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Abstract

Brain-Computer Interface (BCI) systems provide an alternative communication and control

channel between the human brain and external devices, such as computer programs or prosthetic

hands. In the BCI systems, electroencephalography (EEG) signals are widely used for recording of

user’s intention or imagination generated by electrical activity along the scalp. However, scalp-

recorded EEG signals have inherent non-stationary characteristics; thus, the classification

performance is deteriorated by changing the background activity of the EEG during the BCI

experiment. Therefore, powerful signal processing methods are needed for reliable BCI performance.

In this thesis, first, we propose a new sparse representation-based classification (SRC) scheme

for motor imagery (Ml)-based BCI applications. The proposed SRC method utilizes the frequency

band power and CSP algorithm to extract MI features for classification. In SRC, the design of a good

dictionary matrix is critical. We provide a detailed design procedure for constructing the dictionary

matrix for SRC scheme. Second, we analyze noise robustness of the SRC method to evaluate the

capability of the SRC for non-stationary EEG signal classification. Using the noisy test signals

generated by Gaussian noise and background noise, we compare the classification performance of the



SRC and support vector machine (SVM). Furthermore, we analyze the unique classification
mechanism of the SRC. Third, to overcome non-stationary effects of EEG signals, we propose simple
adaptive sparse representation based classification (SRC) schemes. Supervised and unsupervised
dictionary update techniques for new test data and a dictionary modification method by using the
incoherence measure of the training data are investigated. The proposed methods are very simple and
additional computation for the re-training of the classifier is not needed. The proposed adaptive SRC
schemes are evaluated using two BCI experimental datasets. The proposed methods are assessed by
comparing classification results with the conventional SRC and other LDA and SVM adaptive

classification methods.
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1. Introduction

1.1 EEG based Brain-Computer Interface

Brain-computer interface (BCI) systems provide an alternative communication and control channel
between human brain and external devices such as computer program and prosthetic device without
any normal muscle movements [1]. Due to the convenient usability and high temporal resolution
compared to other brain imaging schemes such as functional magnetic resonance imaging (fMRI) and
magnetoencephalogram (MEG), research of noninvasive electroencephalogram (EEG) based brain—

computer interface (BCI) systems is continuously progressed over the past several decades [1][2][3].

Signal Processing

Feature . .

Output
(Commands)

Application Control

Feedback

Figure 1.1 EEG based Brain-Computer Interface

In the EEG based BCI systems, using scalp recorded EEG signals as an input of the system, essential
signal processing methods are performed to translate user’s intention into a computer command,
which can then be used to control external devices. The signal processing steps in BCI can be
categorized as preprocessing, feature extraction, and classification. In the preprocessing step, the

artifact detection and rejection are conducted. The purpose of feature extraction is to make a

-1-



meaningful low-dimensional data, i.e., a feature vector, from the original high-dimensional data. This
feature vector should be distinguishable for different classes. Typically, the feature extraction is
performed using a dimensionality reduction method. The principal component analysis (PCA),
independent component analysis (ICA), and common spatial pattern (CSP) are popular methods for
dimensionality reduction in the EEG based BCI systems [4][5]. Another important signal processing
step is classification. In the BCI systems, the purpose of classification is to translate the extracted
feature into a computer command. Typically, this translation is done using the classification
algorithms, which are adopted from pattern recognition area. Frequently used classification methods
in the EEG based BCI systems are linear classifiers such as linear discriminant analysis (LDA) and

support vector machine (SVM) [6].

1.2 Motor imagery Brain-Computer Interface

In this study, we focused on motor imagery (Ml)-based BCI. EEG based Ml is one of widely used
BCI schemes [2][3]. MI scheme use sensorimotor rhythms (SMRs), such as the mu(8-12Hz) and/or
beta(15~30Hz) rhythms; these rhythms can be recorded on the scalp over the sensorimotor cortex area
when subject imagine their limb movements. A widely used feature in Ml based BCls is event-related
desynchronization (ERD) [7]. Thus, a significant decrease in the power level of SMRs can be
observed on the contralateral hemisphere during the unilateral imagination of hand movements.
Figure 1.2 shows the SMR based MI features in terms of the spectral and spatial difference [1]. For
example, when subjects imagine their left hand movement, a distinct feature, i.e., amplitude

attenuation of Mu rhythm, appears over the contralateral hand area at the sensorimotor cortex. The

-2-



different patterns present in EEG signals are detected and used for BCI control. In this study, we use

EEG signals from the MI experiment and analyze them for BCI signal pattern classification.

amplitude (pV)

motor task
0 :> lb 1'5 2'0 25 Z;O
frequency (Hz)
rest

motor task v A mansaa A A,

1sec 10V

(a) (b)
Figure 1.2 Mu rhythm based BCI features. (a) Spectral difference between motor task and rest
in the Mu rhythm (8~15Hz). (b) Spatial difference between motor task (Left hand motor imagery)
and rest (Figure taken from [1]).

1.3 Sparse Representation based Classification

Recently, with much progress of L1 minimization technique in compressive sensing (CS) field
[8][9], sparse representation has received a lot of attention in signal processing and pattern recognition
fields. The problem of sparse representation is to find the most compact representation of a signal in
terms of linear combination of columns in an over-complete dictionary. Thus, given a signal y e R™*

and over-complete dictionary AeR™"where m<n, sparse representation aims to find sparse

coefficient x e R™ via the so-called sparsification step, i.e., min |||, subject to y = Ax.

Especially, sparse representation based classification (SRC) has shown an increased interest. SRC

framework is first introduced by Huang et al [10]. The basic idea of SRC is to parsimoniously

-3-



represent a test signal y via the sparsification step, i.e., y = Ax, where A is an over-complete

dictionary whose columns are a collection of training signals. This sparsification step leads to the

representation of the test signal y with the training signals from the same class predominantly. The L1

minimization algorithm is employed to perform the sparse representation of the test signal with a

given set of training signals. The robust classification performance of the SRC framework has been

shown in various applications such as face recognition [11][12], digit classification [10], and speech

recognition [13]. Particularly, in [11], Yang et al. presented that SRC obtains robust face recognition

performance for occlusion and corruption on facial images.

1.4 Outline of this Thesis

This dissertation consists of three research topics. In the first part we propose a sparse representation

based classification (SRC) scheme for EEG based motor imagery BCI in Section 2 which was

published in [14].

[14] Y. Shin, S. Lee, J. Lee and H.-N. Lee, “Sparse representation-based classification scheme for

motor imagery-based brain-computer interface systems”, Journal of Neural Engineering, no. 9

056002, 2002.

In the second part of this dissertation, we evaluate noise robustness of SRC for non-stationary EEG

signal classification in Section 3, for more details, see [15].



[15] Y. Shin, S. Lee, M. Ahn, H. Cho, S. C. Jun and H.-N. Lee, “Noise Robustness Analysis of
Sparse Representation based Classification Method for Non-stationary EEG Signal

Classification”, Biomedical Signal Processing and Control vol. 21, pp. 8-18, 2015.

The last part of this dissertation considers the adaptive SRC schemes for online BCI applications in

Section 4, for more details, see [16].

[16] Y. Shin, S. Lee, M. Ahn, H. Cho, S. C. Jun and H.-N. Lee, “Simple Adaptive Sparse
Representation based Classification Schemes for EEG based Brain-Computer Interface

Applications”, Computers in Biology and Medicine, vol. 66, pp. 29-38, 2015.



2. Sparse Representation based classification method for motor

imagery BCI

2.1 Motivation

The EEG signals acquired from scalp electrodes are usually very noisy and show a non-stationary
characteristic [17]. They contain signals from non-interesting physiological activities (e.g.
electromyograms (EMGs)), the sensor noise present in any electrical system and environmental noise

(e.g. power lines).

In particular, in the case of motor imagery based BCI, which uses induced EEG signals while the
subject imagines limb movements, the instability of imagery task, non-stationarity of signals, and lack

of concentration are among main obstacles to effectively process the EEG signals.

In addition, it is difficult to collect a large set of training samples because of the subject’s fatigue.
The raw EEG signals are associated with high dimension owing to the large number of EEG channels;
hence, it is difficult to collect volume of data samples that are large enough for good training.

Therefore, the use of powerful signal processing and classification techniques plays a critical role.

In this thesis, first we introduce a SRC method to EEG-based MI BCI applications. We use a band
power approach that involves extracting the power information from the signal for the SMRs [18]. In
SRC, the design of a good dictionary matrix is important, or the performance will be poor. We

provide a detailed design procedure for constructing the dictionary matrix for EEG classification. To



maximize the benefit of sparse representation, we propose to use CSP filtering and preprocess the raw

training signals to construct the columns of the dictionary.

2.2 Experimental dataset

In this study, we used two different datasets. The first was the INFONET dataset obtained from our
own MI-based BCI experiment. The other was the Berlin dataset downloaded from the website of BCI
competition 1l (dataset 1VVa) [19]. The main difference between the two datasets was that they used
different numbers of EEG channels and had different sizes (i.e. numbers of total trials). The Berlin
dataset contained more trials, i.e. 80 for the INFONET dataset and 140 for the Berlin dataset per class.
The number of EEG electrodes used to collect data was also different, i.e. 16 for the INFONET

dataset and 118 for the Berlin dataset.

INFONET dataset consisted of five different datasets obtained from five healthy subjects (five males,
average age = 22 and SD = 6.85). They were all novice subjects in BCI experiments. There were two
classes, i.e. the left- and right-hand motor imaginary movements. In this experiment, we used 16 EEG
channels. The EEG signals were recorded from active electrodes in a cap (with the earlobe used as the
reference) based on the international 10/20 standard. In our experiment, we used a g.EEGcap and
g.ACTIVE electrodes made by G. Tec Inc. and a PZ3 amplifier from Tucker-Davis Technologies. We
used a sampling rate of 256 samples s—1 with a band-pass filter of 1-100 Hz and a notch filter of 60

Hz.



In our BCI experiments, the subjects were seated in a comfortable chair and asked to watch a

monitor screen. Figure 2.1 shows the time procedure for one trial. At the beginning of each run, a

‘Left Hand’ or ‘Right Hand’ letter instruction randomly appeared for 4 s at the center of the screen.

Then, subjects imagined a left- or right-hand movement after the instruction was given, i.e. repeated

fist clenching. This was followed by a rest period of 3 s. One run consisted of 40 trials, i.e. 20 left-

and 20 right-hand trials. With all subjects, we conducted six runs that consisted of two runs with real

movements and four runs with imaginary movements. We used only the imaginary data trials for

further signal processing. To suppress electrooculogram (EOG) artifacts, the subjects were instructed

not to blink or move their eyes during the instruction period. During the rest period, they could blink

freely but were not allowed to move their body.

Instruction Rest

|
0
1) [sec]
u

Figure 2.1 Experimental time procedure for INFONET dataset

Berlin dataset was produced in the BCI competition and is widely used in the BCI field for the
analysis of EEG signal processing. It contains five datasets recorded from five different healthy
subjects (aa, al, av, aw, and ay). The subjects followed the same procedure as the BCI experiment
with three classes, i.e. left-hand, right-hand and right-foot M1 movements. However, only the data
corresponding to the right hand (R) and right foot (F) were used for analysis. These datasets only

contain data from the four initial sessions without feedback. The data were recorded using BrainAmp

-8-



amplifiers and a 128-channel Ag/AgCl electrode cap from ECI. 118 EEG channels were measured at

the positions of the extended international 10/20 system. The exact electrode positions are provided in

the data file. The signals were band-pass filtered between 0.05 and 200 Hz and then digitized at 1000

Hz. The signals were downsampled to 100 Hz for offline analysis by the Berlin research team.

Figure 2.2 shows a timed trial procedure for the Berlin dataset. The subjects were seated in a

comfortable chair with their arms resting on armrests. Visual cues were provided for 3.5 s that

indicated the appropriate motor imagery the subject should perform, i.e. left hand, right hand, or right

foot. The presentation of target cues alternated with periods of random length, i.e. 1.75-2.25 s, in

which the subject could relax. Each of the five datasets consists of 140 trials for each class.

1.75~2.25
| Instruction Rest
0 1 2 3 35 4 5 6
? [sec]

Figure 2.2 Experimental time procedure for Berlin dataset

2.3 Preprocessing and CSP filtering

Figure 2.3 shows the entire signal processing procedure, including the preprocessing, feature
extraction and classification steps. Using the motor imagery dataset obtained from each subject, we
perform the data preprocessing. Before preprocessing, raw EEG signals are segmented. After an
instruction (left or right hand) appears on the screen, the time samples from 1 to 2s were collected for

all trial data. We then apply the band pass filter to the trial data to eliminate the frequencies that are
-9-



not related to motor imagery signals. In this study, sensorimotor rhythm, 8-15 Hz, is used for cut off

frequencies. We use fourth order Butterworth filter for band pass filtering. For fair comparison of the

classification performance, we fixed the time and frequency range for all subjects.

. Feature
[ Preprocessmg T T [ SRC T
| i Extraction i |
] 1 ]
| ii ii |
1
i Training i: N CSP L, Band Power | i} .| Dictionary !
i set Il Freq. | filtering computation |1 * design !
i i: selection I i
1 1 n 1
i | Band Pass i: i i
i filtering :i \"'4 ii y = AX i
I H 1 H
| i ' i ‘ i
1 1 1
: Test 1 »| CSP | | BandPower |, 1 LI »| Classification |
i set i filtering computation I min. !
1
S

Figure 2.3 Proposed signal processing steps for SRC method

After band pass filtering, we reduce the dimension of EEG signal using the common spatial pattern
(CSP) filtering, which is a widely used feature extraction method for motor imagery based BCI
applications [5][6]. To find maximally distinguishable features, CSP filters maximize the variance of

the spatially filtered signals for one class while minimizing it for the other class.

The CSP filtering algorithm finds the filters, W e R“® =[w,, w,,---,w.] which transforms the

EEG data XeR“® (C and S denote the number of EEG channels and time samples) into a spatially
filtered space: X, =W' - X . Generally, W is computed by simultaneous diagonalization of the
covariance matrices, X, and X, , of the two classes of data. This is equivalent to solving the generalized

eigenvalue problem, i.e.,Z,w=AX,w, where A is the eigenvalue. In practice, the first and last n

columns of the W correspond to the n largest and n smallest eigenvalues that are used for CSP

-10 -



filtering. However, the optimal number of CSP filters, m=2n, which shows the maximum
classification accuracy varies and has to be chosen empirically. Figure 2.4 shows eight CSP filters,
w,,--+, W, and w,,,---, W, that correspond to the four largest and four smallest eigenvalues of

subject A from the INFONET dataset.

Figure 2.4 Color coded mapping of magnitudes of the coefficients of a filter, say w; whose
index i is indicated at the top of each figure. CSP filters are computed from the right-hand and
the left-hand imaginary movement signals of subject A in INFONET dataset. The color map is
projected onto the scalp.

The color in Figure 2.4 denotes the magnitude of the filter coefficients for the corresponding
channels. For example, the red color indicates the highest significance. Let us take the upper left
picture as an example, which is for the first filter w;, . It is noticeable that there is a strong focus, a red
dot, on the position of the C4 electrode in this case. Imaginary movement of a hand causes an ERD
feature in the contralateral hemisphere. Namely, with a left-hand imaginary movement, a signal
feature appears on the C4 electrode; while with a right-hand imaginary, it appears on the C3 electrode.

Hand motor functions are controlled in a motor cortex region of the brain on which the C3 and C4
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electrodes are placed. This contralateral manifestation of imaginary hand movements is a well-known
neurophysiological phenomenon [2][7]. From this discussion, it is clear that the first CSP filter
amplifies the signal feature from the left-hand imaginary movement at the C4 electrode; while the last

CSP filter does the one from the right-hand imaginary movement.

After CSP filtering, we compute the band power (BP) of sensorimotor rhythm (8~15Hz). BP is the
power of the signal within specific frequency bands. Because of the physiological background of the
motor imagery signals, ERD based band power (BP) of the sensorimotor rhythm is a well-known

feature form in many EEG based BCI studies [18][20].
2.4 SRC scheme for Ml based BCI
2.4.1 Incoherent dictionary design using CSP filtering

An important step when applying the SRC method to the motor imagery BCI application is the
design of an appropriate dictionary matrix, A. We use a CSP filtering technique to make maximally
incoherent dictionary. Figure 2.3 shows how this is performed. Let N, be the total number of
training signals for each class, i. That is, i = L for the left-hand, i = R for the right-hand. We define a
component dictionary matrix A, :[aill,ai’z,...,ain‘] for each classi where each column vector
Q.| eR™, i=12,...,N;, having dimension m=2n is obtained by concatenating the number of
2n SMR band power features, i.e., 2n sum of frequency power from 8 to 15 Hz. Here, 2n is the

number of CSP filters. The same procedure is repeated for the left-hand and right-hand classes. By
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concatenating the two matrices, we form the complete dictionary, A:=[A ;Ag] asshown in Figure

2.5, where the dimension is mx 2N, .

Left class Right class
|

|
[ | |

© C
C O
Numberof | |.
CSPfilters | [«} * * * e
L 19 ®
Band Power Number of
(8-15Hz) training trials

Figure 2.5 Dictionary design for proposed SRC method

Now, we discuss why the CSP filtering method is a good technique to use for the design of the
dictionary matrix. We also demonstrate how CSP filtering can be used to maximize the incoherence

between the two classes in the dictionary.

The coherence measures the correlation between the two component dictionaries defined in the

following way:
M (A, Ag)2 max{ | (avj.ark) | ik =12..., Nt} (1)

The vector a j is the j-th column of A ; similarly, agy is the k-th column of Ap. The
notation <aL' j,aRyk> denotes the inner product of two vectors. We call M the measure of mutual
coherence of two component dictionaries; when M is small, we say that the dictionary is incoherent
[21]. When a dictionary is incoherent, a test signal from one particular class can be predominantly

represented by the columns of the same class. Therefore, sparsely represented test signal helps in
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boosting the classification accuracy of the proposed method. The uncertainty principle (UP) [22] in

the sparse representation theory dictates that a signal cannot be sparsely represented in both classes

simultaneously. This phenomenon intensifies as the degree of incoherence of the dictionary increases.
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| |
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|
2 ”9 0.2
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- #
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-6 -0.6
-4 -2 0 2 4 -04 -0.2 0 0.2 0.4
(a) Before CSP filtering (b) After CSP filtering

Figure 2.6 Example of CSP filtering effect

Recall that we use the CSP filtering method. The CSP filter maximizes the variance of the spatially
filtered signals for one class, while minimizing it for the other class. Figure 2.6 shows a two-
dimensional example illustrating the effect of CSP filtering and its relation to incoherence. Two
classes of samples are expressed by the blue circles and red squares. Figure 2.6 (a) shows the
distribution of the samples before CSP filtering. Figure 2.6 (b) shows the distribution of the samples
after CSP filtering. In (b), the horizontal axis is w; , which is an eigenvector corresponding to the
largest eigenvalue. The vertical axis is w,g , which is an eigenvector corresponding to the smallest

eigenvalue. This w; has the property that after the samples are projected onto w;, the variance of the

projected samples for the left class (Blue) is maximized, while the variance of the projected samples
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for the right class (Red) is simultaneously minimized. In addition, w,z does exactly the reverse of
w; . Using the effect of the CSP filter, we simultaneously form maximally uncorrelated feature
vectors between the two classes. Thus, if we calculate and compare the mutual coherence, M, between
the two classes, before and after applying the CSP filtering, surely the mutual coherence after the

filtering (Figure (b)) is smaller.
2.4.2 Sparse representation model and L1 minimization

Now, we introduce our sparse representation model using EEG training and test signals. First, we
obtained the test signal, y, using the same procedure used to obtain the columns of dictionary A in

section 2.4.1. Thus, a test signal was transformed into a vector, y eRle, via the processes of CSP
filtering and band power computation. Therefore, the dimension of y was the same as the dimension

of the columns in dictionary A. Our sparse representation model can be expressed by this formula:

Y= D Xia@i1 T X282 e X n &y, )
i=LR

where X ; €R,i=L,R, j=12..,N; are scalar coefficients. We represent this using a matrix

algebraic form:
y=AxeR™ (3)

In our sparse representation model, equation (3), the number of total training signals (the number of
columns in A) was 2N, , which was much larger than the number of CSP filters (the number of rows,

m, in A). Thus, the linear equation (3) is under-determined (m<2N,). This problem can be solved

using LO norm minimization:
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min||x|, subject to y = Ax 4

The LO norm is equivalent to the number of non-zero components in vector x, by definition. This
involves a combinatorial search. Therefore, solving this LO norm minimization problem is an NP-hard
problem. However, recent studies in compressive sensing (CS) theory have shown that signal
reconstruction can be conducted using an L1 minimization technique [8][9]. This is a suboptimal and
relaxed approach to the optimal but intractable LO minimization. The L1 norm minimization, given
below, as one of the big surprises in compressive sensing theory, finds the exact sparse solution in

polynomial time [23]:
min|x||, subject to y = Ax (5)

unlike the conventional L2 norm minimization:

min|x|, subject to y = Ax (6)

Figure 2.7 shows a two-dimensional example of why the L1 norm minimization finds the sparse
solution efficiently, unlike the L2 norm minimization. In Figure 2.7, the black line represents the set
of all feasible solutions. From the definition of the norm, the L2 and L1 norms can be individually
represented as vectors on the surface of the circle (blue) and rhombus (red) in (a) and (b), respectively.
Using the L2 norm minimization in (14), when the L2 ball (circle) is grown in an equidistant manner,
we can find the minimum L2 ball, which touches the feasible set first. As shown in (a), the L2 ball
finds the non-sparse point, %, which lies in the two-dimensional non-zero space. Similarly, in (b), the

L1 ball finds the sparse point, x, which lies on the vertical axis.
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W

Figure 2.7 Visualization of L1 and L2 norm minimization.

There are many L1 minimization algorithms. In this study, we used a standard linear programming
method called basis pursuit [24]. The “SolveBP” function implements the basis pursuit method
available in SparseLab, which is a free MATLAB software package [25]. This function solves
equation (5) by reducing it to a linear program using an optimization technique such as the primal-

dual log-barrier algorithm.

2.4.3 SRC for Ml signal classification

In the SRC algorithm, first, the columns of dictionary A are normalized to have a unit L2 norm.
Then, the SRC scheme can be summarized in the following two steps. The first step is to sparsely
represent a test signal y using the dictionary A. We called this step as a sparsification step. In this step,

unknown coefficient vector x can be recovered by L1 norm minimization as shown in equation (5).

The second step is to determine class label of test signals. To make use of the sparse representation
results in classification, we need to specify a classification rule. This step is called as the identification

step. One simple method is simply to count the number of non-zero coefficients in vector x. Another
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method is to compute the energy of the coefficients, i.e., Class(y)=argmax||x;||,. An additional
i=L,R
effective classification rule is to use the minimum residuals as follows:
class (y) = min 1, (y) 7)

where r(y):=|ly-Ax],, x isthe scalar coefficient vector corresponding to the class i. In this rule, we

can check which class of training data can represent current test signal. We used this method as the
classification rule in this study. Here, we summarize the SRC algorithm for two-class EEG signal

classification.

1. Input: Collection of training features (dictionary) A:=[A_ ;A.]e R™*™ a test feature
yeR™ where N, is the total number of training trials for each class L and R.

2. Normalize the columns of Aand .
3. Sparsification step: solve the following optimization problem

min x|, subject to y = Ax

4. Identification step: Compute min r,(y) where r,(y):=|y—Ax], forclassi=L,R

5. Output: class label i of y

Figure 2.8 shows the example of the sparse representation for two-class motor imagery based EEG

signals and the classification rule. In this example, a certain test signal y of the right hand class can be

predominantly represented with some training signals of the right hand class. This is represented by

the nonzero scalar coefficients x in the position of corresponding class. However, EEG signals are

very noisy and non-stationary in Ml-based BCls. Thus, non-zero coefficients may also appear in the
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position of left-hand class. Using minimum residual rule in the identification step, we can classify the

test signal.
. Band Power of Scalar o
Test signal CSP filtered signal Coefficients Classification
y X
o A | ]
o | I |
My X |
~J right = . | | B X]_
| | - (-l Ax] LR
| |
O | 11l m» If r(y)<r(y), left class
else right class
First'traiTing Last 'trair;ing .
signa signa Lx,
L ]
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Figure 2.8 Example of SRC for motor imagery signal classification

2.5Linear Discriminant Analysis

To provide a fair comparison between the SRC and LDA (also known as Fisher’s LDA)
classification methods, we aim to explain how the LDA classification method works when CSP
filtering is incorporated. LDA is widely used as a linear classification method in the BCI field [6], e.g.,

see [26] for MI-based BCI applications.

The LDA approach introduced by Fisher aimed to find the optimal direction,w , to project data
e I . (. T T
upon and maximize Fisher’s ratio: J(WL)—(WL SBWL)/(WL SWWL) where Sz and S, are

called the between-class scatter matrix and within-class scatter matrix, respectively, which are

obtained as follows: Sg =(m, -m,;)(m, -m;)" and S,, = D> (x— m;)(x—m;)"  where x is the input

feature vector, and m, is the group mean of the feature vectors in class i. The logarithm of band

power feature can be used for LDA classification. However, in this study, we used the band power of
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the CSP filtered signals as a feature vector, X, which was exactly the same feature used in the

proposed SRC scheme in Section 2.3 and Figure 2.5.

2.6 Results

In this section, we present the classification results with the proposed SRC method using the two

datasets, INFONET and Berlin dataset, as described in Section 2.2. We also compare the results

achieved with the SRC and the conventional linear discriminant analysis (LDA) method. To evaluate

the average classification accuracy using limited size datasets, we used the statistical leave-one-out

(LOO) cross-validation method [27] with the same total number of data trials for each subject. The

LOO is useful for increasing the number of independent classification tests with a given set of limited

data trials. Thus, one trial out of k total training trials is selected as the test trial, and the remaining k-1

trials are used as the training trials. This test is repeated for k times with different combination of

training and test trials.

Table 2.1 Comparison of classification accuracy for INFONET dataset using SRC and LDA
classification methods

Subject SRC LDA
Accuracy (%) Accuracy (%)
A 95.63 93.13
B 63.75 61.87
C 68.14 67.50
D 80 76.25
E 71.25 68.12
Mean (SD) 75.75 (12.60) 73.37 (12.18)
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Table 2.1 shows the classification accuracy for the INFONET dataset. There are a total of 160 trial

signals for each subject and therefore 160 LOO assessments are performed. We used the first and last

CSP filters to produce the feature vectors and dictionary, i.e., m = 2 in (3), for subjects A, B, and C;

whereas we used four filters, m = 4, for subjects D and E. The number of CSP filters to use was

determined empirically. The results of Table 2.1 show that the proposed SRC scheme delivered

enhanced classification accuracy compared with the conventional LDA method for all of the subjects.

Table 2.2 Comparison of classification accuracy for Berlin dataset using SRC and LDA
classification methods

Subject SRC LDA
Accuracy (%) Accuracy (%)
al 98.93 96.43
ay 100 97.14
aw 95.71 95.36
aa 97.86 94.64
av 91.79 87.86
Mean (SD) 96.85 (3.25) 94.29 (3.72)

To further evaluate the SRC method, we extended our validation to the Berlin dataset. This dataset
was acquired from five subjects using 118 EEG channels. Table 2.2 shows the results of comparisons
using this dataset. We used a total of 280 trial signals and the LOO method for all of the subjects. 32
CSP filters are used for feature extraction. Table 2.2 indicates that the proposed SRC scheme
delivered higher average classification accuracy (96.85%) than the LDA method (94.29%). Moreover,
for subject ay, the accuracy was 100%. Thus, the proposed SRC method had consistently higher

classification accuracy than the LDA method in both datasets.
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Figure 2.9 Classification accuracy (%) per subject with different number of CSP filters for
Berlin dataset. (a) Classification accuracies for subject al, aw and av. Solid line represents
SRC results and dashed line represents LDA results. (b) Classification accuracies for subject
ay and aa.

With the Berlin dataset, the number of available CSP filters was 118. We selected the number of
CSP filters based on our experimental results in Figure 2.9. This figure shows the classification
accuracy (%) of SRC and LDA as a function of the number of CSP filters for each subject. Figure 2.9
(a) shows the results of subject al, aw and av. Solid line represents the SRC accuracy and dashed line
represents the LDA accuracy. Figure 2.9 (b) shows the results of subject ay and aa. We compute the
average accuracy out of the 160 trials expressed in Figure 2.9 using the LOO cross validation method.
As can be seen in these figures, there was no significant increase in accuracy when more than 32 CSP
filters were used for both SRC and LDA methods. Thus, we used 32 CSP filters for feature extraction,
which corresponded to the 16 largest and the 16 smallest eigenvalues. However, Figure 2.9 shows that

for each selection on the number of CSP filters, SRC performs better than LDA does with few

exceptions. Thus, it can be said that SRC has better classification accuracy than LDA regardless of the
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number of CSP filters in Figure 2.9. To investigate the statistical significance of the observed
accuracies in Figure 2.9, we performed a paired t-test for each subject. The obtained p-value of the t-

test was less than 0.05 for all subjects, which indicates that the difference was significant.

An important issue for online BCI applications is the run time speed of the algorithm, as well as the

classification accuracy. We compared the execution times of the algorithms. SRC and LDA took

similar times to complete the classification job. The average difference between the execution times

was negligible with the same computer and software (using MATLAB), i.e., LDA took 129.78 sec

and SRC took 129.99 sec. The LDA shows 0.16% improved speed than the SRC and it is negligible

for online BCI applications.

2.7 Summary

For the first part of this thesis, we applied the idea of sparse representation to the field of BCI

systems and proposed a new classification method that delivered good performance for an Ml-based

BCI application. We used the well-known band power feature to utilize the event-related

desynchronization (ERD) concept, which is the most widely used physiological feature in MIl-based

BCI application. This method required a well-designed dictionary matrix. We proposed a new

procedure in which a CSP filtering technique is incorporated to produce the dictionary. We referred to

this new classification system as the SRC method in this paper. To validate the SRC method, we

applied it, not only to an INFONET dataset that we obtained in our laboratory but also to the publicly

available Berlin dataset. In addition, we compared the proposed method with one of the well-known
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classification methods, the LDA classification method. The results indicated that the proposed SRC

scheme delivers classification accuracy higher than that of the LDA method. We noted that

incoherently designed dictionary, together with the use of L1 minimization, makes SRC competitive

as a classification tool.
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3. Evaluation of SRC for non-stationary EEG signals

3.1 Motivation

It is well known that EEG signals are non-stationary. The non-stationarity can be observed during
the change in alertness and wakefulness, eye blinking, and in the event-related potential (ERP) and
evoked potential (EP) such as motor imagery signals. Because of the non-stationarity of the EEG, we
can observe that the test feature positions vary from the original training feature positions in the
feature space [6][28]. This is one of the major obstacles in EEG signal classification. Thus, a classifier

that is optimized for a particular training data may not work for online BCI with a new test data.

Recently, extensive research efforts have been devoted to overcome the non-stationary issue in the
motor imagery based EEG classification. Robust feature extraction methods were proposed for
common spatial pattern (CSP) [29][30], which is the most widely used technique for feature
extraction in the motor imagery BCI. In the classification stage, supervised and un-supervised
adaptive classification schemes were studied for the conventional LDA and SVM methods

[28][31][32].

In this Section 3, our aim is to evaluate the robustness of SRC for non-stationary EEG signal
classification. First, we compare the classification performance, i.e., classification accuracy and
computation time, of the SRC with SVM, which has been known as the state of the art classifier in
many studies. Second, we evaluate the noise robustness of the SRC and SVM methods. For this

purpose, we generate noisy test signals which have different feature distribution with original test
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signals. The noisy test signals are generated with the addition of random Gaussian noise and scalp
recorded background EEG signal into the original test signal. Then, we assess the noise robustness of
both SRC and SVM methods. Third, in addition to the simple performance comparison, we examine
working mechanism of SRC by analyzing advantages and disadvantages as the role of classifier
compared with the conventional SVM. Moreover, we discuss why SRC outperforms SVM for the
noisy test signal. Our work is intended to provide evaluation and analysis of SRC to researchers who

want to apply the SRC framework to non-stationary EEG signal classification.

3.2 Experimental dataset

In Section 3, to evaluate and analyze the SRC method, we use two-class EEG based motor imagery
experiment. This dataset is obtained from our collaboration laboratory, Biocomputing Lab., in GIST
(Gwangju Institute of Science and Technology). Twenty healthy subjects (11 male and 9 female
subjects whose average age is 24.05+£3.76) participated in this experiment. Therefore, we collected 20
motor imagery datasets. Each dataset contains EEG signals generated from the left and right hand
motor imagery experiment. Experiment included five runs. One run consisted of 20 trials for each

class. Thus, the total number of trials was 100 for each instruction (class).

Figure 3.1 shows a single trial experimental paradigm of our motor imagery experiment. Cue line
indicates the starting point of motor imagery. One trial consisted of 4-6 sec of resting time period and
3 sec of imagery time period. In the resting period, a blank screen appeared on the monitor. The

resting time was randomly selected in the range of 4 to 6 sec. In the imagery period, one of the motor
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imagery instructions was represented at the center of the screen, and then subjects imagined their left

or right hand movements for tasks such as grasping and releasing hand. In each trial, instruction was

randomly selected from the left and right hand class.

. . Cue .
Resting period | Imagery period
[ Right Hand
Blank screen or ’
(4~6 sec) )
Left Hand
<l | | 3
S I I -
6 -5 4 -3 -2 -1 0 1 2 3 sec

Figure 3.1 Single trial time procedure of motor imagery experiment

In addition, resting state EEG signals were recorded for each subject to estimate the subject-specific

background noise. In this recording, subjects were instructed to open their eyes for 60 sec without any

experimental task. These experimental datasets were recorded by an active electrode cap. We used

Active Two EEG measurement system made by Biosemi, Inc. The sampling rate for these datasets

was 512 samples per second, and the number of EEG channels was 64. The channel positions were

selected from the international 10/20 standard.

3.3 Feature extraction and Classification

Preprocessing and feature extraction steps are common to both SRC and SVM classification

algorithms. We apply same preprocessing and feature extraction methods to MI dataset as shown in

Figure 2.3. Thus, we perform the band-pass filtering with a passband of 8-15 Hz. Then, we use the
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CSP filtering and band power computation for feature extraction. For the SRC scheme, we use same

procedure as explained in 2.4.3.

Figure 3.2 Main idea of SVM. The SVM algorithm tries to find the decision hyperplane, which
has the maximum margin d.

To evaluate the noise robustness of SRC, we compare classification performance of the SRC with
conventional SVM method. SVM is a well-known classification method in the area of pattern
recognition and machine learning. In the BCI field, the SVM has shown a robust classification
performance in many experimental studies [6][33]. SVM is recognized for its excellent generalization
performance, i.e., small error rate for test data. This property is achieved through the idea of margin
maximization. As shown in Figure 3.2, the margin d is twice the distance between the support vector
(the black and white circles that are on the dashed line) and the decision hyperplane. The hyperplane
can be described by a weight vector w and a biasb. The SVM finds the decision hyperplane by

solving the following optimization problem:
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minimize %||w||2 +CY &,

subjectto t (W' d(y,)+b)>1-& (8)
£ >0n=1..,N

where vy, is the training feature vector, t e{+1,-1} is the class information and n indicates the
training trial number. To consider the training error, a slack variable & and a regularization parameter
C are included. Using &, we can consider the training error which is positioned inside the support

vectors. C is a user defined regularization parameter to control the importance between the maximum

margin and the training error.

In the SVM optimization problem, mapping function @() can be used to map an inseparable
feature vector onto a higher-dimensional space using a kernel function K(x,y). In BCI research, the
Radial Basis Function (RBF) kernel (4) is widely used and has shown robust classification

performance:
<0 y) —exp| o
(x.y)=exp| —— ©)

Therefore, in this study, we consider a linear SVM and an RBF kernel based SVM for comparison
of the classification performance with the SRC method. For both SVM algorithms, we use the

MATLAB Bioinformatics Toolbox (SVMtrain) [34].

In the SVM algorithm, selection of parameters is important to obtain the robust performance. We
optimize the regularization parameter C in (3) for linear SVM and kernel parameter o in (4) with

combination of C for RBF SVM. We adopt a coarse grid search method using cross-validation to find
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optimal parameters that provide the best classification accuracy [35]. In the exhaustive coarse grid
search, we first find a better region on the loose grid, and then fine grid search on that region is

conducted. For two parameters C and o, we set the same grid sequence as follows:

Cand o =[10°,107,10*,10% 10" 10% 10°]. Then, for the best region, we optimize the parameters

using a fine tuning.

3.4 Noise Robustness Analysis Method

In Section 3 of this thesis, we aim to evaluate the noise robustness of the SRC and SVM
classification methods when test data is contaminated by an additive random Gaussian noise and scalp
recorded background noise. The ultimate goal of this evaluation is to assess the classification
performance of both methods for non-stationary EEG signals. As it is well known, EEG signals have
inherent non-stationary characteristics. Therefore, BCI features vary from training sessions to test
sessions during a BCI experiment [28]. There are many reasons to change EEG signals in the motor
imagery task such as physical and mental drifts, misalignment of sensors, and task—irrelevant
background activity [29][36]. During the imagery period in the motor imagery experiment, when we
assume subjects exclusively perform motor imagery task, the task-irrelevant background activity can
be the main reason for a change in EEG signals [28][29]. Therefore, in this context, we aim to model
the modified noisy test signals by adding background activity estimated by the resting state recording

into the original test signal.
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For robustness analysis, we generate the modified test data by introducing two different noise

sources such as white Gaussian and background noise into the original test data. Each noise source

signal is separately applied to the EEG test data. Thus, we evaluate the classification performance of

both classifiers for two types of noise corrupted test data.

Figure 3.3 shows the generation concept of the polluted noisy test data using one noise source. In

the online BCI experiment, the power of EEG test data varies. Therefore, to evaluate the noise

robustness of the classifiers systematically, we generate five different noisy test data with various

SNR levels. Thus, we control the noise power of each noise source in five levels.

Original test signal MN V“M‘M@W‘* WWW — "J\MIJ‘JJ\Nll\“m'[".ww‘I)\Iw‘mﬂ WM
l'p'mﬁ\’ﬂ’fwlW'f"LW‘ﬂ'v‘Vl\"“f,‘wwN. Imz;;;zw l
A/WVI'HW WW Wﬂ = sl

Figure 3.3 Noisy test signal generation using different power of noise signal

For the Gaussian noise, we control the noise power by varying the standard deviation of Gaussian
distribution. For the background noise, we use a scale factor « to control the noise power as follows:

polluted test signal = test signal + «(resting noise) . For each subject’s dataset, the classification

performance of the SRC and SVM methods is evaluated using both types of noisy test data.
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Random Gaussian noise is artificially generated by 1-dimensional Gaussian distribution, i.e.,
N(u,0*) where u and o®are the mean and variance. We use a MATLAB built-in function to
generate the zero mean Gaussian distribution with different standard deviation o. To make polluted
EEG test data by Gaussian noise, we generate the same dimension of Gaussian noise to the segmented
EEG signal, i.e., we generate 64 Gaussian noises which have 512 samples in each distribution. We
also apply the band pass filter to the generated Gaussian noise with 8-15 Hz cutoff frequency, which

is used in the preprocessing of EEG signal.

Subject-specific background noise is measured by the EEG recording of the resting state. In this
recording, subject is instructed to just open their eyes without any task for one minute. We apply the
band pass filter to the recorded resting state signal. To make polluted EEG test data by background
noise, we collect one-second time samples (512 samples) from the resting state signal. In this study,
both classifiers are evaluated using 100 test trials. Therefore, we generate 100 noise signals using the
moving window from the total resting state signal. The size of the moving window is 256 samples

(0.5 second).

3.5 Results

To evaluate and compare the classification accuracy of the SRC and SVM methods, we use the
leave-one-out (LOO) cross-validation. Thus, one trial out of 100 training trials is selected as the test
trial, and the remaining trials are used as the training trials. This test is repeated for 100 times with

different combination of training and test trials. To obtain noisy test trials, we apply 100 different
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noise signals for each noise source into the 100 test trials acquired from LOO cross-validation.

Therefore, we have 100 noisy test trials for each Gaussian and background noise.

3.5.1 Comparison of Classification Results

First, we evaluate the classification accuracy of the SRC and SVM methods for the original
experimental datasets that are not contaminated by noise sources. Figure 3.4 shows the comparison
result of the classification accuracy for the SRC, linear SVM, and RBF SVM. For each subject, we
computed the classification accuracy (in %) using the LOO cross-validation. We used 18 CSP filters

for both classification methods, which are determined heuristically (see Figure 3.5).
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Figure 3.4 Comparison of classification accuracy for the linear SVM, RBF kernel SVM, and SRC
method using 20 non-noisy experimental datasets

In Figure 3.4, we observe that SRC achieves competitive classification accuracy over both linear
and RBF kernel-based SVM. The classification accuracy of SRC was found to be better than linear

SVM for 15 subjects and RBF SVM for 14 subjects over 20 subjects. In addition, the mean difference
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of the classification accuracy between the SRC and both SVM methods was statistically significant

using the paired t-test (p < 0.01).
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Figure 3.5 Average classification accuracy over 20 non-noisy datasets when the number of
CSP filters (feature dimension) is varied from 2 to 64.

Furthermore, we investigated the impact of varying the feature dimension on the non-noisy
classification performance in Figure 3.5. In this study, we used the CSP filtering as a feature selection
method. The number of CSP filters (feature dimension) was varied from 2 to 64. Usually, the optimal
number of CSP filters, which showed the maximum classification accuracy was chosen empirically.
However, the optimal number of CSP filters was different depending on the classification method and
dataset. Therefore, we evaluated the classification performance of each classification method when
the feature dimension was varied. Figure 3.5 shows the average classification accuracy over all
subjects when the number of feature dimensions m was varied from 2 to 64. We found that the

classification accuracy of SRC method consistently outperformed the linear and RBF kernel based
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SVM methods regardless of their feature dimension. There was not much difference in the
classification accuracy between the SVM methods. However, the RBF SVM showed better
classification accuracy when the number of CSP filters was over 18. We used the fixed 18 CSP filters
for all classification methods that are shown in Figure 3.4. However, the result in Figure 3.5 shows
that this number was not optimal for certain classification methods. When we used more CSP filters,

the difference in the classification accuracy between the SRC and SVM methods was increased.

3.5.2 Classification Results for Noise Robustness

In this section, we evaluate noise robustness of the RBF kernel based SVM and SRC methods. For
the noise robustness analysis, we used polluted test signals that were generated by adding two noise

sources, i.e., white Gaussian noise and background noise, into the original test signal.

Figure 3.6 shows the noise robustness results of the SRC and RBF kernel based SVM methods for
the Gaussian noise. The average classification accuracy over all subjects was assessed when the noise
power was varied. For the Gaussian noise, we controlled the noise power by changing the standard
deviation, and the SNR was computed for different noise powers. In this study, SNR computation was
defined as follows: SNR(dB) = 10log,, (P, / P,) where P, and P, indicate the signal and noise power,
respectively. For the SNR computation, we investigated the average SNR over all the channels and
subjects. As shown in Figure 3.6, we found that the classification accuracy of SRC was higher than
that of the RBF SVM for all SNR cases. The difference in the classification accuracy between the

SRC and RBF SVM was increased with the SNR increase.
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Figure 3.6 Comparison of the average classification accuracy over 20 subjects. Average
classification accuracy for Gaussian noise is represented as a function of SNR. Vertical line
indicates the standard deviation of the accuracy for each SNR.
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Figure 3.7 Comparison of the average classification accuracy over 20 subjects. Average
classification accuracy for background noise is represented as a function of SNR.
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Similarly, Figure 3.7 shows the noise robustness results of the SRC and RBF kernel based SVM
methods for the background noise, which was measured by the recorded resting state. For the
background noise, the noise power was controlled by scale factor « (see Section 3.4). It was found
that the classification accuracy of SRC was higher than that of the RBF SVM for all SNR cases. In
addition, when the noise power increased, the accuracy difference between the SRC and SVM
increased. For example, in the noiseless case, the average accuracy difference between the SVM and
SRC was 1.9%. However, in the case of 0.5 and -4dB SNR, the difference was 5.8% and 8.5%. This
means that the SRC method was more robust than the SVM for the polluted test signal in the

background noise case.
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Figure 3.8 Classification accuracy of RBF based SVM and SRC method for polluted test data
by background noise (-4dB).

In two-class classification problems, the theoretical chance level is 50%. However, in many EEG
based BCI studies [37] [38], at least 70% classification accuracy is considered as a threshold for an

acceptable communication and device control. In Figure 3.8, we examine the classification
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performance for the polluted test data. Figure 3.8 shows the classification accuracy of all subjects for

the -4dB SNR for background noise cases shown in Figure 3.7. The threshold of 70% classification

accuracy is represented by black dotted line. For this threshold, the SVM has seven datasets that are

over the threshold and the SRC has seventeen datasets. This means that for the noisy test data, 10

more subjects can use a reliable BCI system with the SRC compared to the SVM method.
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Figure 3.9 Scatter plot of training data and noisy test data in two-dimensional feature space (2
CSP filters) for one subject dataset. Noisy test data are generated using background noise
with 4 dB SNR.

Figure 3.9 shows an example of training and polluted test features for one subject dataset. In this

example, the background noise with 4 dB SNR (shown in Figure 3.7) was used for the polluted test

data. The positions of noisy test features (red and blue squares in Figure 3.9) in two-dimensional

feature space were relocated from the positions of the original training features (red x-marks and blue

circles) to places with a particular direction. This represents a typical situation that occurs in real-time
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BCI scenario where the online test data has different background noise compared to the training data.

In this study, the positions of the noisy test features were varied according to the SNR of the test data.

3.6 Discussions

3.6.1 Comparison of Classification Mechanism

In this section, we examine the algorithmic difference between the SRC and SVM methods as the
role of signal classification. Figure 3.10 shows the classification algorithms for both methods. Feature

vectors for the training data were used as an input for both classification algorithms.
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SVM: Maximizing margin .
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Training Training
feature feature
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tuning Test feature—\L (Dictionary)
SVM L1
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Test featureT w, b X
Classify: Classify: M=y -Ax
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Left Left
wy+b S 0 n(y) $ ()

Figure 3.10 Comparison of the SVM and SRC classification algorithm

In the SVM algorithm, the input feature data and model parameters were used and the training was
performed to find the parameters w and b for decision boundary as shown in Equation (8). Based on
the boundary, the test feature was classified. Thus, the y class information was determined by the

decision boundary.
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On the other hand, in the SRC algorithm, the dictionary was simply formed by collecting the input

training feature vectors as the columns of the dictionary. Then, using the dictionary, sparse

representation was performed for each test data. Thus, scalar coefficient vector x was obtained by

solving L1 minimization as shown in Equation (5). Using recovered coefficient X, class information

was determined by computing the residual r(y) in Equation (7).

We aim to highlight the important difference of the classification mechanism of the SRC and SVM

methods as follows:

A fixed decision rule (decision boundary) was obtained for

SVM (or LDA) | the entire set of training signals. Then, for each test signal, this fixed

decision rule was used for signal classification.

The sparse representation was adaptively performed for each

SRC
test signal by utilizing all training signals in the dictionary.

3.6.2 Robustness Analysis of SRC

The experimental results presented in Section 3.5 shows that SRC had a better classification
accuracy than the conventional SVM for motor imagery based EEG signal. In addition, SRC was
more robust for polluted test data than SVM. In this section, we discuss the relationship between the
classification performance and the difference in the classification mechanism for SRC and SVM

methods.
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Figure 3.11 Comparison of the classification procedure and characteristic of the SVM and SRC
for the noisy test data. In the SVM part, black solid line and black dotted line indicate the
decision boundaries for linear and RBF based SVM.

Figure 3.11 shows the concept of the classification strategy for the SVM and SRC using a toy

example of polluted test data in two- dimensional feature space. In the SVM classification, decision

hyperplane and non-linear decision boundary were presented for linear and RBF based SVM. For

many conventional classifiers including SVM, the classifier was trained using training data; thus, the

best decision rule was determined. Then, this classification rule was applied to each test data.

However, as we have shown in Figure 3.11, when the test data was polluted and shifted in feature

space, the decision rule could not guarantee a satisfactory classification performance. On the other

hand, in the SRC method, no classification rule was designed in the training part of SRC. Instead, a

dictionary was formed by collecting feature vectors of the training data. Then, the sparse

representation was performed for each test data using the dictionary. In addition, for the noisy test
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data, an independent classification task was performed in each classification by using all the training

data instead of a fixed decision rule.

For a detailed analysis, we considered three possible cases of polluted test data that are presented

by numbers @, @, and @ in Figure 3.11:

In the first case, test data was shifted away from the decision boundary and positioned at the same

class feature space. In this case, both SVM and SRC correctly classified the noisy test data.

In the second case, the test data was positioned at a different class feature space of training data.

Then, based on the decision boundary, the SVM classified the test data incorrectly. In the SRC

method, the test data was more likely to be represented with different class training data. Thus, both

classifiers were not working correctly.

Note that in the third case, similar to the second case, the test data was placed at a different class

feature space. At the same time, the test data could be possibly positioned near the decision boundary.

Usually, classification performance of classifiers can be determined by the test data of this case.

Based on the decision rule obtained from the training data, the SVM resulted in wrong classification.

When we used non-linear decision boundary, e.g., RBF SVM, as shown in black dotted line, this line

was optimal for the training data. Thus, the classification error could be less than the linear decision

hyperplane. However, for the polluted test data, the non-linear decision boundary was fixed.

On the other hand, in the third case, SRC still had a chance for correct sparse representation with

the same class training data as shown in Figure 3.11. This was possible because the SRC method did
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not depend on a fixed decision rule that was obtained from the training data. Instead, for each

classification of test data, the SRC method directly used all training data and performed sparse

representation.
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Figure 3.12 Scatter plot of training data and noisy test data in two-dimensional feature space
for one subject data. Noisy test data are generated using background noise with 4 dB SNR.

To evaluate the validity of our analysis, we examined the same data shown in Figure 3.9 in details.

Figure 3.12 shows an enlarged version of the scatter plot using the training and noisy test data. The

black line indicates the obtained decision boundary from the RBF kernel based SVM. The region

between the two green dotted lines is chosen as the near area of the decision boundary. In this area,

many miss-classification cases may occur for both classifiers. In addition, most of the polluted test

data, which correspond to case ® in Figure 3.11 are located in this region.
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For all noisy test data (i.e., 100 trials), the RBF SVM and SRC showed the classification accuracy

of 56% and 62%, respectively. Because we used only two CSP filters for visualization, the

classification accuracy was very low compared with the results given in Figure 3.7. For the noisy test

data, which are located between the green dotted lines, the RBF SVM showed 57% classification

accuracy. However, the SRC showed an improved classification accuracy of 83%. In addition, when

we only considered the noisy test data for case 3 examples, the RBF SVM had 18 miss-classification

data. However, the SRC correctly classified 12 test data among 18 test data. Therefore, we confirmed

that the noisy test data of case 3 were miss-classified from the fixed rule based SVM. On the other

hand, for the same data, the SRC correctly classified many times with the effort of independent

classification task for each test data using all training data.

Figure 3.13 shows one instance of the noisy test data that was not correctly classified by the SVM;

however, was correctly classified by the SRC method. The test signal of class 1 is represented by a

red square, which is located in the region between the green dotted lines shown in Figure 3.12. The

figure inside the green box shows the recovered coefficient x from the SRC method. Using the trial

numbers (x-axis of the figure inside the green box) with large coefficient values, we represented the

corresponding trials by the black x-marks and circles in Figure 3.13. Four largest coefficient values

were selected for class 1. Two largest coefficient values were selected for class 2. As it can be seen,

the noisy test trial of class 1 (red square) is located near the training trials of class 2. However, in the

SRC method, using the coefficient x, the test trial could be correctly classified from the minimum

residual rule in Equation (7). In addition, in each test trial, a different coefficient x which represented
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the test data most compactly, was recovered by L1 minimization. Therefore, for the case of time

varying EEG signal classification, the SRC approach was much more appropriate to employ than the

SVM method, which was based on the fixed decision rule.
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Figure 3.13 Scatter plot of training data and noisy test data. The figure inside the green box
indicates the sparse representation result of the noisy test data.

3.6.3 Computation Time Analysis

In this section, we evaluate the computation time (running time) of the classification algorithms for
the experimental datasets. As it can be seen in Figure 3.11, the most time consuming process of the
SVM occurred while training the SVM. On the other hand, the most computation cost in the SRC
algorithm occurred in L1 minimization step for sparse representation. Therefore, our evaluation for
running time focused on the SVM training and L1 minimization step for the SRC algorithm. We used

the tic and toc MATLAB commands to measure the start and end time of the SVM and SRC
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algorithms, respectively. We simulated all algorithms in the same environment using MATLAB 7.14

(R2012a) with 3.30 GHz processor and 8 GB memory.

In the case of online BCI classification, typically the SVM decision boundary was designed once

using the training data. Then, all the test data was classified based on the decision boundary. On the

other hand, independent classification task was performed for each test data in the SRC. Therefore,

the computation time of the SRC is increased by the number of test trials. Thus, a robust classification

performance of SRC included the cost of the computation time at each test trial. For a single test trial,

the average computation time for the SVM and SRC was 12.1 msec and 16.7 msec respectively. This

computation time was averaged for 100 test trials of all subjects. The SVM shows 38% improved

speed than the SRC. However, the difference is 4.6 msec and it is negligible for online BCI

applications.
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Figure 3.14 Computation time of the SRC as a function for the number of training trials.

In this study, the size of the dictionary, i.e., the number of training trials, was 200. In Figure 3.14,

we display the average computation time as a function of the number of training trials. When the size
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of dictionary was increased, the difference of the computation time was just a few milliseconds.

Therefore, this was not an important factor for a single trial classification in online BCI systems. In

addition, recently developed fast L1 minimization algorithms can be used for the SRC method. In [39],

authors showed that some fast L1 minimization algorithms provided faster computation time than the

conventional SRC method for large datasets of real face images. In addition, note that even though the

computation time of the SVM was smaller than the SRC, the SVM required more effort to select a

proper kernel and tune the model parameters for accurate classification results.

3.7 Summary

In Section 3, we evaluated and analyzed the robustness of the SRC method against the non-

stationarity of EEG signal classification. For this purpose, we generated noise corrupted EEG test

signals using two noise sources such as random Gaussian noise and scalp recorded background noise.

Then, we assessed the classification performance of the SRC when the noise power was varied. Using

the experimental motor imagery based EEG and generated noisy test data, we compared the

classification results of the SRC with that of the SVM method, which has been considered as a robust

classifier in many BCI studies. From the results, it was evident that the SRC showed superior noise

robustness than the SVM for both Gaussian and background noise. We analyzed that the robust

classification accuracy of the SRC was due to a different classification approach compared with the

conventional decision rule based SVM. Thus, the SRC showed an inherent adaptive classification

mechanism for each test trial via optimal sparse representation of the training trials. In addition, we
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showed that the computation time of the SRC for a robust classification was on the order of

milliseconds, which was acceptable for real time BCI systems.
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4. Simple adaptive SRC schemes

4.1 Motivation

In the beginning of BCI research, BCI systems have been developed mostly to provide alternative
communication means to people who have severe motor disabilities [2][7]. Recently, much research
effort focused on development of portable BCI systems for normal person by using headset shaped
scalp electrodes [40][41] and also dry electrodes which not need conductive gel for preparation of
EEG recording [42][43]. In addition, with the progress of portable BCI systems and EEG sensor
technologies, many BCI applications are developed for general public [43][44]. However, for the BCI
systems going beyond laboratory researches, the most important issue is stable classification

performance.

Normally, EEG based BCI experiment can be categorized as a training (calibration) stage and a real
time testing (feedback) stage. In the training stage, translation algorithm such as classification is
designed using collected training signals. Then, an application device such as neural prosthesis is
controlled by using the classification algorithm in real time testing stage. However, EEG signals have
inherent non-stationary characteristics and there exist significant day-to-day and even session-to-
session variability [5][29]. Thus, features of experimental EEG signals are changed from the offline
training sessions to online testing sessions [28]. Due to this, classification performance is unavoidably
deteriorated in BCI experiment with time. This is one of major obstacles of real-time online BCI

applications.
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To overcome the performance decrease caused by the non-stationarity of EEG signals, many

adaptive signal processing methods are proposed. In [29][30], adaptive feature extraction methods are

proposed for the motor imagery based BCI systems. For the adaptive classification scheme, in [45],

mean and covariance matrix of a statistical classifier are iteratively updated using each class data. The

study [28] proposes a bias adaptation scheme of linear discriminant analysis (LDA) classification

using class labels of several test trials. They have shown that simple bias adaptation is effective for

online test data. In [46], they propose an expectation-maximization (EM) algorithm based

unsupervised adaptive classification method. Using EM algorithm, common spatial pattern (CSP)

features are re-extracted and parameters of Bayes classifier are updated in each iteration step.

Similarly, [32] suggest unsupervised bias adaptation of LDA without using class label information.

Previous studies for adaptive classification method need classifier re-adjustment (training) such as

parameters and bias adaptation for new test trials. However, for this re-training, additional

computation is needed in each update (adjustment) step.

Compared to other fixed decision rule based classification method such as linear discriminant

analysis (LDA) and support vector machine (SVM), in the SRC, the sparse representation is

adaptively performed for each test data by utilizing all training data in the dictionary (see Section 3).

Along with this inherent adaptive characteristic of the SRC, in this study, we propose simple adaptive

SRC schemes for real-time BCI applications. We suggest a dictionary update rule and an incoherence

based dictionary modification (IDM) method. For the dictionary update rule, supervised and

unsupervised adaptive schemes and also accumulated and fixed update rules are considered. Proposed
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dictionary update methods are very simple and additional computation for adaptation is not needed. In
the part of IDM method, our aim is to create a maximally incoherent dictionary via an incoherence
measure of training data. This method is applied to the training data before performing the sparse
representation. Using online motor imagery based BCI experimental datasets, we evaluate
classification performance of the proposed adaptive method by comparing with the conventional SRC

and other adaptive classification methods.

4.2 Experimental Dataset

In Section 4, for evaluation of adaptive classification schemes, we use an online motor imagery
based BCI experimental dataset. This dataset is obtained from the collaboration laboratory,
Biocomputing Lab., in GIST (Gwangju Institute of Science and Technology). The experiment was
approved by the Institutional Review Board of GIST. Ten subjects who signed a written informed
consent letter participated in our online experiment. The experiment was performed on multiple days
(two or three days). In each day, just one session experiment was executed. The number of sessions
for each subject was determined by classification results and condition of each subject. Right hand (R),
left hand (L) and foot (F) motor imagery were performed for each subject. For this experiment, we
used Active Two EEG measurement system made by Biosemi, Inc. The sampling rate of these
datasets was 512 samples per sec and the number of EEG channels was 64. The channel positions

were selected from international 10/20 standard.
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The detailed experimental paradigm was illustrated in Figure 4.1. The same paradigm was used for
both training (calibration) and online testing (feedback) phases. In the training phase, one session
consisted of three runs and one run consisted of 20 trials for each class. Thus, we collected a total of
60 training trials for each class. All participants were naive subjects for this motor imagery
experiment. Therefore, it was difficult to achieve satisfactory classification performance without
sufficient training time. In addition, each subject had a different discrimination potential for a
different pair of motor imagery signals. In this study, to find the most discriminative motor imagery
pair for each subject, we performed the initial classification for all pairs of (R), (L), and (F) by using
the dataset of the first run in the training phase. The best pair of motor imagery was selected using the
band pass filtered CSP feature (5-30 cut off frequencies and 10 CSP filters were used) with the LDA

classifier and used for a further experiment in the training and testing session.

rest target ready imagery

| | | |
. - 1 2 3 4

0
T time(sec)
cu

Figure 4.1 One trial time procedure of online motor imagery experiment

As shown in Figure 4.1, in each trial, the target bar was represented on zero sec at left, right or
down side of monitor screen corresponding to the left, right or foot motor imagery. On two sec after
cue onset, subject was instructed to perform the motor imagery task. Then, subject imagined their left,

right hand or foot movement such as grasping and releasing hand. In this period, subject was also
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instructed to stare a red dot during motor imagery to avoid eye movement artifacts. In the training
session, to design a classifier that would be used in the testing session, we just collected the training
trials for each motor imagery signal. At that time, the classifier had not been designed. Therefore, the

yellow ball (feedback) was set to move into the target direction automatically.

In the online testing (feedback) phase, same experimental paradigm was used. However, the online
feedback was provided in each trial. Thus, the yellow ball was controlled by the classified result of
LDA which was analyzed from intention of each subject using the EEG data collected from 2 to 4 sec.
We recorded 75 test trials for each class. One run consisted of 25 trials and we performed total three
runs. Thus, in the one session experiment, total 60 offline and 75 online trials per class were collected
for each subject. Both data were segmented from 2 to 4 sec after cue onset for further signal

processing.

4.3 Preprocessing and Feature extraction

For preprocessing of experimental EEG dataset, we apply same procedures to all datasets and
classification methods. First, we perform band pass filtering to eliminate the frequencies which are
not related to motor imagery signals. In this study, we use fourth order Butterworth filter with 5 and

30 of cut off frequencies.

We use the CSP filtering and band power computation for feature extraction of Ml EEG signals.

For the SRC scheme, we use same procedure as explained in 2.4.3.
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4.4 Adaptive SRC Schemes

To overcome inherent non-stationarity of EEG signals, we propose simple adaptive classification
schemes based on the SRC method. In this study, we suggest two schemes, dictionary update method
and incoherence based dictionary modification (IDM) method. Each scheme works with the
conventional SRC method independently. In addition, both schemes can be incorporated as one

combined adaptive SRC method. In the following subsections, we introduce each adaptive scheme.
4.4.1 Incoherence based Dictionary Modification Method

As we mentioned in Section 2.4.1, when a dictionary is incoherent a test signal from one particular
class can be predominantly represented by the columns of the same class in the dictionary. The
uncertainty principle (UP) [21][22] in the sparse representation theory dictates that a signal cannot be
sparsely represented in both classes simultaneously. This phenomenon intensifies as the degree of

incoherence of the dictionary increases.

An incoherent dictionary can be explained from the definition of mutual coherence of class-
dictionary as shown in equation (1): M(A_,Ag) 2 max{ ‘ <aL’j ,aR,k> ‘: jk=12,..., Nt}. In the SRC
algorithm, we normalize the columns of dictionary A. Therefore, M measures the smallest angle
between any pair of columns of two classes. When the value of M obtained from the two class-
dictionaries is small, i.e., the cosine angle between two columns is large, we consider the dictionary
incoherent. Due to the characteristics of the CSP filtering, i.e., CSP filters maximize the variance of
the spatially filtered signal for one class data while minimizing it for the other class data, the CSP

-54 -



features can be used for constructing incoherent dictionary (see Section 2). After applying CSP
filtering, in the proposed IDM method, we aim to eliminate some training trials that have a high
average cross coherence value with training trials of a different class. Thus, the eliminated training
trials have features similar to those of many training trials of a different class. Therefore, we expect to
further increase the incoherence of the dictionary by using the IDM method; this might lead to a high

discrimination capability for training trials of two different classes.

In the IDM method, coherence value of the dictionary A can be simply estimated by each element
of G=ATA. Thus, G(i,j) indicates the coherence value between i and j-th column of the
dictionary. Therefore, G(i, j) is equal to G(}j,i). For example, if the number of training trials of
each class-dictionary is five, then the dimension of G is 10x10. From the G, we focus on the
cross coherence part between the two classes. Thus, we extract columns from 1-th to 5-th and rows
from 6-th to 10-th of the G which are corresponding to the class 1 and class 2 respectively.
Therefore, the dimension of cross coherence part is 5x5 in this example. We represent this cross
coherence part as G... Using the G, we can easily check which trials of class 1 dictionary have

large coherence values with trials from class 2 dictionary and vice versa.

Figure 4.2 shows example values of cross coherence G.. € R>® and concept of the IDM method.
In this figure, each number means the coherence value ranged from 1 to 9. Red colored elements
represent high coherence values which are set up to be the values greater than or equal to 8. The

values of last row and column represent the averaged value of five columns and rows respectively. In
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this example, we set the number of elimination trials n equal to one. Thus, we aim to eliminate the

highest average value for each column and row respectively.

12 3 4 5 A

1 1 4

28

Eliminate
8th trial of A,

10 2

Avg. | 34

Eliminate 3™ trial of A,

Figure 4.2 Example of incoherence based dictionary modification (IDM) method

From the averaged value of cross coherence, the third row and third column shows highest

averaged value of 6.4 and 5.8. This means that 8-th row (8-th trial from class 2 dictionary) and third

column (third trial from class 1 dictionary) shows high coherence value with many trials, i.e., many

red colored elements, from the other class-dictionary. Therefore, we can eliminate the one trial in the

each class-dictionary.

We summarize the incoherence based dictionary modification (IDM) algorithm as follows:

1. Set nthe number of elimination trials

2. Compute the average value of each column of G

3. Collect the indices of column numbers which have n highest average coherence values

4. Eliminate n indices from original class-dictionary

5. Repeat 2~4 steps for row of G
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For each subject dataset, we apply the IDM algorithm to the dictionary. After then, we perform the

SRC steps with the modified dictionary.

4.4.2 Dictionary Update Methods

Normally, in motor imagery based BCI systems, a translation algorithm such as a classifier is
designed using the collected training data. Then, an application device or program is controlled by
using the classification algorithm in each test trial. However, because of the inherent non-stationarity
of EEG, the classification performance deteriorates from the training to the test session in a BCI
experiment. To overcome this drawback, many adaptive classification schemes are proposed. The
main concept of the adaptive classification is re-adjustment (re-training) of the classifier for the new
test data. On the other hand, in the SRC scheme, one important characteristic is that training (or
parameter decision) of a classifier is not needed unlike in other decision hyper-plane based
classification methods such as LDA and SVM. Thus, in the SRC scheme, a dictionary is simply
formed by collecting the training feature vectors as columns of the dictionary. Then, using the
dictionary sparse coding step is performed for each test data. Due to this unique classification

mechanism, a simple intuitive method for adaptive SRC is dictionary update.

As we mentioned in Section 2.4.1, the dictionary A is formed by class-dictionary

A =[a;;,@,,...3; ] inthe SRC method. Each column vector a;is a j-th training feature vector of

class i. Therefore, for each test trial in the online testing phase, a feature vector of a new test trial y

can be easily updated as a new column of the dictionary. Then, characteristics of the test feature can
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be applied into the dictionary while the online testing experiment is performed. And therefore, we can

expect the classification performance of the online testing phase is not deteriorated.

Dictionary : A
A

(2) eliminate

old trial SN A A:

\ J
I i

class 1 training data class 2 training data

|

(1) add new
test trial

Figure 4.3 Concept of the proposed dictionary update rule

In this study, we consider four types of dictionary update rule, supervised accumulated update

(SAU), supervised fixed update (SFU), unsupervised accumulated update (UAU) and unsupervised

fixed update (UFU) rule. In our online experimental paradigm, as shown in Figure 4.1, a target class

label is first provided as the position of the target bar. Then, subjects perform motor imagery

corresponding to the class label information for each trial. In the supervised update rule, the target

class label of test trials is used for updating the online test trials. Thus, a new test trial which has same

class label of training trials in the class-dictionary is updated into the corresponding class-dictionary.

However, this strategy is not practical for a general online scenario. Therefore, we also consider the

unsupervised update rule. In the unsupervised update rule, class label information of the test trial is

not used. Thus, each test trial is updated into the corresponding class-dictionary based on the
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estimated result of the classifier, which is represented by the direction of the yellow ball movement

shown in Figure 4.1.

For the case of accumulated update method, as shown in @ of Figure 4.3, all updated test trials are
just stacked at the end (last column) of the class-dictionary based on the class label and classified
result for SAU and UAU respectively. However, for the case of fixed update rule, SFU and UFU, the
oldest training trial, i.e., the first training trial of the class-dictionary is eliminated as shown in @ of
Figure 4.3 when each new test trial is updated. Note that if available training data in the dictionary is
large enough and online testing phase is long, i.e., the number of test trials is large; the dictionary will
be a fat matrix in the case of accumulated update rule. In this case, computation time for sparse
representation is also increased. Therefore, in this study, we consider fixed update rule which has a
same size dictionary, i.e., number of columns in the dictionary, with the original training dictionary.

We compare computation time between accumulated and fixed update rule in Section 4.6.2.

4.5 Results

4.5.1 Evaluation Strategy

Using the online experimental dataset mentioned in Section 4.2, we aim to evaluate proposed
adaptive SRC schemes, i.e., four dictionary update methods (supervised accumulated update (SAU),
supervised fixed update (SFU), unsupervised accumulated update (UAU) and unsupervised fixed
update (UFU) rule) and an incoherence based dictionary modification (IDM) method. From the multi
session datasets of ten subjects, twelve session datasets are selected for evaluation of proposed
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methods. In this selection, for a reliable assessment of classification methods, we choose datasets over

60% classification accuracy in the online experiment (In the binary classification, theoretical random

chance level is 50%). Each session dataset consists of sixty training trials and seventy five test trials

for each class.

In this Section 4, for the two class classification problems of the conventional SRC method, the

dimension of the dictionary A is 10x120, i.e., m = 10 CSP features and N = 120 training trials. For

each subject, 150 test trials where each has the same 10 dimension features are evaluated with

dictionary A. For the proposed adaptive methods, we perform the incoherence based dictionary

modification (IDM) method using the original dictionary A. After then, for each new test trial, we

perform the each proposed dictionary update method for adaptation of test data.

Due to the inherent non-stationarity of EEG signals, online test data have different feature

characteristics compared to training data. And therefore, even though classifier is well trained for

training data, satisfactory classification performance is not guaranteed for online data. We expect that

in the SRC method the proposed incoherence based dictionary modification (IDM) method is

effective for proper dictionary design by maximizing incoherence between two classes. In addition, to

overcome the non-stationarity of EEG, new test features will be applied into the original dictionary

using updated new test trials from the proposed dictionary update method. Using online experimental

dataset, we evaluate classification accuracy of the conventional SRC, each dictionary update method

and IDM based adaptive SRC method. In addition, we also compare the classification results of the

proposed methods with other adaptive classification methods such as adaptive LDA and SVM method.
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4.5.2 Experimental results

To evaluate classification performance of the proposed adaptive SRC schemes, we compare
classification accuracy (%) of proposed methods with that of conventional SRC method using the
online experimental dataset of twelve motor imagery sessions. Table 4.1 shows the classification
accuracy of the SRC and the proposed dictionary update based SRC methods with and without IDM
method. For fair comparison, we set the same value of n (the number of elimination trials of IDM) of

10 for all subjects and all IDM based adaptive SRC methods.

Table 4.1 Classification accuracy of conventional SRC and proposed adaptive SRC schemes
(SRC_SAU, SRC_SFU, and SRC_USU) for 12 session datasets. We present the classification
accuracy (%) of each method with and without IDM. The highest classification accuracy for
each dataset is highlighted in bold.

SRC SRC_SAU SRC_SFU SRC_UAU SRC_UFU

Data w/o w/ w/o w/ w/o w/ w/o w/ w/o w/
IDM IDM IDM IDM IDM IDM IDM IDM IDM IDM

1 66 66.7 67.3 70.7 66.0 64.7 66.0 67.3 66.0 67.3
2 86 86.7 88.0 88.0 88.0 88.0 87.3 89.3 82.7 90.7
3 88.7 90.7 90.0 90.0 89.3 90.7 90.0 90.7 90.7 88.7
4 96.4 96.4 96.4 96.4 97.1 97.1 96.4 96.4 96.4 96.4
5 83.3 89.3 93.3 96.0 96.0 96.7 93.3 95.3 94.7 97.3
6 82.7 78.7 86.7 86.7 84.0 84.0 80.0 84.0 80.7 83.3
7 77.3 75.3 78.0 80.0 78.7 79.3 76.7 77.3 79.3 78.0
8 73.3 88.0 88.7 88.7 89.3 91.3 78.0 89.3 84.7 90.7
9 70.0 75.3 74.0 74.7 73.3 74.0 70.0 72.0 70.0 71.3
10 62.0 64.0 66.0 68.7 67.3 71.3 62.0 63.3 68.0 66.7
11 84.0 87.3 88.7 89.3 88.7 89.3 86.7 88.0 88.0 88.7

12 96.7 96.0 97.3 98.0 97.3 98.0 96.7 98.0 96.7 98.0
Mean 805 82.9 84.5 85.6 84.6 85.4 81.9 84.3 83.1 84.8
Std. 11.13 10.74 1069 994 1099 1089 11.73 1164 1084 1140
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From the results of Table 4.1, all five methods with IDM show better mean classification accuracy

than the without IDM method. Thus, the proposed IDM method is effective for the SRC framework.

Furthermore, the proposed simple dictionary update methods with and without IDM show improved

mean classification accuracy than the conventional SRC method. Supervised update methods, i.e.,

SAU and SFU, show more improved results than the unsupervised methods, UAU and UFU. However,

mean difference between SAU/ SFU with IDM and UAU/ UFU with IDM is not much.

For further analysis, in Figure 4.4, we investigate the comparison of the classification accuracy of

twelve datasets using scatter plots. Each point indicates the classification accuracy of each dataset

which is used for computing mean classification accuracy in Table 4.1. Figure 4.4 (a) shows the

comparison results between the SRC and the two supervised dictionary update methods with IDM.

Classification accuracies of the SRC and supervised methods are represented in X and Y-axis

respectively. For the supervised methods (Y-axis), blue square points indicate the SAU with IDM

method and red circle points indicate the SFU with IDM method. Similarly, Figure 4.4 (b) shows the

comparison results between the SRC and the two unsupervised dictionary update methods.

From the results of Figure 4.4 (a), both SAU and SFU with IDM show higher classification

accuracies than the SRC method for eleven datasets. Thus, the eleven data points positioned over the

black linear-line which indicates the same classification accuracy between SRC and proposed

methods. On the Figure 4.4 (b), we also observe that the both UAU and UFU IDM show higher
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classification accuracies than the SRC for ten datasets. In addition, p-values obtained from paired t-

test are smaller than 0.05 for all comparisons between the SRC and proposed methods in Figure 4.4.

100 - mUAU IDM 100 - msau IDM
®
e UFU IDM [~ ® SFU IDM a

90 90

W <005

o be00s B p<001
<0.

® p<005
60 I I I 1 60 I I I |
60 70 80 90 100 60 70 80 90 100

SRC SRC

Un-supervised adaptive method
os]
S
Supervised adaptive method
co
S
a

(a) (b)
Figure 4.4 Comparison of classification accuracy of all twelve datasets (a): Scatter plot of
classification accuracies between conventional SRC (X-axis) and the both supervised update
methods SAU and SFU with IDM (Y-axis) (b): Scatter plot of classification accuracies between
conventional SRC (X-axis) and the both unsupervised update methods UAU and UFU with IDM
(Y-axis).

To evaluate the effect of the proposed methods, we analyze one dataset in the feature space. Figure

4.5 shows scatter plots of training and test features of dataset 5 used in Table 4.1. For ease of

visualization, we use two-dimensional feature spaces which are corresponding to the first and the last

CSP filters. In Figure 4.5, the red and black x marks indicate the 60 training and 75 test features for

one class, respectively. On the other hand, the blue and green circles indicate the 60 training and 75

test features for another class, respectively. Each class training and test data element is fitted by a

Gaussian distribution. Therefore, we can easily check the distribution change from the training to the

test data during the experimental sessions. When the distribution of the test data is changed from that
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of the training data, the previously designed dictionary based on the training data is not optimal for

the classification of new test data.

081 ,
% X Class 1 training trial
07 * O Class 2 training trial
X Class 1 test trial
0.6F b Class 2 test trial

Figure 4.5 Scatter plot of training and test features for two different classes in two dimensional
feature spaces using an example dataset 5. All training and test samples are scattered and
fitted by Gaussian distribution for illustration.

Figure 4.6 shows one classification instance of a test trial, which is represented by a filled green

point (class 2) in the left figure. In this test, the test feature is not correctly classified, i.e., classified as

class 1, by the conventional SRC without IDM method. All training features in the dictionary of

classes 1 and 2 shown in Figure 4.5 are utilized for the classification of the test feature without the use

of any adaptation techniques. Figure 4.6 (a) shows the coefficients recovered by the conventional

SRC for the test feature represented in the left figure. The X-axis represents the training trial number

(column number) of the dictionary, and the red dotted line denotes the boundary of two different

classes. In the Figure 4.6 (b), the numbering @, @ and (3 represent the coefficients corresponding to

the training trials of black x marks @, @ and @ in the left figure. Because the three training points of
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class 1 are used for the sparse representation of the test trial and have large coefficient values, the test

feature is classified as class 1 by using the minimum residual rule in equation (2).
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X
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X
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(@) (b)

Figure 4.6 Classification results of conventional SRC for one test sample of dataset 5 for. (a):
Scatter plot of training features for two classes and one test feature of class 2. (b): Sparse
representation results of one test feature shown in left figure from the conventional SRC. X-
axis represents the training trial number in dictionary and Red dotted line means the boundary
of two different classes.

On the other hand, Figure 4.7 shows the classification results of SRC_UAU IDM for the same test

trial used in Figure 4.6. In Figure 4.7 (a), we can see that some training features which are originally

positioned at the area of different class features including the black x marks @, @ and @ in Figure

4.6 (a) are effectively eliminated by the IDM method. In addition, new test trials represented by the

black x marks and the green and black circles are also updated before the classification of the current

test trial, which is represented by the filled green circles. From the result of Figure 7 (b), we conclude

that the test trial is correctly classified as class 2 and the three updated test trials represented by black

circles @, @ and ® in the left figure have large coefficients. Therefore, for the classification of new

test trials, IDM and the dictionary update method in SRC are very effective, and we can see that the
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proposed methods with IDM show relatively improved classification accuracy compared to the

conventional SRC from the results of dataset 5, presented in Table 4.1.
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Figure 4.7 Classification results of SRC_UAU IDM for the same test sample in Figure 6. (a):
Scatter plot of training features for two classes and one test feature of class 2. (b): Sparse
representation results of one test feature shown in left figure from the SRC_UAU IDM.

Next, we compare the classification accuracy of the conventional SRC and the proposed adaptive
SRC methods with the non-adaptive and adaptive LDA and SVM classification methods using our
experimental dataset in Table 4.2. The LDA and SVM are widely used classification methods in many
EEG based BCI researches. For the adaptive LDA and SVM methods, first, linear decision hyper-
plane is chosen from training data. Then in the testing session, the decision hyper-plane is re-trained

for new test sample. We only consider supervised adaptation for the LDA and SVM methods.

From the results presented in Table 4.2, we can first see that the conventional SRC exhibits better
mean classification accuracy than the non-adaptive LDA and SVM methods. These results are

consistent with those of the previous results in Section 2 and 3. Second, the proposed adaptive SRC
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methods show better mean classification accuracy than the other adaptive LDA and SVM methods.

Note that even though the accuracy difference between the unsupervised adaptive SRC methods and

adaptive SVM method is not much, in the conventional adaptive methods, re-training (re-adjustment)

of the decision hyper-plane for new test data is time consuming process. However, in the proposed

methods, dictionary update for adaptation of each test sample is very simple process and re-training of

classifier is not needed.

Table 4.2 Comparison of classification accuracy (%) between conventional non-adaptive
classification methods (LDA, SVM, and SRC) and adaptive classification methods (including
the proposed adaptive SRC schemes). The highest classification accuracy for each dataset is
highlighted in bold.

SRC SRC SRC SRC

Data  LDA ﬁ‘gﬁ' SVM g‘s/al\rjl' SRC _SAU _SFU _UAU _UFU
IDM IDM IDM DM

1 560 627 687 693 660 707 647 673  67.3
2 880 873 80 80 8.0 880 880 893 907
3 873 867 8.0 860 887 900 907 907 887
4 943 943 957 950 964 964 971 964  96.4
5 780 840 8.0 893 833 960 967 953 973
6 793 80 87 907 827 867 840 840 833
7 68.7 740 713 800 773 800 793 773 780
8 847 893 707 893 733 887 913 893 907
9 707 740 693 733 700 747 740 720 713
10 533 633 580 627 620 687 713 633  66.7
11 793 87 700 873 840 893 893 880 887
12 873 913 940 953 967 980 980 980 980

Mean 77.2 81 78 83.9 80.5 85.6 85.4 84.3 84.8
Std. 12.84 1036 11.70 1036  11.13 9.94 10.89 1164 11.40
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4.6 Discussions

4.6.1 Results for Public Dataset

For the evaluation of the proposed methods, we use a public dataset obtained from Dataset V¢ of

BCI Competition 111 [47]. In this dataset, the test data were separately recorded for more than 3 hours

after the acquisition of the training data. Therefore, the distribution of some EEG features could be

effected by non-stationarities. This dataset was recorded from a healthy subject. He sat in a

comfortable chair with his arms resting on the armrests. The training dataset consists of the data of the

first three (non-feedback) sessions. In all, 210 training trials (105 for each class) were obtained. The

visual cues (letter presentation) indicated for 3.5 sec which of the following two motor imageries that

the subject had to perform: (L) left hand and (F) right foot. The target cues were presented at intervals

of random length ranging from 1.75 to 2.25 sec, in which the subject could relax. In the test sessions,

total 280 test trials (140 for each class) were recorded. The experimental setup was similar to the

setup of the training sessions, but the motor imagery had to be performed for 1 sec only, compared to

3.5 sec in the training sessions. The recording was made using BrainAmp amplifiers and a 128-

channel Ag/AgCI electrode cap from ECI. A total of 118 EEG channels were measured at the

positions of the extended international 10/20 system. Signals were band-pass filtered between 0.05

and 200 Hz, and then digitized at 1000 Hz.

Table 4.3 shows the classification accuracy of the public dataset for conventional SRC and the four

proposed adaptive SRC schemes when the number of elimination trials n is varied from 0 (no IDM) to
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30. For this dataset, six CSP filters are used for feature extraction, and thus, the dimension of

dictionary A is 6x210 for the original SRC. In all, 280 test trials are classified by each classification

method. From the results presented in Table 4.3, we find that all proposed adaptive SRC methods

exhibit improved classification accuracy compared to the conventional SRC method irrespective of

the value n of IDM. Supervised dictionary update methods (SAU and SFU IDM) show better

classification accuracy than the unsupervised methods (UAU and UFU IDM); however, the difference

is very small (within 1%). Further, the difference between the accumulated (SAU and UAU IDM) and

the fixed dictionary update methods (SFU and UFU IDM) is more small and negligible for this dataset.

Table 4.3 Classification accuracy (%) of conventional SRC and the proposed adaptive SRC

methods for the public BCI competition dataset.

nof .o~ SRCSAU SRCSFU SRC_UAU SRC_UFU
IDM IDM IDM IDM IDM
0 925 95.36 95.36 93.93 94.64
5 92.86 96.07 95.71 94.64 94.64
10 90 95.36 95.71 93.93 93.93
15 92.86 95.36 95.36 94.64 94.64
20 91.43 95.36 95.71 95.36 94.64
30 91.79 95 95 94.64 94.64
Mean  91.91 95.42 95.48 94.52 94.52

4.6.2 Comparison between Proposed Adaptive Schemes

In this section, first, we compare the accumulated and fixed dictionary update rule for each

supervised and unsupervised dictionary update method. From the results of Table 4.1, the mean

difference between SRC_SAU and SRC_SFU with IDM is just 0.2%. For the unsupervised case,
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SRC_UAU and SRC_UFU with IDM exhibit a mean difference of 0.5%. To analyze the statistical

significance of the mean differences, we perform the paired t-test for the accuracy of each subject.

The obtained p-values of the t-test are larger than 0.05 for the comparisons of the accumulated and the

fixed update rule, which means that the differences are not statistically significant. As we mentioned

in Section 4.4.2, when the number of original training trials in the dictionary and that of the updated

new test trials are large, the computation time of the accumulated dictionary update based SRC

method might be increased to solve the sparse coding step, i.e., equation (5), by using L1

minimization as compared to the fixed dictionary update based SRC method. Thus, in the fixed update

rule, the dictionary size is fixed for all test trials and the computation time for sparse coding is not

increased. However, in the accumulated update rule, the dictionary size is increased in every test trial,

and therefore, the computation time for the sparse coding step is also increased.

We compare the running time (computation time) of the accumulated and fixed dictionary update

methods. Because of the number of training trials and that of the test trials of the competition dataset,

which is used in Section 4.6.1 (210 and 280), are larger than our dataset (120 and 150), we use the

competition dataset to evaluate the running time. The tic and toc MATLAB commands are used for

measuring the running time of the sparse coding step in the SRC algorithm. We repeat 100 times and

measure the average running time for each method. For a single test trial, the average running time of

the sparse coding step in SRC_SAU and SFU are 5.47 msec and 4.29 msec respectively. Further, the

SRC_UAU and UFU show the average running time of 5.45 msec and 4.26 msec for the sparse
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coding step, respectively. Therefore, for a single test trial, the differences in the running time between

the accumulated and the fixed update rule are very small and negligible for online BCI applications.

Second, we investigate supervised and unsupervised dictionary update methods. From the results

presented in Table 4.1, we find that the mean difference between SRC_SAU and SRC_UAU with

IDM is 1.3%. For this comparison, we obtained a p-value of 0.04 from the paired t-test. For the

unsupervised case, the mean difference between SRC_SFU and SRC_UFU with IDM is 0.6% and the

obtained p-value is larger than 0.05. Even though the mean differences are not much, all supervised

methods consistently show better mean classification accuracy than the unsupervised methods for our

dataset and the public dataset presented in Tables 4.1 and 4.3, respectively. In the unsupervised

dictionary update method, the class labels of the test trials are determined by the results of the

classifier. Unfortunately, the classifier usually does not provide perfect classification results for all

test trials because of the non-stationarity of EEG. Few incorrectly classified test trials are also updated

in a different class-dictionary with the original target class. These trials affect the sparse coding step

in the SRC algorithm. In addition, in our online dataset, LDA classifier is used for providing feedback

results. Therefore, user adaptation from SRC cannot be obtained in the unsupervised method. These

might be the reasons that the unsupervised methods exhibit lower mean classification accuracy than

the supervised methods in this study. However, from the results for our dataset and the public dataset,

we find that the unsupervised methods still show improved classification results compared to the

original SRC.
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4.6.3 Analysis of IDM Method
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Figure 4.8 Average classification accuracy of SAU IDM and UAU IDM when the number of
elimination trials n is varied.

As shown in the results of Table 4.3, the classification accuracy of IDM based SRC methods may
vary on the basis of the value n of IDM. The value n can be heuristically chosen to optimize the
classification accuracy. In this section, we analyze the effect of the number of elimination trials n of
IDM by using our experimental dataset. In the results presented in Table 4.1, for a fair comparison,
we set the same value of n of 10 for all twelve datasets. For the same datasets, in Figure 4.8, we
compute average classification accuracy over all datasets when the number of elimination trials of
SAU, SFU, UAU and UFU IDM is varied from 0 to 30. From the results of Figure 4.8, the optimal
number n is different for each method. This means that there is a place to improve classification
performance of IDM based adaptive SRC method by finding optimal n for each method and also each
subject dataset. In Figure 4.8, compared to the results of supervised update methods average accuracy

is decreased with the large value of n in the case of unsupervised update methods. This might be
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because if the number of elimination trials n is large, number of training trials is decreased in the
dictionary. Thus, the role for classification task of updated new test trials is increased. However, in
the case of unsupervised method, class label of new test trials is not always correctly updated.
Therefore, for the unsupervised update methods with IDM, the value n is needed to choose more

carefully.

Next, we analyze the effect of the incoherence based dictionary modification (IDM) method. As we
mentioned in Section 4.4.1, we propose an IDM method to make more incoherent dictionary after
applying the CSP filtering. Incoherence of dictionary can be measured by mutual coherence value M
introduced in equation (1). To evaluate the change in the coherence value, we measure the M value of
SRC without IDM and with IDM method. From the average results over twelve datasets, The SRC
without IDM shows 0.983 value of M. On the other hand, the SRC with IDM shows 0.934 value of M.
This means that after applying the IDM method, we can make more incoherent dictionary than the

without IDM method.

4.7 Summary

Because of the inherent non-stationarity of EEG signals, performance degradation is an inevitable
phenomenon in EEG based BCI systems. In particular, an already designed classifier by the training
data does not guarantee satisfactory classification accuracy for new test data in the online feedback
stage. In this paper, we propose dictionary update methods with incoherence based dictionary

modification (IDM) as adaptive SRC schemes to compensate for the non-stationary effects. We
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consider supervised/unsupervised and accumulated/fixed dictionary update rules with IDM. With the

unique classification mechanism of the SRC, i.e., a fixed decision rule is not required for the

classification, in the proposed dictionary update methods, the test data are easily updated and utilized

for the classification of other new test data without requiring any additional computation. In addition,

in the IDM algorithm, we try to create a maximally incoherent dictionary for SRC by using a simple

incoherence measure of the training data. By using two online motor imagery based BCI experimental

datasets, we evaluate the classification performance of the proposed adaptive schemes. From the

results, we find that the proposed IDM based adaptive SRC schemes show improved classification

results compared to the conventional SRC. Further, unsupervised adaptive SRC schemes that are more

practically applicable in BCI exhibit competitive classification accuracy than other adaptive LDA and

SVM methods.

-74 -



References

[1]

(2]

3]

[4]

[5]

(6]

[7]

(8]

J. R. Wolpaw, N. Birbaumer, D. J. McFarland, G. Pfurtscheller, T. M. Vaughan, “Brain-
computer interfaces for communication and control”, Clin.Neurophysiol. vol. 113, pp.

767-791, 2002.

J. R. Wolpaw, D. J. McFarland, G. W. Neat and C. A. Forneris, “An EEG-based brain-
computer interface for cursor control”, Electroencephalogr. Clin. Neurophysiol. vol. 78,

pp. 252-259, 1991,

J. R. Wolpaw, D. J. McFarland, “Control of a two-dimensional movement signal by a
noninvasive brain-computer interface in humans,” PNAS, vol.101, no.51, pp.17849-17854,

December 2004.

G. Dornhege, J. R. Millan, T. Hinterberger, D. J. McFarland, K. R. Miller, “Toward

Brain-Computer Interfacing”, The MIT Press, pp. 213-215, 2007.

B. Blankertz, R. Tomioka, S. Lemm, M. Kawanabe, K. R. Miiller, “Optimizing spatial
filters for robust EEG single-trial analysis” IEEE Signal Process Mag., vol. 25 no. 1, pp.

41-56, 2008.

F. Lotte, M. Congedo, A. Lecuyer, F. Lamarche, B. Arnaldi, “A review of classification
algorithms for EEG-based brain-computer interfaces”, J. Neural Eng. vol. 4 no. 2, R1-

R13, 2007.

G. Pfurtscheller, D. Flotzinger, and J. Kalcher, “Brain-computer interface-a new

communication device for handicapped persons,” J. Microcomput. Appl., vol. 16, pp. 293-

299, 1993.

D. Donoho, “Compressed sensing”, IEEE Trans. Inf. Theory, vol. 52, pp. 1289-1306,

2006.

-75-



[9] R. Baraniuk, “Compressive sensing” IEEE Signal Process. Mag., vol. 24 np. 4, pp. 118-

121, 2007.

[10] K. Huang and S. Aviyente, “Sparse representation for signal classification”, Adv. Neural

Inf. Process. Syst., vol. 19, pp. 609-616, 2006.

[11]J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry and Y. Ma, “Robust face recognition via
sparse representation”, IEEE Trans. Pattern Anal. Mach. Intell., vol. 31 no. 2, pp. 210-

227, 2009.

[12] M. Yang and L. Zhang, “Gabor Feature based Sparse Representation for Face Recognition

with Gabor Occlusion Dictionary”, In ECCV, 2010.

[13]J. F. Gemmeke, T. Virtanen and A. Hurmalainen, “Exemplar-based sparse representations
for noise robust automatic speech recognition”, IEEE Trans. Audio, Speech, Lang. Proc.

vol. 19 no. 7, pp. 2067-2080, 2011.

[14]Y. Shin, S. Lee, J. Lee and H.-N. Lee, “Sparse representation-based classification scheme
for motor imagery-based brain-computer interface systems”, Journal of Neural

Engineering, no. 9 056002, 2002.

[15]Y. Shin, S. Lee, M. Ahn, H. Cho, S. C. Jun and H.-N. Lee, “Noise Robustness Analysis of
Sparse Representation based Classification Method for Non-stationary EEG Signal

Classification”, Biomedical Signal Processing and Control vol. 21, pp. 8-18, 2015.

[16] Y. Shin, S. Lee, M. Ahn, H. Cho, S. C. Jun and H.-N. Lee, “Simple Adaptive Sparse
Representation based Classification Schemes for EEG based Brain-Computer Interface

Applications”, Computers in Biology and Medicine, vol. 66, pp. 29-38, 2015.

[17]P. L. Nunez, R. Srinivasan, A. F. Westdorp, R. S. Wijesinghe, D. M. Tucker, R. B.

Silberstein and P. J. Cadusch, “EEG coherency I: statistics, reference electrode, volume

-76 -



conduction, Laplacians, cortical imaging, and interpretation at multiple scales”,

Electroencephalogr. Clin. Neurophysiol., vol. 103, pp. 499-515, 1997.

[18]B. Graimann, B. Allison and G. Pfurtscheller, “Brain-Computer Interfaces:

Revolutionizing Human-Computer Interaction”, Springer, 2010.

[19] B. Blankertz, Berlin Brain-Computer Interface, http://www.bbci.de/

[20]G. Pfurtscheller and C. Neuper, “Motor imagery and direct brain—computer

communication”, Proc. IEEE, vol. 89, pp. 1123-1134, 2001.

[21]D. L. Donoho and X. Huo, “Uncertainty principles and ideal atomic decomposition”,

IEEE Trans. Inf. Theory, vol. 47, pp. 2845-2862, 2001.

[22] D. L. Donoho and M. Elad, “Optimally sparse representation in general (nonorthogonal)

dictionaries via £1 minimization”, Proc. Natl. Acad. Sci. vol. 100, no. 5, pp. 2197-2202,

2003.

[23]E. Candés E, J. Romberg and T. Tao, “Stable signal recovery from incomplete and

inaccurate measurements”, Comm. Pure Appl. Math., vol. 59, no. 8, pp. 1207-1223, 2006.

[24] S. Chen, D. L. Donoho and M. Saunders, “Atomic decomposition by basis pursuit” SIAM

Rev., vol. 43, no. 1, pp. 129-159, 2001.

[25] D. L. Donoho, V. Stodden and Y. Tsaig, SparseLab, http://sparselab.stanford.edu/

[26] V. Bostanov, “BCI competition 2003—data sets ib and iib: feature extraction from event-
related brain potentials with the continuous wavelet transform and the t-value scalogram”,

IEEE Trans. Biomed. Eng. vol. 51, pp. 1057-1061, 2004.

[27]L. Wasserman, “All of Statistics: A Concise Course in Statistical Inference”, Springer, pp.

63-64, 2010.

=77 -



[28] P. Shenoy, M. Krauledat, B. Blankertz, R. P. N. Rao and K. R. Miiller, “Towards adaptive

classification for BCI”, J. Neural Eng., vol. 3, pp. R13-R23, 2006.

[29]W. Samek, C. Vidaurre, K. R. Miiller and M. Kawanabe, “Stationary common spatial

patterns for brain-computer interfacing”, J. Neural Eng., vol. 9, no. 2, 026013, 2012.

[30] M. Kawanabe, W. Samek, K. R. Miller and C. Vidaurre, “Robust common spatial filters

with a maxmin approach”, Neural Comput., vol. 26, no. 2, pp. 1-28, 2014.

[31] M. A. Oskoei, J. Q. Gan and H. Huosheng, “Adaptive schemes applied to online SVM for
BCI data classification”, Inter. Conf. IEEE on Eng. in Medicine and Biology Society

(EMBC), pp. 2600-2603, 2009.

[32] C. Vidaurre, M. Kawanabe, P. von Binau, B. Blankertz and K. R. Mauller, “Toward
unsupervised adaptation of LDA for brain—computer interfaces”, IEEE Trans. Biomed.

Eng. vol. 58, pp. 587-597, 2011.

[33] A. Schldgl, F. Lee, H. Bischof and G. Pfurtscheller, “Characterization of four-class motor
imagery EEG data for the BCI-competition”, J. Neural Eng., vol. 2, no. 4, pp. L14-L22,

2005.

[34] MathWorks: http://www.mathworks.co.kr/kr/help/stats/support-vector-machines-svm.html

[35]C. W. Hsu, C. C. Chang and C. J. Lin, “A practical guide to support vector classification”,

Tech. rep., Department of Computer Science, National Taiwan University, 2003.

[36]H. Morioka, A. Kanemura, J. I. Hirayama, M. Shikauchi, T. Ogawa, S. lkeda, M.
Kawanabe and S. Ishii, “Learning a common dictionary for subject-transfer decoding with

resting calibration”, Neurolmage, vol. 111, pp. 167-178, 2015.

[37] A. Klbler, N. Neumann, B. Wilhelm, T. Hinterberger and N. Birbaumer, “Predictability of

brain—computer communication”, J Psychophysiol., vol. 18, pp. 121-129, 2004.

-78 -



[38]E. W. Sellers, A. Kibler and E. Donchin, “Brain-computer interface research at the
University of South Florida Cognitive Psychophysiology Laboratory: the P300 Speller”,

IEEE Trans. Neural Syst. Rehabil. Eng., vol. 14, no.2, pp. 221-224, 2006.

[39] A. Y. Yang, Z. Zhou, A. Ganesh, S. S. Sastry, Y. Ma, “Fast I1-minimization algorithms
for robust face recognition”, IEEE Trans. Image process., vol. 22, no. 8, pp. 3234-3246,

2013.

[40] http://emotiv.com/store/epoc-detail/

[41] http://www.quasarusa.com/products_dsi.htm

[42] Y. M. Chi, Y. T. Wang, Y. Wang, C. Maier, T. P. Jung and G. Cauwenberghs, “Dry and
noncontact EEG sensors for mobile brain-computer interfaces”, IEEE Trans Neural Syst.

Rehabil. Eng., vol. 20, no. 2, pp. 228-235, 2012.

[43]L. D. Liao, C. Y. Chen, I. J. Wang, S. F. Chen, S. Y. Li, B. W. Chen, J. Y. Changand C. T.
Lin, “Gaming control using a wearable and wireless EEG-based brain-computer interface
device with novel dry foam-based sensors”, J. Neuroeng. Rehabil., vol. 9, pp. 5.

DOI:10.1186/1743-0003-9-5, 2012.

[44]C. T. Lin, B. S. Lin, F. C. Lin and C. J. Chang, “Brain computer interface-based smart
living environmental auto-adjustment control system in UPnP home networking”, IEEE

Syst. J. vol. 8, pp. 363-370, 2014.

[45]J. D. R. Millan, "On the need for on-line learning in brain-computer interfaces", Proc. Int.

Joint Conference Neural Networks, pp.2877 -2882, 2004.

[46]Y. Li and C. Guan, “An extended EM algorithm for joint feature extraction and
classification in brain-computer interfaces”, Neural Comput., vol. 18, no. 11, pp. 2730-

2761, 2006.

-79-



[47] http://www.bbci.de/competition/iii/desc_IVc.html

-80 -



Acknowledgement

o] 20161 29744

S A1ZE

g

A

A2}

Zotr o3 ofA

o,

ShaLx}

NEEERE T

=13
=

Hujar oA

El

2

&t ArolrlorAltt

=
=

A

71A H o

Al

oj
s

)
TR

1

RTHA ofn} whASLSE B e

=l

wjob

A

Fa

S

]

94

A 9RE A

=] =
o

ﬂ
A
Hr

Aol sHkzfolz} AL

3

3L

A E el

A Tl Wy AEA 3

e

ol
.

)

el vlelR . Ao] oA Y

s

-81-



wopEao] Q1Mo ApowH ol ThE

GISTY] ¢

| =

o

7]

=
T

, A7 A

T -g;;l.

-

<

N

=S
"o

]

o1
o

ZA%

=

]

FAaL o

ol

Ag

SO, HhARSS) =R A1ALS)

]

#Uh o

2

~
o

el

T
. I

o Al

=

1A =

=

°

SR

Z12] 31 Benjamin Blankertz o A= o=
INFONET

5

oA HWH

]

A= T,

ojn

s

7HEHA - A A

nheg At ALy

Ae] e HReldlA URE 1

15 T

ul- o

Y

<H

=

1o 7i7tel A

)

A A

3

SRR

3z
=]

q o}

2=
=]

7}

Tor

A5yt aea

TP

o7

2~
RS

4

],7?

ﬂﬂo

)

ol, A

T
a

Pavel, Zafar, Asif, Evgenii, Nitin I 7

)

A2

oAdnl oFEl Yaseen I Rohit]l AlE ko2 GIST oA
o Aok

°©

S

bt

°©

Mz 2A

3l
A

°©

A%

)

-82-



HANE

5t

AT

A&

-
R

5

A etew Al

o

L
a-

g

7_4|x

L
-

]

A
o

= Q9
- —

A =

Ho}7hel A

Aol

IS dotem =71 A2

o
v

A F7HA]

SHA

|

T

AUt 2 7lel A= Al

o

HEE

oro & A

g}

=
1=]

o] ohdz} Azto]

i

e

IR

1 0]

K

1
s

o}t

-83-



