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I. INTRODUCTION AND CONTRIBUTION

In the sparse recovery problems, most recovery algorithms have
been developed by focusing on signal estimation, rather than the
sparse support detection (SSD). Therefore, those algorithms may
not be optimal in terms of SSD. Recently, a few theoretical studies
have also indicated that existing estimation-based algorithms have a
potentially large gap from the theoretical limit of the support recovery
[1],[2]. This paper introduces a detection-oriented algorithm named
BHT-BP [3]. The algorithm is designed under the MAP-detection
criterion, and it is noteworthy as a low-computational approach
using belief propagation algorithm and sparse binary measurement
matrices.

The main contribution of this paper is to investigate noisy behavior
of the BHT-BP recovery using a phase transition (PT) framework.
The PT-framework provides precise guidance on noise level and
the signal strength, needed to detect the sparse support set. For
a comparison purpose, we consider an estimation-based algorithm,
CS-BP [4], which also uses belief propagation algorithm and sparse
binary measurement matrices. Our analytical result shows that in the
PT diagram the detection success region of BHT-BP is larger than
that of CS-BP.

II. SIGNAL MODEL

We consider a signed sparse signal X ∈ RN whose elements are
i.i.d. and have fixed magnitude |x0,i|. The support knowledge of X
is represented by a state vector S ∈ {0, 1}N where each element Si

indicates the supportive state of a signal element Xi ∈ X ,i.e.,

Si =

{
1, if Xi 6= 0
0, else

∀ i ∈ {1, ..., N}. (1)

Then, the support detector observes a noisy measurement vector,
given as Y = ΦX + W ∈ RM , where Φ ∈ {0, 1}M×N is a sparse
binary matrix and W ∈ RM is a vector for zero-mean Gaussian
noise drawn from N (0, σ2

W I).

III. PROBLEM STATEMENT AND MAIN RESULT

Support detection of BHT-BP and CS-BP is performed in an
elementwise manner based on the decoupling principle [5]. Therefore,
the marginal posterior density fXi(x|Y,Φ) of the signal can be
obtained from belief propagation iteration. The CS-BP algorithm is
an estimation-based algorithm which obtains a scalar estimate X̂i

directly from the marginal posterior using the MAP or the MMSE
estimator [4]. Therefore, in CS-BP, the supportive state is determined
by the value of X̂i. Accordingly, if CS-BP uses the MAP-estimator
,i.e., X̂MAP,i := argmax

x 6=0
fXi(x|Y,Φ), its support detection function

can be described by

hCS-BP,i := log
fXi(x = x̂MAP,i|Y,Φ)

fXi(x = 0|Y,Φ)

H1

≷
H0

0, (2)

where H0 := {Si = 0} and H1 := {Si = 1} denote two possible
hypotheses.

In contrast, for a detection-oriented algorithm BHT-BP, finding
the sparse support set is an end in itself. Therefore, the detection
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Fig. 1. PT diagram for elementwise support detection. The dashed curve
and solid curve indicate BHT-BP and CS-BP, respectively. In these figures,
the region above the curves corresponds to the SSD-failure and the region
below corresponds to the SSD-success.

function of BHT-BP is designed from the binary MAP-detection for
the supportive state Si, given by

hMAP,i := log
Pr{Si = 1|Y,Φ}
Pr{Si = 0|Y,Φ}

H1

≷
H0

0. (3)

Using the Bayesian rule, from (3), the detection function of BHT-BP
is defined as [3]

hBHT-BP,i := log
q

1− q + log

∫ fXi
(x|S=1)

fXi
(x)

fXi(x|Y,Φ)dx∫ fXi
(x|S=0)

fXi
(x)

fXi(x|Y,Φ)dx

H1

≷
H0

0.

(4)

where fXi(x) = qfXi(x|S = 1) + (1 − q)fXi(x|S = 0) is a
sparsifying prior with a rate q ∈ (0, 1] which is the probability that
an element belongs to the signal support.

We draw a phase transition diagram on the plane of noise level σW

and signal magnitude |x0,i| using the detection function of CS-BP
(2) and BHT-BP (4), as shown in Fig.1. For the sake of this, we first
obtain the marginal posterior expression as a function of σW and
|x0,i|. Then, using the result, we analyze the failure event for each
detection function and compare the failure condition of CS-BP and
BHT-BP. For the detail explanation, please see our regular paper [6].
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