위를 벗어나고 시스템의 성능이 저하 

 

 방법: 희소 신호와 스프레딩 기술을 OFDM 에 적용하여 PAPR 감소 효과 획득. 

        - 시간 도메인 신호는 압축 센싱된 희소 신호로서, PAPR 감소에 대한 노이즈의 영향을 적
게 받을 수 있다.  

 

 결과 및 기대효과  

        - 일반적인 OFDM 방식 보다 뛰어난 BER 감소 성능 

        - 릴레이 통신, 네트워크 코드가 사용되거나, 아날로그 네트워크 시스템 



Overall Summary of This Talk 
 

 CS Theory can be recast as a parity check problem in coding theory. 
– LDPC codes 
– Channel coding theorem 

 

 The CS narrative has shown useful in many applications including medical 
imaging, ADCs, spectrum sensing, super resolution areas. 
 

 혁신적이고 새로운 application들이 속속 등장 하고 있습니다. 
– Lensfree camera, lensfree spectrometers, 고 해상도 휴대용 imaging 기기, 

multi-target tracking radars, single-pixel camera, 초 고속 MRI 등등 

 
 Application 뿐 아니라 정보이론 및 신호처리 연구도 절실히 필요한 상

황입니다. 
 

 IoT, Big Data: 널려있는 부정확한 센서자원은 많은 Data를 생산해 내고 
있는데, 그것들을 통해 세상을 보고자 한다. 어떻게 고해상도, 유용한 
정보, features, 혹은 주요 정보를 추출해 낼 것인가?  
 



Have you seen this before? 

 We can draw a graph for y = Fx, shown above.  
 Yes!!! 
 Channel codes—Syndrome decoding! 

 
 Two applications: 

– Compressed measurement y and recovery of uncompressed data x  
– Super-resolution of hidden x from limited measurement y   

+ + + + + + 

y1 y2 y3 y4 y5 y6 

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 



Many Applications 

 See http://dsp.rice.edu/cs, a C
S repository 
 

 Compressive Imaging  
 Medical Imaging 
 Analog-to-Information Convers

ion 
 Ultra-wideband radios 
 Compressive Spectrum Sensing 
 Classification using Sparse Rep 
 Super Resolution imaging 
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Many Exciting New Applications 

 Circuit Failure Analysis[Kevin09] 

 Compressive Hyperspectral Imaging [Yin12] 

 Terahertz Imaging [Mittleman08] 
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Questions & Answers 
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Home page at http://infonet.gist.ac.kr/ 
Send comments to Heung-No Lee at heungno@gist.ac.kr. 
 

http://infonet.gist.ac.kr/
mailto:heungno@gist.ac.kr
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  in his paper Compressed Sensing, “everyone now knows that most of the data we acquire 
“can be thrown away” with almost no perceptual loss—witness the broad success of lossy 
compression formats for sounds, images, and specialized technical data. The phenomenon of 
ubiquitous compressibility raises very natural questions: why go to so much effort to acquire 
all the data when most of what we get will be thrown away? Can we not just directly 
measure the part that will not end up being thrown away?” [IEEE TIT 2006] 

 

 in another one of his paper, “The sampling theorem of Shannon-Nyquist-Kotelnikov-
Whittaker has been of tremendous importance in engineering theory and practice. 
Straightforward and precise, it sets forth the number of measurements required to 
reconstruct any bandlimited signal. However, the sampling theorem is wrong! Not literally 
wrong, but psychologically wrong. More precisely, it engender[s] the psychological 
expectation that we need very large numbers of samples in situations where we need very 
few. We now give three simple examples which the reader can easily check, either on their 
own or by visiting the website [SparsLab] that duplicates these examples.” [Proc. IEEE, 2010] 
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What Donoho said on Compressed Sensing 



CS Tutorials 

Many CS Tu
torials on li
ne show res
ults verifyin
g what was 
said in [Don
oho06] 
 

Charts from 
Romberg-W
akin’s  CS tu
torial, 2007. 
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 Compressed sensing (CS)  

– New signal acquisition techniques [Donoho06], 
cited >4000 times. 

– MIT 2007 Tech Review, “Top 10 Emerging 
Technologies” 

 CS is to find sparse solution from an under-
determined linear system. 

– Real, complex field 

 Many application areas: Cameras, Medical 
Scanners, ADCs, Radars, … 
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Background 

My 
M NF 

Nx 

1

ˆ arg min     subject to 
x

x x F x y 

y F 
x 

= 
M N



• But Dimension Reduction from 2TW is possible!  

•
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What Shannon said on Dimension Reduction 



 Good sensing matrix F 
– Random (Gaussian, Bernoulli, Fourier, …) 
– Vandermonde frames 
– Low density frames 

 

 Good recovery algorithms 
– L1 min recovery is good for sparse signal recovery 

 
 How many measurements are good enough, M? 

– There are many 
– Depends on recovery algorithms, L0, L1, L2, … 
– In general, M > K and M < N. 

 

 Performance guarantee, in what form:  
– probabilistic vs. deterministic 
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Key Issues in CS 


