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An Information-Theoretic Study for Joint Sparsity
Pattern Recovery With Different Sensing Matrices

Sangjun Park, Nam Yul Yu, Member, IEEE, and Heung-No Lee, Senior Member, IEEE

Abstract— In this paper, we study a support set reconstruction
problem for multiple measurement vectors (MMV) with different
sensing matrices, where the signals of interest are assumed to be
jointly sparse and each signal is sampled by its own sensing
matrix in the presence of noise. Using mathematical tools, we
develop upper and lower bounds of the failure probability of the
support set reconstruction in terms of the sparsity, the ambient
dimension, the minimum signal-to-noise ratio, the number of
measurement vectors, and the number of measurements. These
bounds can be used to provide guidelines for determining the
system parameters for various compressed sensing applications
with noisy MMV with different sensing matrices. Based on the
bounds, we develop necessary and sufficient conditions for reli-
able support set reconstruction. We interpret these conditions to
provide theoretical explanations regarding the benefits of taking
more measurement vectors. We then compare our sufficient
condition with the existing results for noisy MMV with the same
sensing matrix. As a result, we show that noisy MMV with
different sensing matrices may require fewer measurements for
reliable support set reconstruction, under a sublinear sparsity
regime in a low noise-level scenario.

Index Terms— Compressed sensing, support set reconstruction,
joint sparsity structure, multiple measurement vectors model.

I. INTRODUCTION

CONVENTIONALLY, signals sensed from sensors such
as microphones and imaging devices are sampled fol-

lowing the Shannon and Nyquist sampling theory [1] at a rate
higher than twice the maximum frequency for signal recon-
struction. As the number of samples decided by this theory is
often large, the samples go through a compression stage before
being stored. Therefore, taking numerous samples, where most
of them will be discarded in this stage, is inefficient. Because
compressed sensing (CS) [2]–[7] removes the inefficiency,
CS has been applied in various areas such as wireless commu-
nications [8]–[11], spectrometers [12], multiple input multiple
output (MIMO) radars [13], magnetic resonance imaging [14],
and imaging/signal processing [15]–[17].

The CS theory states that signals that are sparsely rep-
resentable in a certain basis are compressively sampled
and reconstructed from what we thought is incomplete
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in information. Let x ∈ R
N be a K-sparse vector with a support

set I := {i |x (i) �= 0 } whose indices indicate the positions of
the nonzero coefficients of x. It is compressively sampled by
a model called single measurement vector (SMV) as follows:

y = Fx + n (1)

where y ∈ R
M is a (noisy) measurement vector, F ∈ R

M×N

is a sensing matrix, and n ∈ R
M is a noise vector, whose

elements are independent and identically distributed (i.i.d)
Gaussian with a zero mean and a σ 2 variance. Once the
support set is correctly reconstructed, then (1) can be well-
posed, which allows us to obtain an accurate estimate of x
using the least square approach. We thus aim to focus on the
support set reconstruction problem.

A. Information-Theoretic Works for CS With SMV

Works [18]–[23] have studied the support set reconstruc-
tion problem from an information-theoretic perspective. For
reliable support set reconstruction, sufficient and necessary
conditions were established in the linear and sublinear sparsity
regimes.

For support set reconstruction, Wainwright [18] used the
union bound to establish a sufficient condition on the number
of measurements M for a maximum likelihood (ML) decoder
and used Fano’s inequality [24] to obtain a necessary condition
on M . This ML decoder was analyzed by Fletcher et al. [19]
to establish a necessary condition on M . Aeron et al. [20]
used Fano’s inequality to form necessary conditions on both
M and σ 2. Then, they used the union bound to obtain sufficient
conditions on both M and σ 2 for their sub-optimal decoder.
Akcakaya and Tarokh [21] used the union and the large
deviation bounds based on empirical entropies to get sufficient
conditions on M for their joint typical decoder. They used
the converse of the channel coding theorem to get necessary
conditions on M . Scarlett et al. [22] extended this decoder [21]
with the assumption that the distribution of the support set
is provided. For a uniform distribution case, their necessary
and sufficient conditions are equivalent to those of [21].
However, they are better for a non-uniform distribution case.
Scarlett and Cevher [23] linked the support set reconstruction
with the problem of coding over a mixed channel, where
information spectrum methods were used to obtain necessary
and sufficient conditions on M .

B. Information-Theoretic Works for CS With MMV

CS has many applications in wireless sensor net-
works (WSNs) [8]–[11] and MIMO radars [13]. In these
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applications, the signals of interest xs ∈ R
N , s = 1, 2, · · · , S

are often modeled as jointly K-sparse vectors, implying that
I = I1 = I2 · · · = IS , where Is is the support set of xs and
|I| = K , which is referred to as a joint sparsity structure.

There are two models for sampling jointly K-sparse vectors.
The first model is called multiple measurement vectors (MMV)
with the same sensing matrix [25], in which they are sampled
by the same sensing matrix. The second model is named as
MMV with different sensing matrices [8], [9], in which each
one is sampled by its own sensing matrix.

The authors of [26]–[28] have conducted information-
theoretic research to obtain conditions under which the sup-
port set of both the models was reconstructed with a high
probability. In noisy MMV with the same sensing matrix,
Tang and Nehorai [26] used the hypothesis theory to obtain
necessary and sufficient conditions on both the number of
measurements M and the number of measurement vectors S,
and proved that the success probability of the support set
reconstruction increases with S, if M = �

(
K log N

K

)
.

Jin and Rao [27] exploited the communication theory to
establish necessary and sufficient conditions on M and demon-
strated the benefits of the joint sparsity structure based on their
conditions. A detailed comparison between the results of our
paper and those of [27] will be presented in Section IV. Finally,
Duarte et al. [28] studied noiseless MMV with different sens-
ing matrices, and formed necessary and sufficient conditions
on M . However, it is difficult to apply the conditions to noisy
MMV with different sensing matrices.

Meanwhile, works [8], [29], [30] have presented con-
ditions of practical algorithms for a reliable support set
reconstruction. In noiseless MMV with the same sensing
matrix, Blanchard and Davies [30] obtained conditions for
a reliable reconstruction from rank aware orthogonal match-
ing pursuit (OMP). In noisy MMV with the same sensing
matrix, Kim et al. [29] created compressive MUSIC, and
presented its sufficient condition. In noiseless MMV with
different sensing matrices, Baron et al. [8] produced trivial
pursuit (TP) and distributed compressed sensing-simultaneous
OMP (DCS-SOMP). By analyzing TP with the assumption
that each sensing matrix contains i.i.d. Gaussian elements and
that the nonzero values of each sparse vector are i.i.d. Gaussian
variables, they demonstrated that with M ≥ 1, TP reconstructs
the support set as S is sufficiently large. They conjectured that
M ≥ K + 1 suffice for DCS-SOMP to reconstruct the support
set as S is sufficiently large, based on its empirical results.

To the best of our knowledge, no information-theoretic
study has been published to get necessary and sufficient con-
ditions for reliable support set reconstruction in noisy MMV
with different sensing matrices. Besides, these conditions have
not been provided from the practical recovery algorithms for
CS with noisy MMV with different sensing matrices.

C. Motivations of This Paper

CS with noisy MMV with different sensing matrices has
been applied in many applications and the benefits facili-
tated by the joint sparsity structure have been empirically
reported in [10] and [14]. In WSNs, Caione et al. [10]
used the joint sparsity structure to reduce the number of

transmitted bits per sensor and reported that each sensor can
reduce its transmission cost. In magnetic resonance imag-
ing (MRI), Wu et al. [14] modeled multiple diffusion tensor
images (DTIs) as jointly sparse vectors. They exploited the
joint sparsity structure to reduce the number of samples
per DTI, while retaining the reconstruction quality. Using the
joint sparsity structure, they also empirically reported that the
reconstruction quality of each DTI can be improved for a fixed
number of samples per DTI.

To theoretically explain the above empirical benefits facil-
itated by the joint sparsity structure, theoretical tools are
required to measure the performance of CS with noisy MMV
with different sensing matrices. Such tools can be useful as
guidelines for determining the system parameters in various
CS applications with noisy MMV with different sensing
matrices. For example, if the number of samples per DTI is
fixed in the MRI [14], the theoretical tools may enable us to
determine the number of DTIs required for achieving a given
reconstruction quality. Thus, the first motivation of this paper
is to provide the theoretical tools by establishing sufficient and
necessary conditions for reliable support set reconstruction.

Next, for noiseless MMV with the same sensing matrix,
let YA = F × [

x1 x2 · · · xS
] ∈ R

M×S . Also, for
noiseless MMV with different sensing matrices, let YB =[
F1x1 F2x2 · · · FSxS

] ∈ R
M×S . Then, all the elements

of YB are uncorrelated because all the sensing matrices are
independent. In contrast, those of YA are correlated because
they are taken from the same sensing matrix. Now, we consider
a case where we set S > K and M > K . Then, it is
clear that rank (YB) = min (S, M) with a high probability
and rank (YA) ≤ K . Therefore, for this case, we conclude
that rank (YB) > rank (YA). This implies that a more reliable
support set reconstruction can be expected in noiseless MMV
with different sensing matrices for this case. Thus, the second
motivation is to verify this perception in the presence of noise,
by comparing our results with the existing ones in noisy MMV
with the same sensing matrix [27].

D. Contributions of This Paper

The contributions of this paper are as follows: First, we
derive upper and lower bounds of a failure probability of the
support set reconstruction from Lemmas 1 and 2, by exploiting
Fano’s inequality [24] and the Chernoff bound [31]. These
bounds are used for measuring the performance of CS with
noisy MMV with different sensing matrices.

Next, we develop necessary and sufficient conditions for
reliable support set reconstruction. Theorem 1 states that

M > K

(
1 + 1

S f (SNRmin)

)

suffices to achieve reliable support set reconstruction in the
linear sparsity regime, i.e., lim

N→∞
K
N = β ∈ (0, 1/2), and it

also states that

M > K

(
1 + 1

S f (SNRmin)
log

N

K

)

suffices to achieve reliable support set reconstruction in
thesublinear sparsity regime, i.e., lim

N→∞
K
N = 0, where
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f (SNRmin) is an increasing function with respect to the
minimum signal-to-noise ratio SNRmin defined in (4). Next,
for a finite S, N , K , and SNRmin, Theorem 3 states that

M <
2K log N

K − 2 log 2

S log (1 + K × SNRmin)

is necessary for reliable support set reconstruction. The nec-
essary and sufficient conditions can be useful as guidelines to
determine the system parameters of CS applications with noisy
MMV with different sensing matrices. Corollaries 1 and 2
indicate that reliable support set reconstruction is possible
as sufficiently many measurement vectors S for a fixed
M are taken at a low SNRmin. For a fixed N and K ,
Theorem 2 shows that M ≥ K + 1 measurements suffice for
reconstructing the support set, as S is sufficiently large. Then,
for a fixed N , K, and M = K + 1, Corollary 3 provides a
sufficient condition on S for reliable support set reconstruction.
We provide theoretical explanations of the benefits of the
joint sparsity structure, which conform with the empirical
results of CS applications with noisy MMV with different
sensing matrices [10], [14]. Finally, we compare the sufficient
condition (11) with the known one (26) for noisy MMV
with the same sensing matrix [27]. Therefore, we demonstrate
that if S ≥ K , noisy MMV with different sensing matrices
may require fewer measurements M for reliable support set
reconstruction than noisy MMV with the same sensing matrix
under a low noise-level scenario. It confirms the superiority
of MMV with different sensing matrices.

II. NOTATIONS, SYSTEM MODEL &
PROBLEM FORMULATION

A. Notations

The following notations will be used in the whole paper.
1. P, E and V denote the probability, expectation and

(co)variance, respectively.
2. A small (capital) bold letter f (F) is a vector (matrix).
3. A sub-vector (sub-matrix) formed by the elements

(columns) of f (F) indexed by a set I is denoted
by fI (FI).

4. For a given matrix F, its inversion, transpose, trace
and the i th eigenvalue are denoted by F−1, FT , tr [F]
and λi ( F), respectively. Also, its orthogonal projection
matrix is defined by

Q (F) := IM − F
(

FT F
)−1

FT (2)

where Q (F) maps an arbitrary vector to the space
orthogonal onto the space spanned by the columns of F.

5. For given sets I and J , the relative complements of J
in I is denoted as J \ I. The cardinality of a set I is
denoted by |I|.

6. For a given function f (x), its nth derivation with respect
to x is denoted by f n (x).

7. The linear sparsity regime is defined by
lim

N→∞
K
N = β ∈ (0, 1/2).

8. The sublinear sparsity regime is defined by
lim

N→∞
K
N = 0.

9. The expression f (x) = � (g (x)) denotes | f (x)| ≥
c |g (x)| as x → ∞ for a constant c > 0.

B. System Model

Let x1, x2, · · · , xS be jointly K-sparse vectors with a sup-
port set I that belongs to

S := {H|H ⊂ {1, 2, · · · , N } , |H| = K } .

Thus, the number of nonzero coefficients of each sparse vector
is K , the indices of the nonzero coefficients of all the sparse
vectors are the same and the indices belong to the support set.

In noisy MMV with different sensing matrices, each sparse
vector is sampled by its own sensing matrix, i.e.,

ys = Fsxs + ns s = 1, 2, · · · S (3)

where all the sensing matrices have i.i.d. Gaussian elements
with a zero mean and a unit variance, and all the noise vectors
have i.i.d. Gaussian elements with a zero mean and a σ 2

variance. We assume that all the noise vectors and all the
sensing matrices are mutually independent. Then, we let xmin
be the smallest nonzero magnitude of all the sparse vectors
and SNRmin be the minimum signal-to-noise ratio given by

SNRmin := x2
min/σ

2. (4)

C. Problem Formulation

We extend Akcakaya and Tarokh [21]’s decoder for noisy
MMV with different sensing matrices. It takes all the mea-
surement vectors as its input and yields a support set decision
as its output

d : {∀s
(
ys , Fs)} 
→ Î ∈ S, s = 1, 2, · · · , S.

Its decision rules are given in Definition 1.
Definition 1: All the measurement vectors

{
y1, y2, · · · , yS

}

and a set J ∈ S are δ jointly typical if the rank of Fs
J ,

s = 1, . . . , S, is K and
∣
∣
∣
∣

(∑S

s=1

∥
∥Q
(
Fs
J
)

ys
∥
∥2

2

)
− S (M − K ) σ 2

∣
∣
∣
∣ < SMδ. (5)

As each sensing matrix contains i.i.d. Gaussian elements,
the rank of each Fs

J , s = 1, . . . , S, is K with a high
probability. The decision rule is to find sets that satisfy (5)
for all the given measurement vectors and δ > 0. In the
entire paper, the support set is denoted by I and any incorrect
support set is denoted by J , where their cardinalities are K ,
i.e., |I| = |J | = K .

We define the failure events, wherein the joint typical
decoder fails to reconstruct the correct support set. First,

Ec
I :=

{∣∣
∣
∣

(∑S

s=1

∥
∥Q
(
Fs
I
)

ys
∥
∥2

2

)
− S (M − K ) σ 2

∣∣
∣
∣ ≥ SMδ

}

(6)

implies that the correct support set is not δ jointly typical with
all the measurement vectors. Next, for any J ∈ S \ I,

EJ :=
{∣∣∣
∣

(∑S

s=1

∥∥Q
(
Fs
J
)

ys
∥∥2

2

)
− S (M − K ) σ 2

∣
∣∣
∣< SMδ

}

(7)
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implies that an incorrect support set is δ jointly typical with
all the measurement vectors. Based on these failure events,
we define a failure probability and give its upper bound as
follows:

perr := P

{
Î �= I

∣∣
∣ x1, · · · , xS

}

= P

⎧
⎨

⎩
Ec
I
⋃

J ∈S\I
EJ

⎫
⎬

⎭

≤ P
{Ec

I
}+

∑

J ∈S\I
P
{EJ

}
(8)

where P
{Ec

I
}

is taken with respect to all the noise vectors

and P
{EJ

}
is taken with respect to all the noise vectors

and all the sensing matrices. We establish Lemmas 1 and 2
given in Appendix A to give upper bounds of the probabili-
ties of the failure events. Combining these lemmas with (8)
yields

perr ≤ P
{Ec

I
}+

∑

J ∈S\I
P
{EJ

}

≤ 2 p (d1) +
(

N
K

)
p
(
d2,α∗ − 1

)

where p is defined in (31), d1 = Mδ
(M−K )σ 2 , d2,α∗ =

(M−K )σ 2+Mδ
(M−K )α∗ , and α∗ = σ 2 + x2

min.
It is of interest to examine why P

{Ec
I
}

depends only on the
noise vectors. As shown in Lemma 3, the random variable to
define the event Ec

I in (6) is
∑S

s=1

∥
∥Q
(
Fs
I
)

ys
∥
∥2

2/σ
2, where

the measurement vector in (3) consists of the two parts: the
noise part ns and the signal part Fs

Ixs
I . The signal part belongs

to the space spanned by the columns of Fs
I . Then, as specified

in (2), the orthogonal projection matrix Q
(
Fs
I
)

maps the
measurement vector to the space orthogonal onto the space
spanned by the columns of Fs

I . Thus, the random variable is
a function of the noise vectors only.

III. MAIN RESULTS

As the main contribution of this paper, this section presents
sufficient and necessary conditions on M for reliable support
set reconstruction, i.e., perr converges to zero, in noisy MMV
with different sensing matrices. We then interpret the condi-
tions to demonstrate the benefits facilitated by the joint sparsity
structure.

A. Sufficient Conditions on M

In [18] and [21], the authors have shown that fewer
measurements M for a reliable support set reconstruction
are required for noisy SMV in the linear sparsity regime,
compared to the sublinear sparsity regime. Based on the results
of [18] and [21], we are motivated to examine if the same
result can be observed in noisy MMV with different sensing
matrices.

Theorem 1: For anyρ > 1, we let δ = ρ−1 (1 − K/M) x2
min.

If the number of measurements satisfies

M > K + υ1
K

S
(9)

then the failure probability perr defined in (8) converges to
zero in the linear sparsity regime, i.e., lim

N→∞
K
N = β ∈ (0, 1/2),

where

υ1 = − 2 (1 − log β)

log

(
1 − 1−ρ−1

1+SNR−1
min

)
+ 1−ρ−1

1+SNR−1
min

> 0. (10)

Also, under the same conditions on ρ and δ, if the number of
measurements satisfies

M > K + υ2
K

S
log

N

K
(11)

then the failure probability perr defined in (8) converges to
zero in the sublinear sparsity regime, i.e., lim

N→∞
K
N = 0, where

υ2 = − 2

log

(
1 − 1−ρ−1

1+SNR−1
min

)
+ 1−ρ−1

1+SNR−1
min

> 0. (12)

Proof: The proof is given in Appendix C.
In terms of N , K , and S, the asymptotic order of the

sufficient condition on M for the linear sparsity regime
is �

(
K + K

S

)
, whereas the order for the sublinear sparsity

regime is �
( K

S log N
K

)
. It confirms that fewer measurements

are required in the linear sparsity regime, compared to the sub-
linear sparsity regime. Next, from the sufficient conditions, we
observe an inverse relationship between M and S, owing to the
joint sparsity structure. This relationship implies that taking
more measurement vectors S reduces the number of required
measurements M for reliable support set reconstruction. Then,
the relationship can be used for explaining the empirical results
of Caione et al. [10] and Wu et al. [14]. In [10], the authors
have reported that the number of transmitted bits per sensor
could be inversely reduced by the number of sensors, which
implies that the transmission cost of each sensor could be
saved. The result can be confirmed by our inverse relationship
by considering S and M as the number of sensors and the
number of transmitted bits per sensor, respectively. In [14],
S and M are considered as the number of DTIs and the number
of samples of each DTI, respectively. Again, it has been
observed from [14] that the joint sparsity structure enabled
the number of samples of each DTI to be inversely reduced
by the number of DTIs, reducing the acquisition time for
each DTI. These results can be confirmed by our inverse
relationship.

Theorem 2: For any ρ>1, we let δ = ρ−1 (1 − K/M) x2
min,

N and K be fixed. If the number of measurements satisfies
M ≥ K + 1, the failure probability perr defined in (8)
converges to zero as the number of measurement vectors is
increased to the infinity.

Proof: The proof is given in Appendix C.
Theorem 2 suggests that with M ≥ K + 1, reliable support

set reconstruction for noisy MMV with different sensing matri-
ces is possible when a large number of measurement vectors
is available. The sufficient conditions in Theorem 1, i.e., (9)
and (11) have SNRmin values as shown in (10) and (12).
They disappear in the sufficient condition of Theorem 2, i.e.,
M ≥ K + 1. The support set reconstruction problem becomes
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robust against noise when the number of measurement vectors
is large.

B. Discussions on the Sufficient Conditions

We now examine the effect of SNRmin on the sufficient
conditions of Theorem 1. The aim is to determine the rela-
tionship among S, M and SNRmin for reliable support set
reconstruction.

Corollary 1: For any ρ > 1, we let δ =
ρ−1 (1 − K/M) x2

min. The sufficient conditions of Theorem 1
are rewritten as

M > K +
⎛

⎜
⎝

−1
√

S +
(√

S × SNRmin

)−1

1 − ρ−1

⎞

⎟
⎠

2

4K log
N

K
(13)

in the sublinear sparsity regime, i.e., lim
N→∞

K
N = 0, and

M > K +
⎛

⎜
⎝

−1
√

S +
(√

S × SNRmin

)−1

1 − ρ−1

⎞

⎟
⎠

2

4K (1 − log β)

(14)

in the linear sparsity regime, i.e., lim
N→∞

K
N = β ∈ (0, 1/2).

Proof: The proof is given in Appendix D.
Corollary 1 suggests that for a fixed M , reliable support

set reconstruction is possible as the number of measurement
vectors S is increased to infinity, although SNRmin is low.
Namely, we observe a noise reduction effect, which shows
that using the joint sparsity structure leads to an increase in
SNRmin or a decrease in σ 2 by the square root of S. This effect
can explain the improvement in the reconstruction quality of
the DTIs, as empirically reported in [14].

We then improve our noise reduction effect by considering
that SNRmin is larger than a certain value.

Corollary 2: For any ρ > 3, we let δ =
ρ−1 (1 − K/M) x2

min and α = 2/3. If

SNRmin ≥ α

1 − ρ−1 − α
= 2ρ

ρ − 3
, (15)

the sufficient conditions of Theorem 1 are rewritten as

M > K + S−1 + (S × SNRmin)
−1

1 − ρ−1 4K log
N

K
(16)

in the sublinear sparsity regime, i.e., lim
N→∞

K
N = 0, and

M > K + S−1 + (S × SNRmin)
−1

1 − ρ−1 4K (1 − log β) (17)

in the linear sparsity regime, i.e., lim
N→∞

K
N = β ∈ (0, 1/2).

Proof: The proof is given in Appendix D.
First of all, Corollary 2 requires ρ > 3 to ensure that

the lower bound in (15) is positive. A simple computation

shows that Corollary 2 requires fewer measurements in both
the regimes compared to Corollary 1 because
⎛

⎜
⎝

−1
√

S +
(√

S × SNRmin

)−1

1 − ρ−1

⎞

⎟
⎠

2

= S−1

(
1 + SNR−1

min

1 − ρ−1

)2

≥ S−1

(
1 + SNR−1

min

1 − ρ−1

)

= S−1 + (S × SNRmin)
−1

1 − ρ−1

where the second inequality is owing to
1+SNR−1

min
1−ρ−1 = 1

t > 1

for any ρ > 3 and t defined in (61). Besides, Corollary 2
improves the noise reduction effect observed in Corollary 1
by showing that SNRmin is increased by S for the region of
SNRmin in (15).

Theorem 2 suggests, it is to be noted, that M = K +1 is suf-
ficient for reliable support set reconstruction if S is sufficiently
large with a fixed N and K . Then, it would be interesting
to determine how large S should be required for achieving
the minimum number of measurements at each sensor, i.e.,
M = K + 1. In wireless sensor networks [34], energy sources
used in sensors are very limited due to limitation of sensor
sizes. Thus, minimizing the energy used for transmission of
data at each sensor which often leads to extending the lifetime
of the sensor battery is a value of importance. This point is
noted in Caione et al. [10] as an advantage of using distributed
compressed sensing on joint sparse model-2 signal ensembles
(see Section V there). Corollary 3 which aims to provide a
sufficient condition on S for achieving M = K + 1 thus is
motivated.

Corollary 3: Let N and K be fixed and finite. For any ρ > 1,
we let δ = ρ−1 (K + 1)−1 x2

min and M = K +1. If the number
of measurement vectors satisfies

S >
(

log
((

N
K

)
+ 2
)

− log ε
)

× max

[∣∣
∣
∣

1

log μI

∣∣
∣
∣ ,
∣∣
∣
∣

1

log μJ

∣∣
∣
∣

]

︸ ︷︷ ︸
:=S∗

(18)

reliable support set reconstruction is possible, i.e., perr < ε
for sufficiently small ε ∈ (0, 1), where log μI and log μJ are
defined in (63) and (65), respectively. The sufficient condition
on S is decreasing with respect to SNRmin.

Proof: The proof is given in Appendix D.
To the best of our knowledge, the sufficient conditions on S

for a reliable support set reconstruction have not yet been
developed. A similar result has been reported by Tang and
Nehorai [26], in which they reported that M = �

(
K log N

K

)

and S = log N
log log N suffice for a reliable support set reconstruc-

tion in noisy MMV with the same sensing matrix, as N is
sufficiently large.

It is of interest to examine whether the sufficient condi-
tion S∗ in (18) is good. For this, we implement the joint
typical decoder in (5) and conduct experiments for different
values of SNRmin and K, for a fixed N = 50. We count
the number of failure occurrences, wherein the joint typical
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decoder fails to reconstruct the support set. We obtain the
smallest Semp such that the ratio of the failure occurrences is
smaller than ε = 0.01. By comparing Semp with S∗ in (18),
we see that S∗ approaches Semp , as SNRmin is sufficiently
large. For example, we see that Semp = 8 and S∗ = 12 at
SNRmin = 20 [dB], K = 2, and Semp = 5 and S∗ = 6
at SNRmin = 30 [dB], K = 2. A similar trend is observed
with a bigger K , i.e., at K = 5. For example, we see that
Semp = 12 and S∗ = 19 at SNRmin = 20 [dB], and Semp = 7
and S∗ = 10 at SNRmin = 30 [dB].

Fletcher et al. [19] have reported that the ML decoder
requires M = K + 1 measurements for a reliable support
set reconstruction in noisy SMV, when the signal-to-noise
ratio is sufficiently large. This result can be observed from
Corollary 3. Specifically, we assume that SNRmin is suffi-
ciently large for a fixed N and K . Then, from (63) and (65),
it is easy to see that

lim
SNRmin→∞ log μI = −∞,

lim
SNRmin→∞ log μJ = 2−1

(
1 − ρ−1 − log ρ

)
.

Hence, (18) is simplified to

S >
(

log
((

N
K

)
+ 2
)

− log ε
)

×
∣∣
∣
∣2
(

1 − ρ−1 − log ρ
)−1
∣∣
∣
∣.

(19)

Note that N , K , and ε are fixed. Thus, for a large ρ, we have
∣
∣
∣1 − ρ−1 − log ρ

∣
∣
∣
 2

(
log
((

N
K

)
+ 2
)

− log ε
)
, (20)

which leads to S ≥ 1. This result suggests that the joint
typical decoder requires M = K +1 measurements for reliable
support set reconstruction in noisy SMV, whenever SNRmin is
sufficiently large and ρ satisfies (20).

C. Necessary Condition on M

We specify a necessary condition that must be satified
by a decoder for reliable support set reconstruction in noisy
MMV with different sensing matrices. Unlike the sufficient
conditions of Theorem 1, the necessary condition is presented
for a finite N and K .

We begin by transforming (3) into
⎡

⎢
⎣

y1

...

yS

⎤

⎥
⎦

︸ ︷︷ ︸
=:y∈RSM

=
⎡

⎢
⎣

F1

. . .

FS

⎤

⎥
⎦

︸ ︷︷ ︸
=:F̃∈RSM×SN

⎡

⎢
⎣

x1

...

xS

⎤

⎥
⎦

︸ ︷︷ ︸
=:x∈RSN

+
⎡

⎢
⎣

n1

...

nS

⎤

⎥
⎦

︸ ︷︷ ︸
=:n∈RSM

(21)

where x is an SK-sparse vector belonging to an infinite set

Xxmin :=
{

x ∈ R
S N
∣
∣
∣ |x (i)| ≥ xmin,∀i ∈ I, |I| = SK

}

where x (i) is the i th element of x and I is the support set of x.
Owing to the joint sparsity structure, the number of possible
support sets is

(
N
K

)
. Then, we define a failure probability as:

perr := EF̃ sup
x∈Xxmin

P

{
Î �= I

∣
∣
∣ x, F̃

}
(22)

where Î is an estimate of the support set based on y and F̃
in (21). Then, Lemma III-3 of [20] yields

sup
x∈Xxmin

P

{
Î �= I

∣
∣
∣ x, F̃

}
≥ min

x̂∈X{xmin}
max

x∈X{xmin}
P

{
x̂ �= x

∣
∣ x, F̃

}

(23)

where x̂ is an estimate for x based on y and F̃ in (21) and

X{xmin} :=
{

x ∈ R
S N
∣
∣∣ x (i) = xmin,∀i ∈ I, |I| = SK

}

which is a finite set. Assume that x is uniformly distributed
over this finite set. Applying Fano’s inequality [24] to (23)
yields

max
x∈X{xmin}

P

{
x̂ �= x

∣
∣ x, F̃

}
≥ P

{
x̂ �= x

∣
∣ F̃
}

≥ 1 −
I

(
x; y| F̃

)
+ log 2

log
(∣∣X{xmin}

∣
∣− 1

) (24)

where x and x̂ belong to the finite set X{xmin} and I (x; y) is
the mutual information between x andy. We get a necessary
condition on M to ensure that the lower bound in (24) is
bounded away from zero, as follows:

Theorem 3: Let N and K are fixed and finite. In (21), if the
number of measurements satisfies

M <
2K log N

K − 2 log 2

S log (1 + K × SNRmin)
(25)

then the failure probability perr defined in (22) is bounded
away from zero.

Proof: The proof is given in Appendix C.

IV. RELATIONS TO THE EXISTING

INFORMATION-THEORETIC RESULTS

A. Relations to Noisy MMV With the
Same Sensing Matrix [27]

Jin and Rao [27] have exploited the Chernoff bound to
obtain a tight sufficient condition on M for a reliable support
set reconstruction for noisy MMV with the same sensing
matrix in the sublinear sparsity regime. Owing to the compli-
cated form of their sufficient condition, they could not clearly
show the benefits facilitated by the joint sparsity structure.
Thus, they simplified their condition under scenarios such
as: i) a low noise-level scenario and ii) a scenario with
S identical sparse vectors. In Table I, we summarize our
sufficient conditions on M , and compare them to that of [27]
under the low noise-level scenario in the sublinear sparsity
regime.

First, in a low noise-level scenario, as shown in Table I,
the sufficient condition [27] for noisy MMV with the same
sensing matrix is

M = �

(
K log N

min (K , S)

)
. (26)

If S < K , the sufficient conditions (11) and (26) have the
same order, implying that there is no significant performance
gap in the support set reconstruction between the models.
However, if S > K , (26) is M = � (log N), whereas (11) is
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TABLE I

SUFFICIENT CONDITIONS ON M FOR SUPPORT SET RECONSTRUCTION

M = �
( K

S log N
)
. It implies that noisy MMV with different

sensing matrices is superior to noisy MMV with the same
sensing matrix or S > K , with respect to M for reliable
support set reconstruction. The result of this comparison
supports the perception presented in Section I-C, wherein a
more reliable support set reconstruction could be expected in
a noiseless MMV with different sensing matrices owing to the
linear independency of the measurement vectors. Moreover, it
validates the perception, even in the presence of noise.

Second, we consider a scenario with S identical sparse
vectors. Then, the sufficient condition of [27] is

M = �

(
K log N

log
(
1 + S ‖x‖2

2/σ
2
)

)

. (27)

From (27), we observe that σ 2 is reduced by a factor of S.
However, the noise reduction effect for noisy MMV with the
same sensing matrix requires a restriction, where all the sparse
vectors should be identical, which can be hardly achieved in
practice. In contrast, the noise reduction effect for noisy MMV
with different sensing matrices does not require this restriction,
as shown in Corollaries 1 and 2.

B. Relations to Noisy SMV [21]

Akcakaya and Tarokh [21] have used the joint typical
decoder to establish the sufficient conditions on M for a reli-
able support set reconstruction in noisy SMV. They exploited
the exponential inequalities [32] to obtain the upper bounds on
the sum of the weighted chi-square random variables. In this
subsection, we demonstrate that the approaches developed in
this paper are superior to the use of the exponential inequal-
ities. Thus, we use the exponential inequalities to generalize
their bounds for noisy MMV with different sensing matrices.
We give Propositions 1 and 2 to prove that the generalized
bounds are worse than the bounds of Lemmas 1 and 2.

Proposition 1: For any positive δ, we have

P
{Ec

I
} ≤ 2 p (d1) ≤ 2 p1,exp

where both p (d1) and d1 are given in Lemma 1, and

p1,exp := exp

(
− Sδ2

4σ 4

M2

M − K + 2δM/σ 2

)
. (28)

Proof: The proof is given in Appendix E.
Proposition 2: For any J ∈ S \ I and any δ > 0 such that

0 < δ < (1 − K/M) x2
min,J , (29)

we have

P
{EJ

} ≤ p
(

d2,λmin(RJ ) − 1
)

≤ p2,J ,exp

where both p
(

d2,λmin(RJ ) − 1
)

and d2,λmin(RJ ) are given in
Lemma 2 and

p2,J ,exp := exp

(

− S2 (M − K )

4
∑S

s=1 α2
J ,s

(
x2

min,J − Mδ

M − K

)2
)

(30)

and αJ ,s is defined in (39) and x2
min,J is defined in (43).

Proof: The proof is given in Appendix E.
If S = 1, we can see that p1,exp and p2,J ,exp are

equivalent to the bounds of Akcakaya and Tarokh [21].
Propositions 1 and 2 state that the bounds on the failure
probability of Lemmas 1 and 2 are tighter than the bounds
of [21] for noisy SMV.

V. CONCLUSIONS

We have studied a support set reconstruction problem for CS
with noisy MMV with different sensing matrices. The union
and Chernoff bounds have been used to obtain the upper bound
of the failure probability of the support set reconstruction, and
Fano’s inequality has been used to obtain the lower bound
of this failure probability. As we have obtained the upper
bound by analyzing an exhaustive search decoder, the bound
is used to measure the performance of CS with noisy MMV
with different sensing matrices. We have then developed the
necessary and sufficient conditions in terms of the sparsity K ,
the ambient dimension N , the number of measurements M , the
number of measurement vectors S, and the minimum signal-
to-noise ratio SNRmin. They can be useful as guidelines to
determing the system parameters in various CS applications
with noisy MMV with different sensing matrices.

The conditions are interpreted to provide theoretical expla-
nations for the benefits facilitated by the joint sparsity structure
in noisy MMV with different sensing matrices:

i. From the sufficient conditions of Theorem 1, we have
observed an inverse relationship between M and S. Due
to the inverse relation, we take fewer measurements M
per each measurement vector for reliable support set
reconstruction by taking more measurement vectors S.

ii. From the sufficient conditions of Corollaries 1 and 2,
we have observed a noise reduction effect, which shows
that the usage of the joint sparsity structure results in an
increase in SNRmin or a decrease in σ 2 by a factor of S.
Therefore, the support set reconstruction can be robust
against noise as the number of measurement vectors is
increased to infinity.

iii. From Theorem 2, we have shown that M = K + 1
is achieved for a fixed N and K, as S is sufficiently
large. From Corollary 3, we have provided the sufficient
condition on S to reconstruct the support set for a fixed
N , K , and M = K + 1.

The theoretical explanations confirm the benefits of the joint
sparsity structure, as empirically shown in CS applications
with noisy MMV with different sensing matrices [10], [14].
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We have compared our sufficient conditions for noisy
MMV with different sensing matrices with the other existing
results [27] for noisy MMV with the same sensing matrix.
For a low-level noise scenario with S ≥ K , we have shown
that the number of measurements for reliable support set
reconstruction for noisy MMV with different sensing matrices
is lesser than that for noisy MMV with the same sensing
matrix. Also, [27] has shown the noise reduction effect.
This was achieved under a rather restricted condition though,
i.e., all sparse vectors are the same. While such a restricted
condition is not required in the noisy MMV problem with
different sensing matrices studied in this paper, the noise
reduction effect has also been observed, which is a significant
improvement.

APPENDIX A
LEMMAS 1 AND 2

This section presents Lemmas 1 and 2, which give upper
bounds of the probabilities of the failure events defined in (6)
and (7), respectively. Also, for simplicity, we define

p (x) = exp

(
− S (M − K )

2
x

)
(1 + x)

S(M−K )
2 . (31)

Lemma 1: For any positive δ, we have

P
{Ec

I
} ≤ 2 exp

(
− S (M − K )

2
d1

)
(1 + d1)

S(M−K )
2

= 2 p (d1) (32)

where the function p is defined in (31), and

d1 := Mδ

(M − K ) σ 2 > 0. (33)

Proof: From (6), we have

P
{Ec

I
} = P {ZI ≤ W1} + P {ZI ≥ W2} (34)

where ZI is defined in Lemma 3, and

Wi = S (M − K ) + (−1)i SMδ/σ 2, i = 1, 2.

Applying the Chernoff bound [31] to (34) yields

P
{Ec

I
} ≤

∑2

i=1
exp (−ti Wi ) E

[
exp (ti ZI)

]

=
∑2

i=1
exp (−ti Wi ) (1 − 2ti )

−S(M−K )/2
︸ ︷︷ ︸

=: f (ti ;Wi )

(35)

where the equality is from Lemma 3, t1 < 0 and t2 ∈ (0, 1
2

)
.

As each f (ti ; Wi ) is convex, ti = t∗i at f (1) (ti ; Wi ) = 0 yields
the minimizer of f (ti ; Wi ), where

t∗i = 2−1
(

1 − W−1
i S (M − K )

)
, i = 1, 2.

Thus, f (ti ; Wi ) ≥ f
(
t∗i ; Wi

)
for each i . If W1 ≤ 0, it is clear

that P {ZI ≤ W1} = 0 because ZI is quadratic. Thus,

P
{Ec

I
} = P {ZI ≥ W2} ≤ f

(
t∗2 ; W2

) = p (d1) (36)

where p (d1) and d1 are defined in (32) and (33), respectively.
If W1 > 0 then f

(
t∗1 ; W1

) ≤ f
(
t∗2 ; W2

)
because

log f
(
t∗1 ; W1

)− log f
(
t∗2 ; W2

)

= S (M − K )
[
d1 + 2 log (1 − d1) − 2 log (1 + d1)

]
< 0.

Thus,

P
{Ec

I
} = f

(
t∗1 ; W1

)+ f
(
t∗2 ; W2

) ≤ 2 f
(
t∗2 ; W2

)

= 2 exp

(
− S (M − K )

2
d1

)
(1 + d1)

S(M−K )
2 . (37)

Finally, combining (36) and (37) leads to (32). �
Lemma 2: Let J ∈ S \ I and a matrix RJ be

RJ =
⎡

⎢
⎣

αJ ,1IM−K
. . .

αJ ,SIM−K

⎤

⎥
⎦ (38)

where

αJ ,s := σ 2 +
∥
∥
∥xs

I\J
∥
∥
∥

2

2
> 0. (39)

Consider any positive δ such that

0 < δ < (1 − K/M)
(
λmin

(
RJ
)− σ 2

)

where λmin
(
RJ
)

is the smallest eigenvalue of RJ . Then,

P
{EJ

} ≤ exp

(
− S (M − K )

2

(
d2,λmin(RJ ) − 1

))
d

S(M−K )
2

2,λmin(RJ )

= p
(

d2,λmin(RJ ) − 1
)

≤ p
(
d2,α∗ − 1

)
(40)

where the function p is defined in (31),

d2,λmin(RJ ) := (M − K ) σ 2 + Mδ

(M − K ) λmin
(
RJ
) ∈ (0, 1), (41)

α∗ := σ 2 + x2
min, (42)

and

x2
min = min

J ∈S\I
min

s∈{1,2,··· ,S}

∥
∥
∥xs

I\J
∥
∥
∥

2

2
︸ ︷︷ ︸

=:x2
min,J

. (43)

Proof: From (7), we have

P
{EJ

} = P
{
ZJ < W1

}− P
{
ZJ < W2

} ≤ P
{
ZJ < W1

}

(44)

where ZJ is defined in Lemma 4, and

Wi = S (M − K ) σ 2 − (−1)i SMδ, i = 1, 2. (45)

Applying the Chernoff bound [31] to (44) yields for t < 0,

P
{EJ

} ≤ exp (−tW1) E
[
exp
(
tZJ

)]

= exp (−tW1)
∏S(M−K )

i=1

(
1 − 2tλi

(
RJ
))−1/2

≤ exp (−tW1)
(
1 − 2tλmin

(
RJ
))−S(M−K )/2

=: f (t; W1) (46)

where the equality is from Lemma 4 and the second inequality
is due to that all the eigenvalues are positive. We then define
a function h (t) := log f (t; W1). Then,

h(2) (t) = 2S (M − K ) λ2
min

(
RJ
) (

1 − 2tλmin
(
RJ
))−2

> 0
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which implies that h is convex with respect to t . It leads
to that f in (46) is logarithmically convex. Thus t = t∗ at
f (1) (t; W1) = 0 yields the minimizer of f (t; W1) where

t∗ = 2−1
(
λ−1

min

(
RJ
)− W−1

1 S (M − K )
)

< 0.

Substituting t∗ in (46) yields

P
{EJ

} ≤ f
(
t∗; W1

)

= exp

(
− S (M − K )

2

(
d2,λmin(RJ ) − 1

))
d

S(M−K )
2

2,λmin(RJ )

= p
(
d2,λmin(RJ ) − 1

)
(47)

where d2,λmin(RJ ) is defined in (41) and p is defined in (31).
Next, let β = 2−1S (M − K ) and x = d2,λmin(RJ )

in the upper bound (47). Then, we have p (x − 1) =
xβ exp (−β (x − 1)), where

∂p (x − 1)

∂x
= βxβ exp (−β (x − 1))

(
x−1 − 1

)
> 0 (48)

and
∂x

∂λmin
(
RJ
) = −x < 0. (49)

Due to (48) and (49),

∂p (x − 1)

∂λmin
(
RJ
) = ∂p (x − 1)

∂x

∂x

∂λmin
(
RJ
)

= −βxβ−1 exp (−β (x − 1))
(

x−1 − 1
)

< 0

which shows that the upper bound in (47) is decreasing
with respect to λmin

(
RJ
)
. Then, remind that the matrix

in (38) is the covariance matrix of a multivariate Gaussian
vector b in (58). Then for any incorrect support set, its smallest
eigenvalue can be easily computed and lower bounded by

λmin
(
RJ
) = min

s∈{1,2,··· ,S} αJ ,s = σ 2 + x2
min,J ≥ α∗ (50)

where x2
min,J is defined in (43) and α∗ is defined in (42).

Thus, for any incorrect support set J ∈ S \ I, we conclude
that

P
{EJ

} ≤ p
(

d2,λmin(RJ ) − 1
)

≤ p
(
d2,α∗ − 1

)

which completes the proof. �

APPENDIX B
LEMMAS 3 AND 4

First of all, we give the Scharf’s theorem [33] to com-
pute the moment generating function of a quadratic random
variable. We then make Lemmas 3 and 4 to give the moment
generating functions of the random variables of Ec

I and
EJ that were used in the proofs of Lemmas 1 and 2,
respectively.

Scharf’s Theorem [33, p. 64]: Let b ∈ R
N be a multivariate

Gaussian vector with a mean m and a covariance R. Then
a random variable Q � (b − m)T (b − m) is quadratic with
E [Q] = tr [R] , V [Q] = 2tr

[
RT R

]
and for any t

E
[
exp (t Q)

] =
∏N

i=1
(1 − 2tλi (R))−1/2.

Lemma 3: In (6), define a quadratic random variable

ZI :=
∑S

s=1

∥∥Q
(
Fs
I
)

ys
∥∥2

2/σ
2. (51)

Then, E [ZI ] = S (M − K ) , V [ZI ] = 2S (M − K ) and for
any 0 < t < 0.5,

E
[
exp (tZI)

] = (1 − 2t)−S(M−K )/2 . (52)

Proof: The orthogonal projection matrix is decomposed
as

Q
(
Fs
I
) = Us

IDs (Us
I
)T

where Ds is a diagonal matrix, whose first M – K diagonals
are ones and the remains are zeros, and Us

I is a unitary matrix.
Then,

ZI =
∑S

s=1

∥
∥Q
(
Fs
I
)

ys
∥
∥2

2/σ
2 =

∑S

s=1

∥
∥Q
(
Fs
I
)

ns
∥
∥2

2/σ
2

=
∑S

s=1

∥
∥
∥
∥∥
∥
∥

Ds (Us
I
)T ns/σ 2

︸ ︷︷ ︸
=:ws

∥
∥
∥
∥∥
∥
∥

2

2

=
∑S

s=1

∥∥Dsws
∥∥2

2 (53)

where ws is a multivariate Gaussian vector with mean
0M and covariance IM . Since the first M – K diag-
onal elements of each diagonal matrix are ones, we
have

ZI =
∑S

s=1

∥
∥Dsws

∥
∥2

2 =
∑S

s=1

∑M−K

i=1

∣
∣ws (i)

∣
∣2

=
∑S

s=1

(
ws
P
)T ws

P = wT w (54)

which is quadratic, where

ws
P = [ws (1) ws (2) · · · ws (M − K )

]T

and

w =
[ (

w1
P
)T (

w2
P
)T · · · (

wS
P
)T
]T

. (55)

In (53), ws is determined by Us
I and ns . Since the ele-

ments of Us
I and ns are independent, wi and w j are

mutually independent for any 1 ≤ i �= j ≤ S.
The covariance matrix of w is an identity matrix. Thus,
applying the Scharf’s theorem to ZI completes the
proof. �

Lemma 4: In (7), for any J ∈ S \ I, define a quadratic
random variable

ZJ :=
∑S

s=1

∥
∥Q
(
Fs
J
)

ys
∥
∥2

2
. (56)

Then, E
[
ZJ
] = tr

[
RJ
]
, V

[
ZJ
] = 2tr

[
RT
J RJ

]
and for

any t ,

E
[
exp

(
tZJ

)] =
∏S(M−K )

i=1

(
1 − 2tλi

(
RJ
))−1/2

,

where RJ is given in (38).
Proof: Similar to the proof of Lemma 3,

Q
(
Fs
J
) = Us

J Ds (Us
J
)T
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where Ds is a diagonal matrix, whose first M – K diagonals
are ones and the remains are zeros, and Us

J is a unitary matrix.
Then,

ZJ =
∑S

s=1

∥
∥Q
(
Fs
J
)

ys
∥
∥2

2
=
∑S

s=1

∥
∥Q
(
Fs
J
)

cs
∥
∥2

2

=
∑S

s=1

∥∥
∥
∥
∥
∥∥

Ds (Us
J
)T cs

︸ ︷︷ ︸
=:bs

∥∥
∥
∥
∥
∥∥

2

2

=
∑S

s=1

∥
∥Ds bs

∥
∥2

2 (57)

where bs is a multivariate Gaussian vector with mean 0M and

V
[
bs] =

(
σ 2 +

∥
∥
∥xs

I\J
∥
∥
∥

2

2

)
IM

and cs = ns + ∑
u∈I\J fs

u xs (u). Since the first M – K
diagonal elements of each diagonal matrix are ones, we have

ZJ =
∑S

s=1

∥
∥Ds bs

∥
∥2

2 =
∑S

s=1

∑M−K

i=1

∣
∣bs (i)

∣
∣2

=
∑S

s=1

(
bs
P
)T bs

P = bT b (58)

which is quadratic, where

bs
P = [ bs (1) bs (2) · · · bs (M − K )

]T

and

b =
[ (

b1
P
)T (

b2
P
)T · · · (

bS
P
)T
]T

.

In (57), bs is determined by Us
J , ns and

{
fs
u : u ∈ I\J }.

Since the elements of Us
J , ns and

{
fs
u : u ∈ I\J } are inde-

pendent, bi and b j are mutually independent for any 1 ≤
i �= j ≤ S. The covariance matrix of b is diagonal as shown
in (38). Thus, applying the Scharf’s theorem to ZJ completes
the proof. �

APPENDIX C
PROOFS OF THEOREMS 1, 2 AND 3

A. Proof of Theorem 1

It is clear that K goes to infinity as N goes to infinity in
the linear sparsity regime. Then, let M = cK where c > 1.
From (32),

log P
{Ec

I
} ≤ 2−1SK (c − 1) (log (1 + d1) − d1)︸ ︷︷ ︸

=:A
+ log 2

where A < 0 due to (33). Thus,

lim
N→∞ P

{Ec
I
} ≤ lim

K→∞ exp
(

2−1SK (c − 1) A + log 2
)

= 0

implying that the probability that the correct support set is not
δ jointly typical with all the measurement vectors vanishes.

Next, from (40),

log
∑

J ∈S\I
P
{EJ

} ≤ log
((

N
K

)
p
(
d2,α∗ − 1

))

= log(N
K ) + 2−1SK (c−1) (log(1−t) + t)

︸ ︷︷ ︸
=:γ

≤ K

(
1 + log

N

K
+ 2−1S (c1 − 1) γ

)

︸ ︷︷ ︸
=:η

(59)

where the last inequality is due to
(

N
K

)
≤ exp

(
K log

Ne

K

)
. (60)

In (59), γ < 0 for any t where

t = 1 − ρ−1

1 + SNR−1
min

∈ (0, 1). (61)

If c > 1 + S−1υ1, then η < 0, which yields

lim
N→∞

∑

J ∈S\I
P
{EJ

} ≤ lim
K→∞ exp (Kη) = 0

implying that the probability that all incorrect support sets are
δ jointly typical with all the measurement vectors vanishes.
Thus the failure probability perr defined in (8) converges to
zero if M satisfies (9).

Next, the remain is to derive (11) in the sublinear sparsity
regime. Similarly, let M = K + cK log N

K wher c > 1.
From (32),

log P
{Ec

I
} ≤ 2−1ScK log

N

K
(log (1 + d1) − d1)︸ ︷︷ ︸

=:A
+ log 2

where A < 0 due to (33). Thus,

lim
N→∞ P

{Ec
I
} ≤ lim

N→∞ exp

(
2−1ScK A log

N

K
+ log 2

)
= 0

implying that the probability that the correct support set is not
δ jointly typical with all the measurement vectors vanishes.

Then, from (40),

log
∑

J ∈S\I
P
{EJ

} ≤ log
((

N
K

)
p
(
d2,α∗ − 1

))

= log(N
K )+2−1ScK (log(1−t) + t)

︸ ︷︷ ︸
=:γ

log
N

K

≤ K
(

1 + 2−1Scγ
)

︸ ︷︷ ︸
=:η

log
N

K
+ K

where the last inequality is due to the bound in (60) and γ < 0
for any t in (61). If c > S−1υ2, then η < 0, which yields

lim
N→∞

∑

J ∈S\I
P
{EJ

} ≤ lim
N→∞ exp

(
Kη log

N

K
+ K

)
= 0

implying that the probability that all incorrect support sets are
δ jointly typical with all the measurement vectors vanishes.
Thus, the failure probability perr defined in (8) converges to
zero if M satisfies (11), which completes the proof. �

B. Proof of Theorem 2

From Lemma 1,

P
{Ec

I
} ≤ 2

⎛

⎜⎜
⎜
⎝

exp

(
− M − K

2
d1

)
(1 + d1)

M−K
2

︸ ︷︷ ︸
=:μI

⎞

⎟⎟
⎟
⎠

S

. (62)
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If M ≥ K + 1, we have

log μI = 2−1 (M − K ) (log (1 + d1) − d1) < 0 (63)

due to (33), which implies μI < 1. From Lemma 2,

P
{EJ

} ≤

⎛

⎜
⎜
⎜
⎝

exp

(
− M − K

2

(
d2,α∗ − 1

)
)

d
M−K

2
2,α∗

︸ ︷︷ ︸
=:μJ

⎞

⎟
⎟
⎟
⎠

S

. (64)

Similarly, if M ≥ K + 1, we have

log μJ = 2−1 (M − K ) (log (1 − t) + t) < 0 (65)

due to (61), which implies μJ < 1. Thus, we conclude

lim
S→∞ perr ≤ 2 lim

S→∞ μS
I +

(
N
K

)
lim

S→∞ μS
J = 0

for M ≥ K + 1 which completes the proof. �

C. Proof of Theorem 3

The mutual information in (24) is bounded by

I

(
x; y| F̃

)
= h

(
y| F̃
)

− h
(

y| x, F̃
)

≤ h (y) − h (n)

≤
∑S M

i=1
h (yi) − h (n)

≤ 2−1SM
(
log
(
2πe

(
K x2

min+σ 2
))

−log
(
2πeσ 2

))

= 2−1SM log (1 + K × SNRmin)

where h (x) is the differential entropy of x, and h (x| y) is the
conditional entropy of x given y. The last inequality is due
to that the Gaussian distribution maximizes the differential
entropy. The denominator in (24) is bounded by

log
(∣∣X{xmin}

∣
∣− 1

) = log
((

N
K

)
− 1
)

> K log
N

K

for sufficiently large N . Then,

perr = EF̃ sup
x∈Xxmin

P

{
Î �= I

∣∣
∣ x, F̃

}

≥ EF̃ min
x̂∈X{xmin}

max
x∈X{xmin}

P

{
x̂ �= x

∣
∣ x, F̃

}

> 1 − 2−1SM log (1 + K × SNRmin) + log 2

K log N
K

. (66)

From (66), the failure probability is bounded away from
zero by zero if (25) is satisfied, which completes the proof.�

APPENDIX D
PROOFS OF COROLLARIES 1, 2 AND 3

A. Proof of Corollary 1

From the inequality log (1 + x) ≤ 2x
2+x for x ∈ (−1, 0],

υ2 = − 2

log (1 − t) + t
<

4 − 2t

t2 <
4

t2 (67)

where t is defined in (61). Then,

υ2

S
<

4

St2 . (68)

From (61),

√
St = 1 − ρ−1

−1
√

S +
(√

S × SNRmin

)−1 . (69)

Combining (11), (68) and (69) leads to (13). This approach is
used to get (14) using the following equality

υ1 = υ2 (1 − log β) (70)

where lim
N→∞

K
N = β ∈ (0, 1/2), which completes the proof. �

B. Proof of Corollary 2

Substituting α = 2
3 in (15), and rearranging the result with

respect to t can yield 2
3 ≤ t < 1, where t is defined in (61).

Then from (67), a simple computation yields that

υ2 <
4 − 2t

t2 ≤ 4

t
which immediately yields that

υ2

S
<

4

St
. (71)

where

St = 1 − ρ−1

S−1 + (S × SNRmin)
−1 . (72)

Combining (11), (71) and (72) leads to (16). This approach is
used to get (17) using (70), which completes the proof. �

C. Proof of Corollary 3

We assume that μI ≥ μJ and

perr ≤ P
{Ec

I
}+

∑

J ∈S\I
P
{EJ

} ≤
((

N
K

)
+ 2
)

μS
I < ε < 1.

(73)

Then, if the number of measurement vectors satisfies

S >
log ε − log

((
N
K

)+ 2
)

log μI
> 0, (74)

(73) is achieved for small ε, and hence, reliable support set
reconstruction is possible. If μI < μJ , we obtain inequalities
similar to (73) and (74) by replacing μI by μJ , where

S >
log ε − log

((
N
K

)+ 2
)

log μJ
> 0. (75)

Combining (74) and (75) yields (18).
Next, a simple computation yields that for any d1 in (33),

∂ log μI
∂d1

= − d1

2 (1 + d1)
< 0

where log μI is given in (63). From (33), we see d1 ∝ SNRmin
that leads to log μI ∝ SNR−1

min. Also, for any t in (61),

∂ log μJ
∂ t

= − t

2 (1 − t)
< 0

where log μJ is given in (65). From (61), we see t ∝ SNRmin
that leads to log μJ ∝ SNR−1

min. Hence, the sufficient condition
on S in (18) turns out to be a decreasing function with respect
to SNRmin, which completes the proof. �
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APPENDIX E
PROOFS OF PROPOSITIONS 1 AND 2

First of all, we introduce the exponential inequalities [32],
and use them in the proofs of Propositions 1 and 2.

A. The Exponential Inequalities [32]

Let Yi , i = 1, 2, · · · , D be i.i.d. Gaussian variables with a
zero mean and a unit variance. Then, let αi , i = 1, 2 · · · , D
be non-negative. We set

|α|∞ = sup |αi | , |α|22 =∑D
i=1 α2

i

and let

Y =
∑D

i=1
αi

(
Y 2

i − 1
)
. (76)

Then, the following inequalities hold for any positive x

P
{
Y ≥ 2 |α|2

√
x + 2 |α|∞ x

} ≤ exp (−x) (77)

P
{
Y ≤ −2 |α|2

√
x
} ≤ exp (−x) . (78)

B. Proof of Proposition 1

In the proof of Lemma 3, ZI is represented by

ZI =
∑S

s=1

∑M−K

i=1
ws (i)2

where ws (i) is Gaussian with a zero mean and a unit variance.
Define a random variable Y as

Y = ZI − S (M − K )

=
∑S

s=1

∑M−K

i=1

(
ws (i)2 − 1

)

which is of the form of (76). Then,

P
{Ec

I
} = P

{
Y ≤ −SMδ/σ 2

}

︸ ︷︷ ︸
=:A

+ P

{
Y ≥ SMδ/σ 2

}

︸ ︷︷ ︸
=:B

.

Combining A with (78) gives

P

{
Y ≤ −SMδ/σ 2

}
= P

{
Y ≤ −2

√
S (M − K ) x

}

≤ exp

(
− SM2δ2

4 (M − K ) σ 4

)

︸ ︷︷ ︸
=:C

and combining B with (77) gives

P

{
Y ≥ SMδ/σ 2

}
= P

{
Y ≥ 2

√
S (M − K ) x + 2x

}

≤ p1,exp

where p1,exp is defined in (28). It is readily seen that p1,exp ≥
C, which leads to P

{Ec
I
} ≤ 2 p1,exp.

Next, from (32) and (28),

log p (d1) = 2−1S (M − K ) (log (1 + d1) − d1)

and

log p1,exp = −2−1S (M − K ) d2
1 (2 + 4d1)

−1

where d1 > 0 is defined in (33). Then, we have

log
p(d1)

p1,exp
= S(M − K )

2

(
log(1+d1)−d1+d2

1 (2+4d1)
−1
)

︸ ︷︷ ︸
=:g(d1)

.

For any d1 > 0, ∂g(d1)
∂d1

=
−d2

1 (2 + 3d1) (1 + d1)
−1 (1 + 2d1)

−2 < 0 and
max
d1>0

g (d1) = 0. Thus, we conclude log p(d1)
p1,exp

≤ 0, which

completes the proof. �

C. Proof of Proposition 2

In the proof of Lemma 4, ZJ is represented by

ZJ =
∑S

s=1

∑M−K

i=1
bs (i)2

=
∑S

s=1

∑M−K

i=1
αJ ,s gs (i)2

where αJ ,s is defined in (39) and gs (i) is Gaussian with a
zero mean and a unit variance. Define a new random variable
Y as

Y = ZJ − S (M − K )

=
∑S

s=1

∑M−K

i=1
αJ ,s

(
gs (i)2 − 1

)

which is of the form of (76). Then, from (44)

P
{EJ

} ≤ P

{
Y < SMδ − (M − K )

∑S

s=1

∥
∥∥xs

I\J
∥
∥∥

2

2

}

≤ P

⎧
⎪⎨

⎪⎩
Y < SMδ − S (M − K ) x2

min,J︸ ︷︷ ︸
=:A

⎫
⎪⎬

⎪⎭

≤ p2,J ,exp (79)

where p2,J ,exp is defined in (30), the last inequality is due
to (78). Due to (29), A is negative. Thus the exponential
inequality of (78) gives the upper bound p2,J ,exp.

Next, from (40) and (30),

log p
(

d2,λmin(RJ ) − 1
)

= 2−1S (M − K ) (t + log (1 − t))

and

log p2,J ,exp ≥ − S (M − K )

4

(
x2

min,J − Mδ
M−K

x2
min,J + σ 2

)2

= −4−1S (M − K ) t2

where t ∈ (0, 1), is defined in (61) and the inequality is due
to (50). Then,

log
p
(
d2,λmin(RJ ) − 1

)

p2,J ,exp
≤ S(M−K )

4

(
t2+2t+2 log(1−t)

)

︸ ︷︷ ︸
=:g(t)

.

For any t ∈ (0, 1) , ∂g(t)
∂t = −2t2 (1 − t)−1 < 0 and

max g (t) = 0. We conclude log
p

(
d2,λmin(RJ )−1

)

p2,J ,exp
≤ 0.

It completes the proof. �
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