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Abstract 

 
We propose a calibration algorithm for the 

modulated wideband converters (MWC). The MWC 
is a sub-Nyquist sampler, which compresses and 
samples a wideband signal at the sub-Nyquist rate. 
For the reconstruction of the wide band signal from 
the compressed samples in the hardware-
implemented MWC, a calibration of the actual 
system transfer is essential. Our algorithm well 
calibrates the actual system transfer with the 
negligible error by using pilot signals. The main 
advantage is that the algorithm does not require 
accurate phase of the pilot signals. 

 
Keywords: Modulated wideband converter (MWC), 
calibration, pilot signals, phase estimation. 
 
1. Introduction 
 

Sub-Nyquist samplers take sample spectrally 
sparse signals with unknown frequency supports at a 
low sampling rate below the Nyquist rate. In the last 
decade, many sub-Nyquist samplers have been 
developed under theoretical supports of the 
compressed sensing theory [1]-[5]. Among them, the 
modulated wideband converter (MWC) [2] is 
especially efficient for sampling the multi-band 
signals whose spectra consist of multiple disjoint 
continuous bands. Moreover, the MWC is one of 
realizable sub-Nyquist samplers [6]. 

In the MWC, the reconstruction of the wideband 
input from the sub-Nyquist samples is done by 
exploiting system transfer relation. However, when 
the MWC is implemented, the analog circuits have 
numerous non-ideal and unexpected characteristics, 
which lead to the mismatch of the actual system 
transfer from a theoretical analysis. To trace the 
actual system transfer, calibration algorithms using 
pilot signals have been proposed [7]-[10]. In the 
literatures, a prior assumption was the exact 
knowledge of the phase of the pilot signals. However, 
the assumption may be impractical since the signal 
generator would have errors in adjusting the phase. 

Moreover, it is hard to exactly measure the phase 
transitions of the analogue paths. In [11], we recently 
have proposed a calibration algorithm with unknown 
phase of the pilots. The algorithm used the direct-
current (DC) signal as a reference pilot to equalize 
the unknown phases of the other pilots. However, it 
may be not applicable for some analog circuits 
where the DC component is cut off due to the power 
consumption. 

In this paper, we propose a calibration algorithm 
using unsophisticatedly generated pilots for the 
MWC. We do not assume precise knowledge about 
the phases of the pilots. In our algorithm, we 
estimate the system transfer and the phase of pilots at 
the same time by exploiting structural features of the 
transfer model of the MWC. In spite of the 
unsophisticated pilots, our algorithm produces the 
negligible calibration error. 
 
2. Backgrounds and problem formulation 
 

The MWC [2] consists of m  analog channels, 
and each channel has a mixer, a low-pass filter, and a 
sampler in order (Fig. 1). The mixer at the i -th 
channel multiplies the input signal ( )x t  by a 
pseudo-random (PR) signal in time-domain. The PR 
signal ( )ip t  is pT - periodic and theoretically 
defined by 
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for 0, , 1l M= −  within a single period, where M  
is an odd number and ,i la ∈ . Alternatively, due to 

the periodicity, ( )ip t  forms the Fourier series 
expansion as follow, 
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where 1
p pf T −=  and ,i kc  are Fourier series 

coefficients of ( )ip t . The coefficients are computed 
by [2] 
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 In the channel, the sampling period is chosen by 
1

s pT q T−=  for an odd number q , and the cut-off 
frequency of the low-pass filter is chosen by 

12 2s sf T −=  in order to avoid the aliasing. As the 
result, we can express the output [ ]iy n  in terms of 

( )x t  by [2] 
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where the low-pass filtering operation with a cut-off 
frequency 2cf  is denoted by {}

cf
LPF ⋅ , 

0 2L L= , and L M q= + [2]. The operator ⋅  
denotes the flooring operation. By solving the 
equation (5) with respect to ( ){ }2 p

s

j kf t

t nT
LPF e x tπ

=
, 

we can reconstruct the Nyquist samples of ( )x t  

from the compressed sub-Nyquist samples [ ]iy n . 
In (5), the unknowns are not spectrally 

orthogonal since the bandwidth sf  is q -times 
greater than the shifting intervals pf . In [2], a digital 
processing is provided to keep the spectral 
orthogonality of the unknowns and to expand the 
number of equations for the reconstruction at the 
same time. We call it channel expander, which 
produces [ ],i uz n  by following procedure 
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for 0 0,u q q= − , where [ ]h n  is a digital low-pass 
filter with the cut-off frequency of 2pf  and 

0 2q q= . Then, the discrete-time Fourier 
transform (DTFT) of the consequent input-output 
relation is given by  [2] 
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for 2 2p pf f f− ≤ < , where ( )X f  is the Fourier 

transform of ( )x t  and 0 2M M= . 
In the perspective of implementations, we model 

that the PR signals are distorted. In specific, the 
distorted amplitudes ,i la  are unknown and the actual 
system transfer coefficients ,i kc  are incomputable. 

For the calibration of ,i kc , we can inject pilot signals 
and observe the outputs. However, when the phases 
of the pilots are unknown, the output does not 
directly indicate ,i kc . In [11], a calibration algorithm 
with equalizing the unknown pilot phases has been 
suggested. However, the algorithm required the DC 
pilot signal as reference, which is not practical for 
radio-frequency (RF) circuits. In conclusion, it is 
needed to calibrate ,i kc  by injecting sinusoid pilots 
with unknown phases. 

 
3. Proposed calibration algorithm 
 

We propose a calibration algorithm for the MWC. 
The proposed algorithm uses sinusoid pilot signals 
and does not require prior knowledge of the phases 
of the pilots or DC input. The proposed algorithm 
consists of three part; the phase estimator, the actual 
transfer coefficients estimator, and the final sign 
decision. 

We model the pilot sinusoid signal of frequency 
pvf  for a positive integer v  by 
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where vθ  are the unknown phase and an arbitrary 
real-valued differentiator ( )0,0.5vΔ ∈ . In other 

words, the spectrum ( )vX f  is modeled by 
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Fig. 1.   Block diagram of the analog part of the 
MWC [2]. 
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From the input-output relation (7), the outputs ( )
,
v

i uZ  

of the channel expander from the input ( )vX f  are 
represented as 
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Then, we can estimate ,i k vc +  and ,i k vc −  contaminated 
by the unknown phases vθ  from following relations 
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The first step of the proposed algorithm is to 
estimate the unknown phases vθ . Based on the 

phase estimation, the transfer coefficients ,i v kc +  for 

0 0, ,k q q= −  are estimated. First of all, the 
proposed algorithm estimates 

0Mθ  by injecting 

( )
0Mx t . From (3), the transfer coefficients have a 

property of , ,, ,i k i k Mi k M i kc w c w−− = . From this and the 
relation (11), we have 
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where 02 1M M= + , and this implies the phase 

estimator 0Mje θ , 
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Based on 0Mje θ , the proposed algorithm estimates q  

transfer coefficients 0,i M kc +  for 0 0, ,k q q= − . For 
the phase estimation of the other pilots, we exploit 
another property. From the relation (7), outputs of 
the channel expander from distinct pilots of different 
frequencies can share common transfer coefficients. 
For example, using the relation (11), 0 0M qc −  
commonly appears in two outputs, 
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where 02 1q q= +  and 0Mje θ  is estimated by (13). By 
injecting ( ) ( )

0 1M qx t− −  and referring to the relations 
(14) and (13), the proposed algorithm estimates the 

next phase ( )10M qje θ − − , 
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Again, based on ( )10M qje θ − − , the proposed algorithm 

estimates 1q −  transfer coefficients 0, 1i M q kc − + +  for 

0 0, , 1k q q= − −  and sequentially estimates the 
phase ( )0 2 1M qθ − −  of the next pilot ( ) ( )

0 2 1M qx t− − . 
In the same manner, the proposed algorithm 

sequentially estimates the phases and corresponding 
transfer coefficients by consecutively injecting 

( ) ( )
0 1M p qx t− −  as increasing p . In summary, the 

phase estimator is defined by 
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for ( ) ( )0 00, , 1p q M q= − − , and the transfer 
coefficients estimator is defined by 
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Fig. 2.   Success rate of the frequency support 
reconstruction with varying the number of disjoint 
continuous bands N  of the input multi-band signal.
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for 0 0, ,k q q= − . In (16), the sign of the estimator 

0Mje θ  of the first phase 
0Mθ  are still not decided. 

Since the estimations are sequentially conducted, the 
estimator consequently produces two sets of the 
transfer coefficient estimations having opposite signs. 
To find the correct estimator set, the proposed 
algorithm finally injects any non-negative pilot 
signal. By comparing the sign of reconstruction 
results by the two estimator sets, the algorithm 
finally decides the correct sign of the estimations. 
 
4. Empirical results 
 

To demonstrate the calibration performance of the 
proposed algorithm, we compare performances of 
reconstructing the frequency supports of a spectrally 
sparse signal input ( )x t . We construct a noiseless 
simulation environment with the system parameters  

4m = , 221sf = [MHz], 7q = , and 127M = . We 
generate random binary PR signals, ( )x t  with N  
disjoint continuous bands of random frequency 
supports, and the pilot signals with random phases 
and conduct the proposed algorithm and 
reconstruction procedure over 500 trials. We count 
the number of successful reconstruction of the 
frequency supports among the total trials. We vary 

2,4,6, ,14N =  and repeat the tests. Fig. 2 shows 
the results. The square marker represents the result 
using the calibrated system transfer by the proposed 
algorithm. The round marker represents the 
reconstruction using the actual system transfer for 
reference. The ‘X’ shaped marker represents the 
result using a calibration without the phase 
estimation, which ignores the unknown phase of the 
pilot signals. The result demonstrates that the 
proposed algorithm successfully calibrate the system 
transfer and estimate the unknown phases of the pilot 
signals at the same time. 
 
5. Conclusion 

In this paper, we have proposed a calibration 
algorithm for the MWC. Owing to the unexpected 
features in the electronic circuits, the calibration of 
the system transfer is essential for the hardware 
implemented MWC to reconstruct the input signal 
from the compressed samples. Our proposed 
algorithm had the advantage of requiring practical 
pilot signals. First, the phases of the pilot signals 
were not needed to be known. Predicting the phase 
of injected sinusoids to complicated electronic 
circuits is impractical. Without the knowledge of the 
phases, our algorithm calibrated the system transfer 
with the small errors. Secondly, real-valued pilot 
signals were exploited. By using real-valued 
sinusoids, our algorithm calibrated the complex-

valued frequency response of the MWC. Lastly, the 
DC reference input was not required. Unlike our 
previous work in [11], the phase estimators did not 
require the DC reference. This makes the proposed 
algorithm to be more compatible with RF systems. 
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