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Abstract: In this paper, we introduce a method for improving the 
resolution of miniature spectrometers. Our method is based on using 
filters with random transmittance. Such filters sense fine details of an 
input signal spectrum, which, when combined with a signal processing 
algorithm, aid in improving resolution. We also propose an approach 
for designing filters with random transmittance using optical thin-film 
technology. We demonstrate that the improvement in resolution is 7-
fold when using the filters with random transmittance over what was 
achieved in our previous work. 
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1. Introduction 

Miniature spectrometers are key instruments that are required in various academic and 
industrial applications such as bio-medical, chemical, and environmental engineering [1]. 
These spectrometers, built with integrated-filter arrays, provide superior portability, 
flexibility, and cost-effectiveness [2]. The spectrometers also provide fine details about 
the various spectral components of the incident light. These spectral components reveal a 
wealth of information concerning the composition and the structure of the various objects 
being observed [3]. The ability of a spectrometer to reveal fine information is usually 
attributed to its resolution. Thus, in recent years, researchers have focused on improving 
the resolution of spectrometers. 

State-of-the-art filter-array-based spectrometers rely on digital signal processing 
(DSP) algorithms. These algorithms may run on a general-purpose computing platform of 
cellular phones and laptop computers, as shown in Fig. 1, before the spectrum estimate is 
displayed on the screen. They can also run on a specialized DSP chip integrated into the 
spectrometer unit in the case of stand-alone spectrometers. These algorithms process the 
raw spectrum acquired by the spectrometer to reduce noise and distortions and thereby 
aid in improving the resolution. 

In the filter-array-based spectrometers, the factors that limit the resolution are the 
number of filters in the filter array and the shapes of the transmittance functions of these 
filters [4]. In practical miniature spectrometers, the number of filters is fixed. Thus, in 
order to improve the resolution, it is often not a realistic option to increase the number of 
filters. The second factor that affects the resolution is the transmittance functions of the 
filters. While the transmittance function (TF) is usually designed to meet certain criteria, 
in practice, owing to low-cost integrated-array fabrication, the TF of each of the filters is 
non-ideal. These non-ideal filters highly distort the raw spectrum and thereby necessitate 
the digital processing of the raw spectrum to determine information concerning the 
spectral components of the input signal spectrum. DSP algorithms or estimators have 
been reported in the literature [5–8]. The algorithms in [5, 6] are centered on L1-norm 
minimization, which is a modern optimization tool in DSP for solving underdetermined 
system of linear equations, whereas the algorithms in [7, 8] are based on conventional 
least squares and are designed with an aim to reconstruct the signal spectrum but not to 
improve resolution. 

In this paper, we assume the use of the L1-norm-minimization-based DSP algorithm in 
[5] as the spectral estimator and aim to address the following relevant questions: Is it 
possible to enhance the resolution of the spectrometers by shaping the TFs in a particular 
way? Namely, is there a certain shape of the TF that is suitable for use with the L1-norm-
minimization algorithm at the back end? If yes, what is that shape, and how can such a 
TF be designed? Is there a practical way to implement such a TF? Also of great 
importance is the discussion of suitable performance metrics to compare different TFs. 
This is necessary to reflect the use of the L1-norm-based spectral estimator we aim to use. 
With the new metric, one should be able to investigate the maximum possible resolution 
achieved by employing different TFs. 

As per the discussion of the questions above, the role of TFs in improving the 
resolution of the spectrometers under the DSP-based spectral estimator needs to be 
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carefully examined. We observe that the TFs whose auto-covariance functions resemble 
that of a Dirac delta function acquire independent information about the closely spaced 
spectral components of the input signal spectrum under the DSP-based spectral estimator. 
Filters with random-TFs possess such auto-covariance. Based on our study, we show that 
it is possible to design filters with random-TFs using thin-film technology and improve 
the resolution up to 7-fold compared to the filters with non-ideal transmittances in [5]. 

The concept of random-TFs goes back to the 1970s. Different aspects of the random-
TFs have been studied in the past [9–11]. In [9], the author has studied the maximum 
information transmission rate of an optical filter with random transmittance. A laser-
based velocimeter is designed in [10] based on random transmittance patterns. In [11], the 
authors have designed a holographic-based sensor using random transmittances that are 
generated by using random gratings. As per our knowledge, however, no one has 
designed or reported filters with random transmittance for improving the resolution of a 
spectrometer. 

This paper is organized as follows: Section 2 presents the system model, and Section 
3 discusses in detail the need for designing filters with random transmittances for 
improving resolution. Section 4 discusses the design of random-transmittance filters 
using thin-film technology, and Section 5 presents the concept of the resolution of a 
spectrometer. Experimental results are discussed in Section 6, and Section 7 concludes 
the paper. 

2. System description 

We consider a spectrometer that consists of a planar filter array with M filters arranged in 
a 2D fashion as shown in Fig. 1. Each of these filters acts as a wavelength-selective 
device. Each filter is specified in terms of a transmittance function (TF), 

( ) , 1,2, , ,iT i Mλ =   which indicates the fraction of input light that the filter allows at 

each unit of wavelength. We note that ( )iT λ  is a continuous (analog) function of 

wavelength. Each filter is attached to a CCD element that converts light into electrical 
energy. The output of each of the CCD elements is sampled to form an 1M ×  vector y , 
which is called a raw spectrum. 

 

Fig. 1. Schematic of the proposed filter-array-based spectrometer. 

Each sample of the raw spectrum denotes the projection (inner product) of the input 
signal spectrum onto a TF. That is, the ith sample of the raw spectrum is obtained as 

 ( ) ( ) 1,2, , ,,i i iy x T d w i M= + = λ λ λ  (1) 

where ( )x λ  is the input signal spectrum and 
i

w denotes a Gaussian noise sample with 

zero-mean and variance 2σ . Thus, each raw spectrum sample contains information about 
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the input signal spectrum acquired by a single filter in the filter array. We observe that the 
model in Eq. (1) for the raw spectrum can be used to describe the raw spectrum of a 
grating-based spectrometer as well. Grating-based spectrometers are a more conventional 
way of implementing spectrometers [1]. The raw-spectrum model for the grating-based 
spectrometer is given [1, p. 339, Eq. (9.5)] by 

 ( ) ( ) 1,2, , ,,ig x h i d i M= − Δ = λ λ λ  (2) 

where 
i

g  is the detected spectral intensity at the ith CCD element, ( )x λ  is again the input 

signal spectrum, ( )h λ  is the system impulse response or the instrumental function, and 

Δ  is the sampling interval. The system impulse response ( )h λ  denotes the overall 

impulse response of the complete system from the slit to the CCD sensor, including the 
transmittances of the slit and the grating. We note that the raw-spectrum models of the 
modern filter-based and conventional grating-based spectrometers are similar in their 
integral form input-output relationship. The role of ( )h λ  in the grating-based 

spectrometer is taken by the TF, ( )iT λ , in the filter-array-based spectrometers. 

Modern filter-array-based spectrometers [4–8] process the raw spectrum using a DSP 
algorithm or an estimator to recover the input signal spectrum. The data model for the 
raw spectrum, y , which is an input to the DSP algorithm can be represented [4] as a 
system of linear equations: 

 where 0 .= D + ≥y x w x  (3) 

In Eq. (3), the 1N ×  vector x  contains the samples of the original signal spectrum 
having an operating bandwidth of Wλ , and the matrix D is an M N×  TF matrix. Each 

row of D is the TF of a filter. We observe that the matrix D contains only non-negative 
values as light transmittance is always non-negative. 

In this paper, since we are dealing with improving resolution, the value of N is set to 
be greater than M, so N > M. That is, the number of samples of x is greater than the 
number of filters. The reason for setting N > M is that resolution in filter-array-based 
spectrometers is limited by the number of filters M (as will be discussed in detail in 
Section 3.1). Thus, in order to increase resolution beyond this limit set by the fixed 
number of filters M, the value of N should be greater than M. By setting N > M, we note 
that the noise-free system of equations in Eq. (3) is underdetermined. We also note then 

that in Eq. (3), the spacing between the samples of x  is W
N N

λλΔ = , while the spacing 

between the samples of the raw spectrum y  is W
M M

λλΔ = . 

Recently, sparse representation of the input signal spectrum, x , has drawn 
considerable attention [4–6]. The aim of sparse representation is to decompose the signal 
spectrum into its constituent spectral (wavelength) components. For example, the signal 
spectrum of a low-power mercury lamp can be decomposed into its seven wavelength 
components, whereas the rest of the wavelength components are zero-valued. In general, 
any signal spectrum vector x  in Eq. (3) can be equivalently represented as a sparse 
vector s  using a linear transform matrix G, i.e., G=x s . The vector s  is called a K-
sparse vector. In this paper, we refer to s as a sparse spectrum. It contains K non-zero 
values and N K−  zero-valued components, K N . The K non-zero values of s  
indicate the intensities of the spectral (wavelength) components that constitute x. The set 
of K wavelengths corresponding to those intensities is called the support set. Thus, each 
element of the support set indicates the wavelengths (in nm) that are present in the signal 
spectrum. The intensities of the remaining N - K wavelength components of s are zero. 

The matrix G is called the kernel matrix, and it is of size N N× . The columns of G  
are chosen as functions that preserve the natural shape of the signal spectrum. Gaussian 
kernels are widely used for signal spectrum modeling [8]. The other possible non-
Gaussian kernels are secant hyperbolic and Lorentzian [1]. To construct G, we need to 
know only a single kernel function, the width of which is controlled by a parameter called 
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full-width at half-maximum (FWHM). When the FWHM is small, the width of the kernel 
function is also small, and vice versa. Once the kernel function is chosen, it is sampled, 
and the sampled version of the kernel function is considered as the first column of G. The 
remaining 1N −  columns of G are just shifted versions of the first column [6]. We 
observe that the Gaussian kernel has a uniform width that models narrowband light 
sources. For modeling broadband light sources, one may require kernels with varying 
widths, as discussed in [6]. In this paper, we consider only narrowband sources. With the 
sparse modeling of the input signal spectrum, Eq. (3) can be written as 

  + = + where s 0 .
A

DG A= ≥y s w s w  (4) 

The goal of the DSP algorithm or the spectral estimator is to obtain an estimate ŝ  f s 
from the raw spectrum y,  given the matrices D and G. 

3. Proposed transmittance functions 

3.1. Introduction: Transmittance functions 

The transmittance function (TF) of an optical filter is a waveform that has a shape that 
dictates the fraction of input light that the filter transmits at various wavelengths. The 
conventional approach is to attempt to design TFs with an ideal shape, i.e., a sharp brick 
wall as shown in Fig. 2(a). In Fig. 2(a), we show only three filters out of 40 in a filter 
array. Ideal filters allow light only for desired wavelengths, called the passband, and 
completely stop the remaining wavelengths, called the stopband. In addition, from Fig. 
2(a), we note that the passbands of the ideal TFs do not overlap with each other. 

 

Fig. 2. Transmittances of (a) ideal filters (b) non-ideal filters. 

Ideal filters are desired for two reasons. First, the raw spectrum (Eq. (3)) obtained by 
employing the ideal TFs is a direct estimate of the signal spectrum, and hence, there is no 
need for a DSP algorithm. This is because each sample of the raw spectrum is a 
projection (Sec. 2) of the input signal spectrum with an ideal TF. Since ideal TFs are non-
overlapping by design, each sample of the raw spectrum only contains information about 
the spectral (wavelength) components that correspond to a single passband. Second, any 
two spectral components of the input signal spectrum that are one passband spacing apart 
are distinguishable (resolvable) in the raw spectrum. If there are any two spectral 
components separated by less than a passband width, they cannot be resolved. In order to 
resolve such spectral components, the passband width of each filter should be decreased. 
Consequently, this increases the number of TFs (number of filters) in order to cover the 
entire operating bandwidth. Thus, the resolution of the filter-array-based spectrometers 
with ideal TFs is limited by the number of filters, M. Since the spacing between the 

samples of the raw spectrum is W
M M

λλΔ = , it was believed to be the limit on the 
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resolution of filter-array-based spectrometers. This limit is the same for the more 
conventional grating-based spectrometer with a CCD array consisting of a total of M 
pixels. That is, by using the ideal system impulse response ( ( ) ( )h λ δ λ= , the Dirac delta), 

the spacing between the samples of the raw spectrum of a grating-based spectrometer is 

also W
M M

λλΔ = . 

However, filters with ideal TFs are not easy to realize in practice [2]. Therefore, non-
ideal TFs are inevitable in spectrometers. The shapes of the practical non-ideal TFs 
employed in a typical filter-array spectrometer [7] are shown in Fig. 2(b). These TFs are 
not purposely designed in such shapes but are instead accidentally obtained in the micro-
level processing of implementing the ideal filters. Unlike the ideal TFs, the waveforms of 
non-ideal TFs are smooth functions of wavelength. In addition, as seen from Fig. 2(b), the 
passband of each filter’s TF leaks into the passbands of neighboring filters. Hence, non-
ideal TFs have considerable overlap with each other. Non-ideal TFs are considered worse 
for the signal spectrum estimation process in conventional wisdom. The reason is that 
each sample of the raw spectrum now contains information about the spectral components 
not only from its own band but also from the neighboring filters’ bands, viz. interferences. 
The interference from the use of non-ideal TFs causes severe distortion in the raw 
spectrum. Therefore, for the spectrometers with non-ideal TFs, post-processing of the raw 
spectrum using DSP algorithms is inevitable. These algorithms are designed with the aim 
of extracting the constituent spectral components (sparse spectrum) of the input signal 
spectrum from the raw spectrum y, via Eq. (4). 

A recent recovery algorithm, reported in [5], is tailor-made for spectrometers. This 
algorithm is based on a DSP optimization tool called 1L -norm minimization. 1L -norm 

minimization is a recent approach more suitable for solving a noise-corrupted 
underdetermined system of linear equations such as Eq. (4) than a classical least-squares 
approach [12–14]. The minimization problem for the recovery of the sparse signal 
spectrum s  in Eq. (4) can be expressed as: 

 
1 2

0ˆ min subject to ,
s

DG ε ≥= ≤s s s - y s   (5) 

where ε  is a small positive constant. 
Note that the problem in Eq. (5) is a bit different from the standard L1-norm 

minimization approach with the inclusion of the additional non-negative constraint, 0≥s . 
In order to find the non-negative spectral estimate ŝ , the authors in [5] have used a DSP 
algorithm that was reported in [15]. In [15], the authors have derived an algorithm using 
the modern interior point method. They have shown that the performance of their 
algorithm is best when compared to the standard L1-norm minimization algorithms such 
as L1 magic [14] and LASSO [16], which do not use the additional information. In 
addition, they have shown that their algorithm is robust against the observation noise, 
stable, and competitive with the existing algorithms. Using the algorithm in [15] for 
spectrometers, the authors in [5] have shown an improvement in resolution to about a 
factor of six below the resolution limit. In addition, the authors in [5] have provided a hint 
that the recovery performance (and hence the resolution) of the algorithm depends on the 
design of the TF matrix D. 

Recently, fast algorithms for L1-norm minimization such as FISTA [17], FOM [18], 
and ADMM-based algorithms [19] have gained considerable interest among the imaging 
community. In imaging systems [20–23], the number of measurements (typically more 
than a few million) is much more than the number of measurements used in the 
miniaturized spectrometers. Consequently, these imaging systems should be capable of 
handling large amounts of data efficiently; for spectrometers, however, the accuracy is 
more important than the efficiency. It is well known that the interior-point-method-based 
algorithms provide good accuracy. Thus, in this paper, we use the same algorithm that 
was used in [5]. Readers who may be interested in implementing fast algorithms for 
spectrometers can refer to the approaches in [17–19]. 
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In this paper, our central goal is to design the TF matrix D in order to enhance the 
resolution. That is, we use the spectral estimation algorithm in [5] and show how to 
design the TF matrix D (which in turn determines the filter transmittances) that helps the 
algorithm to improve resolution. We show that by using our proposed TF matrix, it is 
possible to enhance resolution 7-fold compared to what was achieved in [5]. 

3.2. Motivations for new TF design 

In this paper, we aim to present a new approach to further enhance (as compared to what 
was achieved in [5]) the resolution of the spectrometers by designing TFs. The 
motivations behind designing new TFs are based on the following observations: 

1. We recall that each sample of the raw spectrum is modeled as a projection of the 
input signal spectrum onto a filter TF. In spectrometers with non-ideal TFs, the 
projection captures not only the in-band but also the out-of-band information 
about spectral components in each sample of the raw spectrum. Traditionally, 
when no DSP is used, unintentional capturing of the out-of-band information 
that is mixed with the information of the desired band is considered as pure 
distortion of the spectral components. In a completely different viewpoint, 
however, it can be considered as additional source from which useful 
information can be extracted. Namely, because of the shapes of the non-ideal 
filters, each sample of the raw spectrum contains extra information about the 
entire signal spectrum rather than the only about a particular band like the 
sample of an ideal TF does. That is, each non-ideal filter collects information 
from the entire signal spectrum and maps it into a single sample of the raw 
spectrum. Since the shape of each non-ideal filter is different from that of all 
other non-ideal filters, we can get many such independent “holistic” views of the 
entire signal spectrum from each sample of the raw spectrum. This led us to the 
very natural question: What kind of TFs should provide more holistic and 
independent information about the spectral components in each sample of the 
raw spectrum? 

2. The modern, L1-norm-minimization-based DSP spectral estimator [5] recovers the 
spectral components very well from the distorted raw spectrum, prompting us to 
investigate the reason for this unexpected level of performance. We found that 
the problem of resolving (identifying) the spectral components essentially 
reduces to the unique identification of s from y. The success of this identification 
depends on the matrices D and G in Eq. (4). For a given class of signal spectrum, 
the matrix G is fixed. However, the matrix D can be determined from the design 
and fabrication of the filter TFs. Hence, we conclude that a good design for the 
TFs is important in order for the DSP algorithm to recover the spectral 
components from the raw spectrum. 

Thus, it is crucial to design TFs that 1) capture holistic and independent information 
about the constituent spectral components and 2) aid in recovering those spectral 
components. 

3.3. Design of new TFs 

We observe from the previous section that the amount of additional information acquired 
in each sample of the raw spectrum is solely proportional to the shape of the TFs. By 
shaping the TFs through a proper design procedure, it is possible to extract much 
information about the input signal spectrum. Therefore, the TF matrix D that senses the 
maximum amount of information about the signal spectrum appears to be the best choice 
for the spectrometer case, and hence, it is our design goal. We note here that a similar 
design notion arises in the emerging signal processing research area called compressive 
sensing (CS) where a sensing matrix [12, 13] takes the role of the TF matrix in acquiring 
a signal. 

In CS, the raw signal samples acquired using the matrix D is modeled as 
DG= + +Ay s w= s w , which is the same as the raw spectrum model in Eq. (4). In CS, 
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the matrix D is referred to as the sensing matrix; the matrix G, the sparsifying basis; the 
vector s, a K-sparse signal; and As is called the compressed signal. In CS, the sensing 
matrix D is chosen such that it captures enough information for the unique identification 
of the signal s with as few samples of As (the compressed signal) as possible. In order to 
quantify the ability of the sensing matrix to acquire enough information about the signal 
in a minimum number of raw samples, the mutual coherence metric, μ , is used [12, 14]. 

The mutual coherence of the matrix A = DG is defined as follows: 

 max , , 1, ,i j
i j

a a i j Nμ
≠

= =   (6) 

where ia is the ith column of A. The μ  is a measure of the maximum possible correlation 

among pairs of columns of A. The smaller μ  is, the smaller the correlation among the 

columns of A is. The smaller the correlation is, the better the reconstruction accuracy of s 
from y is. Thus in CS, it is desirable to design the sensing matrix D, such that the matrix 
A = DG has low coherence. 

It is well known in CS that sensing matrices D, the entries of which are drawn from 
i.i.d. samples of a random variable, exhibit low coherence. Such matrices are called 
random sensing matrices. These matrices are capable of capturing enough information 
about the signal s to perform reconstruction from a small number of samples of y. 
Therefore, random sensing matrices are widely employed in CS-based applications. 

It appears that the goal of designing a sensing matrix in CS resembles that of TF 
matrix design. That is, both the TF and the sensing matrix should be designed to capture 
sufficient information to permit the faithful recovery of the signal. Since both of these 
goals are met by random matrices [12], in this paper, we consider a random matrix as the 
TF matrix rather than using the non-ideal TF matrix as in [5–8]. Since each row of the TF 
matrix denotes a transmittance function of a filter, a row of the random TF matrix is 
termed a random transmittance function. That is, a filter with a transmittance that exhibits 
random fluctuations as opposed to possessing a pre-designed transmittance shape is 
termed a random transmittance function. Thus, our goal of improving resolution reduces 
to the design of a set of M filters with random TFs. A set of TFs ( ){ }

i
T λ  is referred to as 

random when 
1) The auto-covariance function (ACF) of each TF in the set is close to the Dirac-

delta function. That is, 

 ( ) ( )[ ] ( )[ ] , 1, 2, , ,i ii iT m T m d i Mδ λ λ λ λ λΔ ≈ + Δ − =−   (7) 

where ( ).δ  is the Dirac-delta function, 
i

m  is the mean of ( )iT λ , and λΔ  is the 

wavelength difference, and, 
2) when the cross-covariance function (CCF) between each pair of TFs in the set is 

very small. That is, ( )[ ] ( ), ,i j i i j jT m T m d i jε λ λ λ= ≠ − −  , where ,i jε  is a small number 

close to zero. We discuss in detail the design of filters with such random transmittance in 
Section 4 using thin-film technology. 

3.4. Significance of the proposed approach 

The ideas in this paper mirror some of the prior work in CS with regard to the use of 
random matrices for signal acquisition and recovery. We briefly compare our approach to 
other well-known CS imaging approaches such as the single-pixel camera (SPC) [20], the 
P2C2 video system [21], the hyperspectral design (HSD) [22], and the CASSI system 
[23]. 

First, we note that the SPC is a well-known CS-based imaging system [20]. In SPC, in 
order to compressively sample a scene by optical random linear projection, a digital 
micromirror device (DMD) was used together with a biconvex lens. The DMD is 
programmed with random 0/1 Walsh patterns [20]. With the availability of such optical 
devices, random projections of a scene were made almost effortlessly without going 
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through a pixel-by-pixel scanning, and as a result, it was possible to realize the concept of 
SPC in practice. The P2C2 video system [21] extends the SPC architecture to video 
acquisition, and hence it also employs the random 0/1 Walsh patterns. We observe that in 
both the systems the measurement matrices are 0/1 Walsh matrices. 

HSD [22] and CASSI [23] are spectral imaging systems. These systems collect a 
scene as a set of spatial images. Each image represents a range of an electromagnetic 
spectrum also known as a spectral band. These spatial images are arranged along various 
spectral bands to form a three-dimensional structure called a hyperspectral data cube. In 
HSD, the data cube is modeled as a linear combination of the spectral signatures of 
endmembers (that is, objects in a scene such as a road, grass, trees, or a roof), where each 
spectral signature can be obtained from a publicly accessible database such as HYDICE 
Urban hyperspectral data as used in [22]. Then, the HSD exploits the spatial and spectral 
redundancies of the data cube by using CS. In particular, HSD adopts the concept of SPC 
for acquisition of the data cube, and hence they use the DMD with 0/1 Walsh patterns. In 
contrast to HSD, the CASSI system models the data cube as a linear combination of two-
dimensional wavelets and then acquires the data cube using the coded aperture masks. 
Thus, the measurement matrices in the CASSI system are also random binary 0/1 code 
matrices. We observe that both the HSD and CASSI systems compressively acquire the 
spectral data by means of spatial domain random measurement matrices, each element of 
which is either 0 or 1. 

In contrast to the above imaging systems, we note that in our proposed spectrometer, 
we acquire the spectral data or signal spectrum using random spectral filters (not spatial). 
That is, as discussed in Section 2, the sensing of the signal spectrum is performed using 
random analog optical TFs, which are non-negative continuous functions of wavelength. 
We observe that the set of optical TFs play a sensing role as significant as that of the 
DMD in single-pixel cameras or the coded aperture masks. In addition, the TFs have 
values that can be any real number between 0 and 1, in contrast to the 0/1 patterns in the 
imaging applications. Table 1 summarizes the measurement matrices and their 
implementation in various imaging applications. 

Second, in optical applications the sensing of signals and their subsequent recovery is 
accomplished with a sensing matrix stored beforehand. For example, in [20, p. 85], the 
DMD array stores Walsh, Hadamard, or noiselet patterns. The best matrices or the 
matrices of interest were designed in the digital domain. They were then used to dither 
the micromirrors back and forth in the DMD. We call this the digital design first 
approach here, as depicted in Fig. 3. In spectrometers, the actual mechanism of sensing is 
done using the analog TFs, as per Eq. (1), and then the signal spectrum recovery is done 
using its digital model. We note here that the digital TFs can be losslessly obtained from 
the TFs of analog thin-film filters (discussed in the next section). Thus, once the analog 
TFs are designed, they can be digitally represented in the TF matrix in Eq. (4) for 
spectrum recovery. We call this the analog design first approach in this paper (see Fig. 3), 
in contrast to the digital design first approach. The comparison of the analog design first 
approach with the digital design first approach may unearth a noteworthy characteristic of 
the spectrometer designs. Let us elaborate a little further. 

Table 1. Measurement Matrices and Their Implementation in Various Imaging 
Applications 

Application 
Measurement matrix 

/ Implementation 
Page number 

Single-pixel camera (2008) [20] Random 0/1 Walsh matrix 
DMD array 

87 
84 

P2C2 system for sensing videos 
(2011) [21] 

Random 0/1 Walsh matrix 
DMD array 

331 
335 

Hyperspectral data processing 
(2009) [22] 

Random 0/1 Walsh matrix 
DMD array 

9 
13 

Coded aperture snapshot spectral 
imaging (CASSI) system for 

hyperspectral video (2012) [23] 

Binary CASSI code matrix 
Binary coded mask 

6 
15 
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For spectrometers, it is desirable to design a set of random analog TFs with the ACF 
of each TF shaped as close as possible to the Dirac delta function. The narrower the width 
of the ACF is, the better the set is at resolving the fine details of the input spectrum. Thus, 
the resolution of a spectrometer is closely related to the width of the ACF of the TF. In 
the analog design first approach, due to the optical nature of the thin-film filters, there is 
an inevitable practical limit on how narrow the width of an ACF can be made. 

We note that there is no such limit for the digital design. That is, in the digital case, 
the width of the ACF can be made as arbitrarily narrow as one wishes. For example, this 
can be achieved by dividing the operating wavelength range by the number of samples, 
say N, and hence obtaining any resolution we wish to have, and then by digitally 
generating a TF of length N by drawing independent samples from a probability 
distribution such as the 0/1 Walsh matrix with N = 65,536 as in [20] or as in P2C2 video 
systems [21]. Since the samples of the TF are independently and identically generated 
from the given distribution, the ACF of the TF is always as close as possible to the Dirac 
delta function. This means that one can increase the resolution just by increasing N. This 
may work for image recovery applications, subject to the creation of a DMD array with 
so many more elements, but not for spectrometers. For spectrometers, the inherent width 
of the ACF of the analog TFs must be preserved in its digital TFs. If we first design a 
random (white) digital TF with an ACF very close to the Dirac delta, the digital TF may 
not be realizable as the TF of an analog filter. Thus, the resolution in the digital domain is 
a useless concept unless a way of constructing the practical analog counterpart of the 
digital TF is given. 

 

Fig. 3. Summary of analog and digital design first approaches. 

Our main contribution is twofold. The first part shows a specific way to design a set 
of optical analog filters with TFs that are white and uncorrelated with each other. The 
second part illustrates that significant improvement in resolution can be achieved with 
such a filter design. 

3.5. Characterizing random TFs 

Usually, the degree of correlation of a function over an interval is characterized in terms 
of the auto-covariance function (ACF). A function can be correlated with a time lagged 
(or advanced) version of itself. Thus, the ACF is a function of the time difference (time 
lag). The ACF reveals the correlation among the samples of the function. Similarly, a 
random TF can be characterized in terms of their ACF, which is now a function of 
wavelength difference. The shape of the ACF reveals the degree of similarity 
(correlation) between the light intensities at two different wavelengths of the random TF. 
If the shape of the ACF is wide with slowly decaying tails, then the TF is said to be 
highly correlated. On the other hand, if the TF has low correlation at different 
wavelengths, then the shape of the ACF is narrow with rapidly decaying tails, resembling 
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a Dirac delta function. The shape of the Dirac delta function is ideal for an ACF. The 
width of the ACF measures the degree of correlation. That is, an ACF with narrow width 
exhibits low correlation, and vice versa. A Dirac-delta-like ACF is required in 
applications such as determining the modulation transfer function of an optical system 
[24] or detecting displacements or phase gradients in holography [11]. This evidence 
shows that filters with a Dirac-delta-like ACF are crucial in optical systems and can be 
designed in practice. 

Filters having ACFs that resemble that of a Dirac delta are preferred for L1-norm-
minimization-based spectrometers. The reason is that a Dirac-delta-like ACF has narrow 
width, and hence two spectral components that are separated by more than this width are 
sensed differently by the TF. This independent information about the spectral components 
aids the L1-norm-based algorithms to resolve closely spaced spectral components. Thus, 
the resolution of a spectrometer has a close connection to the width of the ACF. By using 
random TFs, we can reduce the width of the ACF and hence the spacing between two 
spectral components that are independently sensed. On the other hand, non-ideal TFs 
exhibit high correlation, and hence the widths of the ACFs are wider than those of the 
random TFs. Hence, information gathered about the two nearby spectral components is 
not too independent. This reduces the ability of the spectrometer to distinguish the two 
spectral components. Thus, our goal in this paper is to design the transmittances of filters 
with Dirac-delta-like ACFs. We call them random TFs, while the TFs in [5], correlated 
TFs, in the subsequent discussions. 

4. Design of the proposed random transmittance 

In the previous section, we introduced random TFs with the goal of improving the 
resolution of a spectrometer system. Towards this end, we ask ourselves the following 
question: is it possible, in practice, to design and implement random TFs in the analog 
domain? If yes, how should one be designed? We have found that filters with random 
transmittance can be designed and implemented by using thin-film optical filters [25, 26] 
in the way explained in this section. 

A thin-film optical filter consists of multiple layers of high- and low-refractive index 
materials (dielectrics) deposited on a substrate [26]. Each layer has a thickness usually of 
one quarter-wavelength. Thin-film filters work based on the interference of light 
transmitted or reflected at the boundaries between the layers. This interference is 
wavelength-dependent; that is, depending on the number of layers, the index of 
refraction, and the thicknesses of the layers, the transmission (or reflection) of light 
through the filter changes with wavelength, and hence the overall transmittance changes. 
By controlling the thickness of each layer and the number of layers, optical engineers 
design various filter transmittances such as band-pass filters. In this section, we show 
how varying the thickness of each layer generates random transmittances using the design 
methodology in [25]. 

4.1 Thin-film-based random transmittance filter design 

In this section, we first briefly discuss the generic design of thin-film filters to generate 
band-pass-like transmittances. We then motivate and show how to design random 
transmittances using the same thin-film structure by varying only the thicknesses of the 
layers. Let us consider a thin-film filter with m dielectric layers between the input 
medium (air) and the output medium (substrate). Let an and sn denote the refractive 

indices of the input and output medium, while Hn  and Ln  refer to the refractive indices of 

the high-refractive-index and low-refractive-index intermediate dielectric layers, 
respectively, and 

k
d  is the thickness of layer k. Assuming no dielectric losses, the 

transmittance of the thin-film filter as a function of wavelength ( )λ  and the angle of the 
incident light ( )θ  is given [25] by 

 ( ) ( )2 2

TE TM
1
2, 1T = − +λ θ ρ ρ  (8) 
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where 
TE

ρ  and 
TM

ρ  are power parameters that measure the powers that are contained in 

the TE and TM polarization modes of the input light. 
The power parameters in Eq. (8) are calculated using a recursive set of equations 

shown in Table 2. We note from Table 2 that the power parameters (and hence the 
transmittance) depend on the thickness and the refractive index of the different media, as 
well as on the wavelength and angle of the incident light. Optical engineers use these 
recursive equations to design the transmittance shapes, such as the band-pass profile, that 
are required in practice. For example, the typical band-pass transmittances designed using 
Eq. (8) for various angles of incidence are provided in [25, p. 3765, Fig. (1)]. Also, it is 
shown in [25, p. 3767, Fig. (3)] that the band-pass transmittances designed using the 
equations in Table 2 are accurate and are close to the actual transmittances obtained in 
practice. In Table 2, kθ  denotes the angle that the incident light makes with the normal as 

it travels from layer k to k + 1, 
k

η  is the effective complex-valued refractive index seen by 

the light as it enters layer k. In order to calculate 
TE

ρ  and 
TM

ρ , we first start with 
m m

Nη = , 

and we apply the equation for 
k

η  recursively until we arrive at 
2

η , which when 

substituted into the equation for ρ  in Table 2 yields either 
TE

ρ  or 
TM

ρ . 

In this paper, we adopt the design equations in Table 2 to generate the random 
transmittances. We are able to generate the random transmittances based on the following 
observation: We first observed that thin-film filters can provide band-pass-like 
transmittance because of the principle of interference of light beams. That is, the incident 
light, when traveling through the thin-film filter, suffers different phase shifts as a result 
of propagating through different layers. The phase shifts depend on the refractive indices, 
the thicknesses of the layers, and the wavelength of the incident light. After transmission 
through the layers, the different beams that reappear at the filter output combine (add) 
either constructively or destructively depending on their path lengths. The constructive 
addition leads to increased transmission, and destructive addition leads to decreased 
transmission of the incident light. Since these constructive and destructive additions are 
wavelength-dependent, optical engineers usually design the thicknesses of the layers such 
that constructive interference occurs only for certain wavelengths and thereby achieve 
band-pass-like transmittances. 

Table 2. Recursive Equations for Calculating Power Parameters 

1 2

1 2

N

N

−
=

+

η
ρ

η
 

{ / cos TE
, {2, ..., }

cos TM

k k

k

k k

n for
N k m

n for
= ∈

θ

θ
 

 

1

1

cos sin
, {2, ..., }

cos sin

k k k k
k k

k k k k

jN
N k m

N j

+

+

+
= ∈

+

η β β
η

β η β
 

 

1 1
1 {2, ..., }sin sin ,k

k k

k

k m
n

n
− −

− ∈=
 
 
 

θ θ  

( )2 cos /k k k kn d=β π θ λ  

To avoid boundary reflections (and hence to obtain efficient transmission), it is 
preferred to have a 180° phase shift between the reflected beams at the boundary between 
the layers. This phase difference directly corresponds to a / 2λ  phase shift of a sinusoidal 
wave, which can best be accomplished by setting the optical thickness of the layers to 

/ 4λ . Hence, in practice, stacks of quarter-wavelength layers are used as a basic building 
block [26] for many types of thin-film filters such as band-pass, long-wave-pass. For 
example, thin-film layers with thickness 

normal
/ 4nλ  are very common in practice, where 

normal
λ  is the center wavelength of the band-pass filter with normal incidence and n is the 
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refractive index of the layer. Thus, we note that the filter transmittances have a direct 
relationship with the thicknesses of the layers. Based on these observations, we inferred 
that it is possible to create variations in the filter transmittances by just changing the 
thicknesses of the layers. 

In this paper, in order to generate random transmittances, we propose to vary the 
thicknesses of the filters, in contrast with the conventional fixed quarter-wavelength 
thickness. Specifically, we vary the thicknesses of the layers as 

normal
/ Uλ , where U is a 

uniform random variable that has a mean and variance that are chosen such that the 
average thickness of a layer is on the order of mμ , similar to the thickness of the quarter-

wavelength layer. We note that once we generate the random thicknesses (
normal

/ Uλ ), they 

are inserted into the design, and hence the thicknesses are no longer random after they are 
generated. We use the same design equations shown in Table 2. The only parameter that 
changes in the design is 

k
β  (in Table 2), which depends on the thickness. The other 

recursive equations stay the same. We note that we can produce M independent random 
filters by generating M different sets of random thicknesses. 

4.2. Designed random transmittances and their ACF and CCF 

Figure 4(a) shows the random TFs of three filters (5, 20, and 34) generated by the thin-
film method for the specifications given in Section 6. It is apparent from Fig. 4(a) that it 
is possible to generate a random transmittance just by varying the thickness of the layers 
in the thin-film filters. Figure 4(b) shows the ACF of the transmittance of Filter-5. It is 
evident from Fig. 4(b) that the shape of the ACF of thin-film-based transmittances is 
Dirac-delta-like with near-zero correlations other than the zeroth lag, which is what we 
desire in the proposed spectrometers. Figure 4(c) shows the CCF between Filter-5 and 
Filter-20. We infer from Fig. 4(c) that the CCF values are near zero for all lags, as 
expected. We obtained similar ACFs and CCFs for the other filters as well. An additional 
advantage of using the random TFs is that no stringent filter design constraint, like 
keeping an exact quarter-wavelength thickness, has to be followed, and this opens the 
way for mass production. In Section 6, we demonstrate the improvement in resolution 
obtained by using the proposed random transmittances over the non-ideal transmittances 
in [5–8]. The implementation of the random transmittance filter array is currently 
underway in our laboratory. 
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Fig. 4. (a) Random transmittances produced by the thin-film method. (b) ACF of Filter-5. 
(c) CCF between Filter-5 and Filter-20. 

5. Resolution of filter-array-based spectrometers 

Traditionally, the resolution of a spectrometer characterizes its ability to distinguish the 
peaks of two closely spaced spectral components of the input signal spectrum. The 
spectrometers that identify the closely spaced spectral components reveal fine details 
about the input signal spectrum. Thus, the quality of the spectrometers is usually 
specified in terms of this resolution. This was perhaps good enough for the conventional 
spectrometers but not appropriate for those that use a DSP algorithm. In this section, 
therefore, we first introduce a metric useful for defining the resolution that can be 
achieved by using various TF matrices introduced in Section 3. We then provide a new 
definition of resolution suitable for DSP-based filter-array spectrometers. 

5.1. Performance metric useful for defining resolution 

As discussed in Section 3.2, the problem of resolving distinct spectral components is 
equivalent to the exact recovery of the sparse spectral components of Eq. (4) by DSP 
algorithms. There are infinitely many different sparse spectra s. Thus, to determine the 
resolution, it is required to test the recovery of as many sparse spectra s as possible for a 
given TF matrix. Usually, a Monte Carlo simulation is used to evaluate if, on average, a 
specified resolution can be achieved by a TF matrix. The drawback of Monte Carlo 
simulation is that it is time-consuming. Therefore, in this section, we introduce a metric 
called genie-aided mean square error (g.MSE). It is a closed-form mean square error 
expression obtained assuming that the estimator knows the support set, i.e., a set of 
constituent wavelengths of the input signal spectrum. Thus, g.MSE can be used to 
indicate the minimum MSE obtainable by the 1L -norm-based DSP estimator. We will 
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provide a comparison based on the more practical MSE as well and discuss in Section 6 
how well the g.MSE predicts the MSE that is achieved in practice. 

Consider again the data model DG= + = +Ay s w s w  given by Eq. (4). Given y and 

A, the aim of the 1L -norm-based DSP algorithms is to find an estimate 

s  of s. The DSP 

algorithm should find: 1) a set of constituent wavelengths (the support set) and 2) the 
non-zero intensity values corresponding to those constituent wavelengths. Let us suppose 
that the estimator exactly knows the support set. Then, by removing all the non-support 
set elements from the data model, the raw spectrum can be written as k k= +Ay s w , 

where ks  is a 1K ×  vector that contains the K non-zero intensity values of s, and kA  is 

the M K×  submatrix, the columns of which are the K corresponding columns of A. Note 
that this is an over-determined problem now, and finding 


s  essentially reduces to 

estimating the intensity vector ks  from y. 
An estimator that has complete knowledge of the support set is called an oracle 

estimator [27]. By making use of this prior information, the oracle estimator determines 

ks  from y using the conventional least-squares approach. The minimum MSE of the 

oracle estimator is termed a genie-aided MSE (g.MSE). This g.MSE provides a tight 
lower bound on the accuracy of an estimator that finds ks  from y. In this paper, we use 

the g.MSE to predict the maximum achievable resolution, because 

1. It is often used as a golden standard against which the performance of practical 
algorithms can be compared [27]. 

2. It can be pre-computed, with just the knowledge of A. 
We now define the g.MSE. Let k


s be the estimate of ks , the 1K × intensity vector. Let 

( )k k= − se s s  be the error vector. The co-variance of the error vector se  is then given by 

Cs =    T
s se e  = ( ) 12 T

k kA Aσ
−

 where kA  denotes an M K×  submatrix of A obtained by 

taking only those K columns that correspond to K wavelengths in the support set. We note 
that the expectation operation is taken over the probability distribution of the noise 

vector. The matrix Cs is of size K K× . Now, the average MSE, 
2

2
( )k k

 − 
 s s , is 

calculated as ( )2

2
( )k k str C   − = =  

  T
s ss s e e , where ( )str C  is the trace of the 

matrix sC . Since the input signal spectrum is k kG=x s and k kG= 
x s , the minimum MSE 

between x and 

x  with the known support set can be calculated. We define the error 

vector ( ) ( )k k kG= − = − 
xe x x s s . The co-variance of the error vector xe is then given by 

( ) 12 T T
x k k k kG A A Gσ

−
  = =C T
x xe e . Now, the average genie-aided MSE is calculated as 

 ( ) ( )( )122 2

2
g.MSE( , , ) ( ) .T T

x k k k kA K tr C tr G A A G
−

− = = =     
σ σ  T

x xx x e e  (9) 

For simplicity, we drop the arguments of g.MSE in the subsequent discussions. We note 
that the MSE that we would obtain by using any spectrum estimator is always bounded 
below by the g.MSE. 

We note from Section 2 that a sparse spectrum s contains only K non-zero wavelength 
components, and the remaining N-K wavelength components are zero. In addition, these 
K non-zero wavelength components can be present anywhere among the N possible 

wavelength components. That is, for a given N and K, there are ( )N
K  possible sets of 

locations (support sets) where each set contains K wavelengths. Therefore, we can obtain 

( )N
K  g.MSEs. Each g.MSE is for a signal spectrum with K wavelengths. We note that for 

a fixed K, increasing N increases the number of support sets exponentially. In the next 
section, we define the resolution of a DSP-based spectrometer based on the g.MSE. In 
this paper, we always express the g.MSE in decibels (dB) for convenience. 
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5.2. Resolution: A DSP-based definition 

As discussed in Section 3.1, when no DSP is used, the resolution is determined by the 

number of filters, M, in the filter array. That is, 
M

W
M

λλΔ =  is the minimum distance 

between two spectral components that can be distinguished by the spectrometer. The 
larger the number of filters is, the better the resolution is. However, in miniature 
spectrometers, the number of filters is fixed, and hence the resolution is limited. Thus, 

MλΔ  is called the resolution limit of the filter-array-based spectrometers. In order to 

further improve the resolution (beyond the resolution limit), DSP estimators are used [5]. 
These estimators exploit the sparse nature of the signal spectrum (Section 2) and employ 
L1-norm-based estimators to improve the resolution. In this section, we introduce a new 
definition to measure the resolution that can be obtained by using the DSP estimators for 
the filter-array-based spectrometers. 

We recall from Section 2 that the spacing between the samples of the input signal 

spectrum x (or equivalently s) is W
N N

λλΔ =  while the spacing between the samples of the 

raw spectrum is 
M

W
M

λλΔ = . Since M < N, M Nλ λΔ > Δ , and therefore, the raw spectrum is 

in a low-resolution state ( MλΔ ), while the signal spectrum x is in a high-resolution 

( NλΔ ) state. The high-resolution state can be realized and determined when a quality 

estimate of x is obtained for all possible x. 
A way to define the resolution of a DSP-based spectrometer therefore is to find the 

minimal distance between the spectral components that can be accurately detected by the 
DSP estimator. Since the minimal distance is the distance between any two adjacent 

spectral components, viz. W
N N

λλΔ = , as N increases, the minimal distance decreases, and 

hence the resolution increases. We may come to the point of diminishing returns when 
going beyond a certain N. We call this Nmax. In addition, we define the minimum distance 

to be 
maxmin

W
N

λλΔ = . Thus, to find this “digital resolution,” it is sufficient to find Nmax. 

We obtain Nmax using the g.MSE measure introduced in Section 4.1 as follows: We 
first fix the parameters N, M, K, G, 2σ , and a TF matrix, which are required to calculate 
the g.MSE. We then check if the condition g.MSE ≤  δ  is met for a given percentage of 

the total ( )N
K  possible support sets, where δ  is an MSE specified by the user. If the 

condition is met, it indicates that the DSP estimator is able to detect all the spectral 
components. We then increase the value of N further and check the condition again. We 
keep repeating this process (that is, increasing the value of N and checking the condition) 
until the condition is no longer met. We finally declare the largest value of N that met the 
condition as Nmax. The minimum spacing and hence the maximum achievable resolution 

of the DSP-based spectrometer is then
maxmin

W
N

λλΔ = . In this paper, we increase the value of 

N starting from M that corresponds to the resolution limit W
M M

λλΔ =  of filter-array-based 

spectrometers. We note that it is not possible to increase N indefinitely with the hope of 
obtaining a minimum spacing. There is a limit for increasing N . This limit depends only 

on the TF matrix for the fixed parameters M, K, G, and 2σ . Since the g.MSE captures all 
these parameters, it is enough to define the resolution based on the g.MSE measure. 

For a signal spectrum with K spectral components, we define the maximum resolution 
( minλΔ ) of the spectrometer as follows: 

 

{ }max

min
max

: max { , 1, } : Pr{g.MSE }

:

N N M M

W

N
λ

δ ρ

λ

= ∈ + ≤ ≥

Δ =


 (10) 

where the user-defined MSE δ  is specific to an application. It specifies the minimum 
MSE that should be guaranteed by the DSP algorithm. The notation Pr{g.MSE }δ≤  
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denotes the probability of the event g.MSE δ≤ . The sample space for the event is the set 

of all possible support sets. Each support set is mapped into a g.MSE value. The variable 
ρ , 0 1ρ≤ ≤ , denotes the probability of the event g.MSE ≤ δ . That is, the variable ρ  

represents the fraction of the total support sets that satisfy the event. We express ρ  in 

terms of percentage as 100 %ρ× . If 1ρ = , then 100%; that is, all the ( )N
K  support sets 

should satisfy the event. If 0.95ρ = , then 95% of the total number of support sets should 

satisfy the event. We say that the K spectral components are resolvable if we can find an 
N such that the probability of the event g.MSE δ≤  is greater than or equal to a 

specified ρ . We note that minλΔ  in Eq. (10) is the resolution of the DSP-based 

spectrometer whereas W
M M

λλΔ =  is the limit on the resolution of filter-array 

spectrometers. 
The definition of the resolution given by Eq. (10) is general in nature in that it can 

include prior information. For example, if we know beforehand that the signal spectral 
components occupy only a certain range of the spectrum, then this definition 
automatically incorporates this prior information. Since prior information reduces the 
number of support sets and therefore the change is only in the event g.MSE δ≤ , the 

definition of the resolution remains unaffected. Since we use g.MSE, the minimum 
possible MSE, the corresponding resolution obtained is the maximum possible by 
employing any kind of DSP-based estimator. In the next section, we evaluate the 
resolution that can be achieved by the correlated TF matrix in [5] and the proposed 
random TF matrix. 

6. Results and discussion 

In this section, we aim to investigate how much gain in terms of resolution improvement 
can be obtained by using random TFs in comparison with the correlated, non-ideal TFs in 
[5]. We first investigate the maximum possible resolution by using the definition in Eq. 
(10). We then use the L1-based DSP algorithm reported in [5] and see how much of this 
resolution can be realized in practice. We set the number of filters in the array to M = 40. 
The non-ideal TFs, for the 40 filters, have been obtained from [7], which are also used in 
[5]. The random TFs are generated using thin-film filters with m = 4 layers. We used the 
following refractive indices: 1an = , 3sn = , 4Hn = , and 1.2Ln =  (Section 4.1). The angle 

of incidence of the light at the input medium is 45°. The center wavelength 
normal

850 nmλ = . 

The thicknesses of the four layers are chosen as explained in Section 4.1, with a different 
thickness for each filter. After we generate the random TFs, we sample them, and arrange 
them in rows to form a random TF matrix. 

We choose a Gaussian kernel with an FWHM of 1 nm to generate the kernel matrix 
G. The operating wavelength range of the spectrometer is from 300 nm to 700 nm, 
corresponding to a Wλ  of 400 nm. We vary N in order to find the maximum possible 

resolution minλΔ  as per Eq. (10). The value of N  begins with M  (which corresponds to 

the resolution limit) and is set to increase in steps of 40, i.e., N = 40, 80, 120, etc. 
For 40N = , the minimum spacing between two adjacent spectral components is 

400 nm
40NλΔ =  = 10 nm (from Section 3), which is the resolution limit (maximum possible 

resolution without using a DSP estimator). We define the signal-to-noise ratio (SNR) for 

the data model in Eq. (4) as
2

2SNR
DG

Mσ
= s . We keep the SNR at 30 dB. 

We consider a sparse signal spectrum with K = 5 spectral (wavelength) components. 
The locations of these spectral components within the spectrum are random. Thus, the 

total number of possible locations (support sets) is ( )5
N  for a given N. We choose 50,000 

support sets at random from this total population. For each of these support sets, we 
calculate the g.MSE as per Eq. (9). We set 0.95ρ = . As we vary N, we note the value of 

the g.MSE below which the g.MSEs of 95% of the support sets lie. Figure 5 shows the 
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plot of the 95th-percentile MSE versus N obtained for the TF matrix in [5] and for the 
random TF matrix. 

We now set 5 dBδ = − and find Nmax. That is, we aim to find the maximum N such 

that the 95th-percentile MSE is less than 5 dB− . We observe from Fig. 5 that for the TF 

matrix in [5], the 95-percentile MSE is less than 5 dB−  when Nmax = 62. Thus, the 

maximum resolution of the DSP-based spectrometer obtained by using the TF matrix in 

[5] is 
max

400 nm
min 62 6.5 nmW

N
λλΔ = = = . Therefore, the improvement in resolution over the 

resolution limit is 1.54 (10 nm /6.5 nm). In the case of random TFs, Nmax = 405 and the 

maximum resolution obtained is 400 nm
min 405 0.99 nmλΔ = = . The improvement in resolution 

in this case is 10.1 (10 nm/0.99 nm). We observe that the random TFs provide a 
resolution improvement of approximately a factor of 7 over that of the TFs in [5]. 
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Fig. 5. g.MSE against resolution (N) for K = 5 and 50,000 support sets with 0.95=ρ . 

Table 3 summarizes the resolution obtained by using various design approaches and 
algorithms for the same filter and signal settings as before. From Table 3, we note that the 
proposed random TFs achieve 7-fold resolution improvement compared to the TFs in [5] 
and 10-fold resolution improvement when compared to the ideal TFs. 

We have also considered the non-Gaussian kernels such as Lorentzians and secant 
hyperbolic (mentioned in Section 2) for the same FWHM. Here, we report that we have 
obtained a similar resolution improvement to those obtained by using the Gaussian 
kernel. In addition, we note that comparing the resolution obtained by using ideal TFs 
with that of the random TFs is equivalent to comparing the resolution of ideal grating-
based spectrometers with the random filter-array-based spectrometer. This is because, as 
discussed in Section 3.1, the resolution limit of both of the spectrometers is the same. 
Thus, we are in one sense indirectly comparing our proposed approach with the best 
possible conventional grating-based spectrometers. 

Table 3. Summary of Filter Design Approaches and Corresponding Resolution 

 Methods Design 
approach 

Resolution Recovery method 

1 Conventional 
Ideal brick-

wall 
10 nm No DSP 

2
Correlated TFs in 

[5] 

Holistic 
design by 
accident 

10 nm Least-squares and 
adaptive 

regularization [7, 8] 

3
Correlated TFs in 

[5] 

Holistic 
design by 
accident 

6.5 nm (a 1.5-fold improvement 
compared to the ideal brick wall 

filters) 

1L  DSP estimator 

[5] 

4
Proposed Random 

TFs 

Random 
design by 
purpose 

0.99 nm (an improvement of 7-fold 
compared to the TFs in [5] and 10-fold 

compared to the ideal brick wall 
filters) 

1L  DSP estimator 

[5] 
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We now investigate the practical spectral estimate obtained by using the DSP 
estimator reported in [5] when both the non-ideal and the random TFs are used in the 
filter-array spectrometer. For this purpose, we consider a signal spectrum generated by a 
mercury arc lamp, commonly used in fluorescence microscopy applications. The original 
signal spectrum of the mercury arc lamp has five (K = 5) prominent spectral components 
located at 365 nm, 405 nm, 436 nm, 546 nm, and 579 nm [22]. We consider N = 360 and 
M = 40. Figure 6 shows the original signal spectrum of the mercury arc lamp and an 
estimate of the signal spectrum obtained by using the correlated TF matrix in [5]. Figure 
7 shows the estimated signal spectrum obtained by using the proposed random TF matrix. 

From Figs. 6 and 7, we observe the following: First, it is evident that the estimate 
obtained by using the random TFs is closer to the original signal spectrum than that of the 
estimate using the non-ideal, correlated TFs. Second, the five spectral components of the 
original signal spectrum are determined correctly by the random TFs. However, the non-
ideal TFs miss all five of the spectral components. Both the non-ideal and random TFs 
detect additional spectral components that are not present in the original signal spectrum. 
These additional spectral components appear as small bumps in Figs. 6 and 7. 

In order to investigate how much resolution can be obtained using the DSP algorithm, 
we computed the MSE of the spectral estimates shown in Figs. 6 and 7 and compared 
them with the theoretical MSE shown in Fig. 5. The MSE of the spectral estimate by the 
random TFs (in Fig. 7) is about –5.5 dB which is just 1.3 dB away from the theoretical 
95th-percentile MSE of –6.8 dB (in Fig. 5) at N = 360. For the non-ideal filters, the 
calculated MSE of the spectral estimate is 14 dB, which is 1.1 dB away from the MSE 
(12.9 dB) shown in Fig. 5. Thus, we observe that the resolution improvement deduced 
from Fig. 5 is actually achievable by using the practical DSP algorithms. The difference 
in MSE between the theoretical and the practical estimates is because of the detection of 
additional spectral components by the DSP algorithm. The difference in the practical 
MSE between the non-ideal TF in [5] and the random TFs using the DSP algorithm is 
about 18 dB. 
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Fig. 6. Reconstruction of a mercury arc signal spectrum by a non-ideal TF matrix in [5]. 
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Fig. 7. Reconstruction of a mercury arc signal spectrum by the proposed random TF 
matrix. 

 

Fig. 8. (a) Original sparse spectrum of the mercury lamp. (b) Estimated sparse spectrum 
by using TFs in [5]. (c) Estimated sparse spectrum by thin-film-based random TFs. 
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In order to show that a resolution of 0.99 nm (see Table 3) is achievable by using 
random TFs, we consider an original mercury lamp spectrum [28] with prominent and 
weak spectral lines as follows: 404.656 nm, 407.781 nm, 435.835 nm, 491.604 nm, 
546.074 nm, and a pair at 576.959 nm and 579.065 nm. Thus, the sparse spectrum of the 
mercury lamp contains seven spectral lines or components as shown in Fig. 8(a). We note 
that the least separation among these spectral lines is 2.106 nm, which is between the pair 
576.959 nm and 579.065 nm. We aim to resolve these components in the sparse domain. 
We consider the case of N = 400. Figures 8(b) and 8(c) show the estimate of the sparse 
spectrum using the TFs in [5] and using the proposed thin-film-based random TFs, 
respectively. It is apparent from Fig. 8(c) that random TFs correctly estimate the seven 
dominant wavelength components in the sparse spectrum. In addition, random TFs 
clearly resolve the pair of two closely spaced spectral components at 576.959 nm and 
579.065 nm. This evidence supports the fact shown in Table 3 that random TFs are 
capable of resolving any two spectral components that are more than 0.99 nm apart. In 
contrast, the estimate obtained by using the TFs in [5] misses all seven of the dominant 
spectral components as shown in Fig. 8(b). In addition, the estimate contains spectral 
components that were not originally present in the signal spectrum. Based on these results 
and observations, we conclude that the filters with random TFs outperform the non-ideal 
TFs in terms of resolution and reconstruction performance. 

7. Summary and conclusions 

In this paper, we have proposed random-transmittance-based filters to improve the 
resolution of a spectrometer. We have shown that the optical filters with random TFs are 
designed to acquire holistic information about the signal spectrum, rather than the 
localized information that was the target of traditional designs. The holistic information 
captured by each filter when put together at the spectral estimator provides multiple 
independent views and helps the DSP algorithm to differentiate the details in the spectral 
components. We have shown via examples that spectrometers with random TFs provide 
7-fold resolution improvement when compared to the use of filters that aim at 
implementing the ideal TFs. Rather than trying to design filters with the ideal brick wall 
TF, which has been the design paradigm in the past, our study shows that designing filters 
with random TFs should be the design paradigm for modern DSP-based spectrometers. 
This shift in the design paradigm not only brings forth an order-of-magnitude 
improvement in terms of resolution and MSE but also may relax the difficulty of the filter 
engineering process, resulting in less stringent design requirements. 
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