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국 문 요 약

본 학위논문은 크게 두 부분으로 구성되어 있으며, 유한체에서 압축센싱(Com-

pressed Sensing)과 협력 네트워크(Cooperative Networks)의 역문제를 다루고 있다. 논

문의 첫 부분은 압축센싱의 성능 한계치에 대한 연구로써 희소 신호를 복원하기 위한

조건들을 살펴보고 복원 알고리즘을 제안하고 있다. 두 번째 부분은 네트워크 코딩을

이용한 무선 협력 네트워크에서 새로운 평가방법을 제안하고 있고, 이를 이용한 시스템

성능을분석하고있다.본논문의두부분들은각각다른문제를다루고있지만,역문제의

측면에서 되짚어 보면 서로 밀접한 연관성을 갖고 있다.

본학위논문의첫부분은유한체에서압축센싱문제를고려하고있으며,희소신호를

복원하기 위한 필요충분조건들을 다루고 있다. 그 신호 복원 조건들은 압축센싱의 주요

성능 지표들로 표현이 된다. 예를 들어, N차원 희소 신호를 복원하기 위해 얼마만큼의

측정 샘플 수가 필요한지 그 비율로써 나타내고 있다. 본 연구에서는 센싱행렬이 조밀

하게 0이 아닌 값들로 구성되어 있다면 희소 신호 복원을 위한 충분조건은 필요조건과

일치함을 밝히고 있다. 이것은 신호의 길이와 유한체의 필드 크기가 무한대로 증가했을

때얻은결과로써실수체계에서얻은결과와일치함을보여주고있다.또다른결과로써

찾고자 하는 신호가 희소하지 않을 경우 대부분 0의 값들로 구성된 센싱행렬만으로도

필요충분조건의일치성을말하고있다.더불어서희소신호를효과적으로복원하기위해

부호이론에서 제안된 메시지 전달 알고리즘 기반의 복원 기법을 소개한다. 제안된 알고

리즘을 이용하여 신호 복원 성능의 우수성을 보여 주고 있으며, 이산 형태의 신호들을

실질적이면서 유용하게 복원할 수 있는 기법을 제안하고 있다.

다음으로,네트워크코딩을이용한무선협력네트워크의성능평가를위한분석프레

임워크를처음으로제안한다.무선네트워크특성상송수신간의연결상태는지속적으로

변하므로 랜덤 변수를 이용하여 그 연결성을 표현하고 이를 활용하여 성능을 평가한다.

이와 같은 방법은 구조적이고 시스템적인 접근법으로써 무선채널의 연결상태를 표현하
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고 있기 때문에 무선 협력 네트워크의 성능을 손쉽게 평가할 수 있다. 본 연구에서는

랜덤 행렬의 nullity와 복원 실패 확률(decoding failure probability)과 같은 평가지표들

을 이용하여 무선 협력 네트워크의 성능 상계치를 얻는다. 이와 더불어 간단한 형태의

무선 협력 네트워크에서 네트워크 코딩의 이점들을 살펴본다. 또한 2차원 평면에 놓인

소스 노드에 대한 최적의 송신전력 분배 문제를 다루고 있다. 그 결과로써 네트워크 코

딩의필드크기와무선채널의변화에따라그소스노드에할당된최적의송신전력값이

변하게 됨을 보여 준다.

c©2014

성 진 택
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Abstract

This dissertation consists of two parts, both of which consider linear inverse

problems of compressed sensing and cooperative networks for the recovery of unknown

signals over finite fields. The first part of this dissertation addresses the performance

evaluation of compressed sensing. The second part studies an analytical framework

for the recovery of source information in cooperative communications combined with

network coding. The two parts of this dissertation are clearly different, but they are

also related with regard to the study of inverse problems.

In the first part of this dissertation, we address the problem of reconstructing sparse

signals over finite fields. We derive necessary and sufficient conditions for the recovery

of sparse signals in terms of key parameters in compressed sensing. The results are

valuable because the sufficient condition coincides with the necessary condition if the

sensing matrix is sufficiently dense when both the length of the signal and the field size

grow to infinity. Another interesting conclusion is that unless the signal is very sparse,

the sensing matrix does not have to be dense for the upper bound to coincide with

the lower bound. For the efficient recovery of sparse signals, we propose probabilistic

decoding based on the message passing algorithm used in coding theory. We show that

the proposed recovery algorithm is practical and useful when applied to a set of discrete

signals.

In the second part, we first propose an analytical framework for the performance

evaluation of cooperative wireless coding schemes to cope with any family of network

scenarios. For a dynamic network topology, we consider random elements of the trans-

mission matrix that rely on the connectivity of a pair of transceivers. Using a systematic

– iii –



approach, we derive an upper bound on the reconstruction performance in terms of the

decoding failure probability and the nullity of a random matrix. Moreover, we also con-

sider a simple class of cooperative wireless networks that offers the benefits of network

coding. In addition, we consider an optimal power allocation of source nodes moving

in a two-dimensional space. We show that the optimum ratio of power allocation varies

according to the wireless channel environments and the field size of network codes.

c©2014

Jin-Taek Seong

ALL RIGHTS RESERVED
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Chapter 1

Introduction

The aim of collecting data is to obtain meaningful information about a physical system

or phenomenon of interest. However, in many situations the quantities that we wish to

determine are different from the ones which we are able to measure, or have measured.

If the measured data is quite related to the quantities we want in some ways, then the

data at least contains some information about those quantities. Starting with the data

that we have measured, the problem of trying to reconstruct the quantities that we

really want is called an inverse problem [1]. In general, the inverse problem is a general

framework that is used to convert observed measurements into information about a

physical object or system that we are interested in.

Suppose that we have a mathematical model of a physical process. We assume that

this model gives a description of the system behind the process and its operating con-

ditions and explains the principal quantities of the model: input, system function,

output as shown in Figure 1.1. The analysis of the given process via the mathematical

model may then be separated into three different types of problems.

(A) Forward problem. Given the input and the system function, find out the output

of the model.

(B) Inverse problem. Given the system function and the output, find out which
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Figure 1.1: An simplified model of input–output processing.

input has led to this output

(C) Identification problem. Given the input and the output, determine the system

function which is in agreement with the relation between input and output.

We call a problem of type (A) a forward problem since it is oriented towards a cause-

effect sequence. In this sense, problems of type (B) and (C) are called inverse problems

because they are problems of finding out unknown causes of known consequences. Due

to uncertainty of the unique solution, most researches have been mainly focused on the

inverse problems.

Here are some typical inverse problems: computed tomography [2], [3], deconvolu-

tion [4], navigation [5], image analysis [6], geophysics [7], [8], model fitting [9], gridding

or regridding [10], radio-astronomical imaging [11], numerical analysis [12]. From this

very short and incomplete list, it is apparent that inverse problem theory is an import

topic and its applications can be found in many different fields. Examples of domains

where it is possible and required to apply inverse problems and model fitting mathe-

matical methods for image reconstruction are astronomy, medical imaging microscopy.
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Figure 1.2: Linear inverse problems in compressed sensing and cooperative networks.

1.1 Motivation

In this dissertation, we consider linear inverse problems in the areas of Compressed

Sensing (CS) and cooperative wireless networks using Network Coding (NC). This

dissertation deals with recovery of unknown signals over a finite field or Galois field

(GF), which is a field that contains a finite number of elements, instead of real and

complex-valued numbers. The reason to be considered can be found as follows. Let us

consider measurements of real-valued signals in practical situations. The signals are

acquired from continuous values, and measurements are performed with linear combi-

nations of data in a real field as well. In practice, measurements are often digitized,

and operations at sensors or equipment are optimized to preserve a limit resource. For

this reason, different to the previous works, data manipulation in the proposed method

of this dissertation is performed in a finite field of arbitrary size, which restricts us

from straightforward development of performance evaluation frameworks for inverse

problems.
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The CS problem is regarded as one of the linear inverse problems. In other words,

given a sensing matrix and an measured signal, a feasible signal is found. In CS, this

is an underdetermined problem, which means that the dimension of the input signal

is greater than that of the output signal. A core idea to solve the CS problem comes

from that the sparsity of the input signal is exploited. On the other hand, the problem

of cooperative networks we consider in this dissertation deals with an overdetermined

system. The solutions for cooperative wireless coding schemes are obtained from inver-

sions of the system functions. Figure 1.2 shows mathematical expressions for CS and

cooperative networks problems we consider in this dissertation.

We narrow down our interest of research to the areas of CS and cooperative wireless

networks over finite fields. More specifically, the following questions are answered in

this dissertation: i) how can we efficiently estimate an unknown signal given a system

function and an output signal, ii) recovery bounds required for successful reconstruction

of the input signals are investigated in terms of key parameters of the interested system,

e.g., the dimensions of input and output signals, the characteristics of a system function,

and the size of finite fields.

1.2 Research Background

The following overview for CS and NC is briefly described. More details of both

theories are referred to: [13]-[16] for CS, and [17]-[21] for NC.

– 4 –



1.2.1 Compressed Sensing

Recently, CS theory has emerged as a new paradigm for signal acquisition in which

compression and sampling of signals can be done simultaneously, introduced in the

signal processing and information theory, such as Candes and Tao [13] and Donoho

[14]. One of the main issues in the CS problems has been to quantify how many mea-

surements are needed for perfect recovery of unknown signals. The most surprising and

interesting conclusion is that perfect recovery is possible with the number of measure-

ments much smaller than the ambient dimension of the unknown signal as long as the

signal is sufficiently sparse in a certain domain.

We say a signal x ∈ RN is K sparse in a basis Ψ if the following holds,

x = Ψs, (1.1)

for some s ∈ RN with no more than K nonzero elements. This notion of sparsity is

commonly applied as a means to compress signals. Rather than measuring all elements

of x, we can store the few nonzero elements in s. One of examples is a transform

coding for the compression of natural images. While the naive representation of an

picture is a description of each pixel, we minimize storage space by utilizing transformed

elements in its frequency or wavelet domain, and discarding meaningless elements.

This use of the sparsity of signals requires all the elements of x to be measured before

transformation, but, it motivates the question of whether we can use the sparsity of

x to not only compress it, but also measure it more efficiently. Why measure a signal

only to discard much of what is measured? CS theory has shown that we can indeed

preserve a completion of a signal x using far fewer than measurements.
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CS performs this with a general idea of measurement. In CS, a measurement is

obtained from a linear combination of a row of a matrix and a signal x as an inner

product. Let Φ be the sensing (or measurement) matrix. A vector of measurements

y ∈ RM can be written by

y = Φx = ΦΨs = Θs. (1.2)

If we use M < N , Θ is a flat matrix, and the unique recovery of s from y and Θ

is unfeasible. The interesting result of CS is that, with a good choice of the sensing

matrix Φ and the fact that x is sparse in a certain domain, we can recover the signal

x [13]–[15].

In CS, two major issues are considered: i) construction of a stable sensing matrix

such that the salient information in any K sparse or compressible signal is not damaged

by the dimensional reduction from the vector x, ii) a recovery algorithm to reconstruct

the sparse vector x from only M measurements.

Due to the fact, M < N , the problem of (1.2) is ill-conditioned. If, however, the

signal x is K sparse and the K locations of the nonzero coefficients are known, then

the problem can be solved provided M ≥ K. A necessary and sufficient condition for

this simplified problem under the known locations of the nonzero coefficients in x is

that, for any vector ν sharing the same K nonzero entries as s and for some ε > 0,

(1− ε) ‖ν‖2
2 ≤ ‖Θν‖2

2 ≤ (1 + ε) ‖ν‖2
2

(1.3)

In other words, the matrix Θ must project the energy of these particular K sparse

vectors without loss. A sufficient condition for a stable solution for both K sparse and
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compressible signals is that Θ satisfies (1.3) for an arbitrary 3K sparse vector ν. This

condition is referred to as the restricted isometry property (RIP) [16]. For example, the

Gaussian sensing matrix Φ has good properties [14] and [16]: i) incoherence with the

basis Ψ and ii) being universal in the sense that the matrix Θ will be identically and

independent distributed (i.i.d.) Gaussian and thus have the RIP with high probability

regardless of the choice of orthonormal basis Ψ.

For recovery of the signal s, the optimization problem is set as

ŝ = arg min
s̄
‖s̄‖p , subject to y = Θs̄ (1.4)

The conventional approach to inverse problems of this optimization is to find the vector

in the nullspace with the smallest L2 norm (p = 2). The closed-form solution for the

L2 norm is obtained as ŝ = ΘT
(
ΘΘT

)−1
y. However, this conventional solution gives

us a non-sparse solution, and may not be appropriate. For the L0 norm (p = 0), the

solution to this problem recover a K sparse signals exactly with high probability using

only M = K + 1 i.i.d. Gaussian measurements. However, solving (1.4) is known to be

NP hard. Based on the L1 norm (p = 1), the optimization problem can exactly recover

K sparse signals and closely approximate compressible signals with high probability

using only M ≥ cK log (N/K) with i.i.d. Gaussian measurements [14] and [16]. This is

a convex optimization problem that conveniently reduces to a linear program known

as basis pursuit [14] and [16] whose computational complexity is about O(N3).
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1.2.2 Network Coding

The concept of NC was first proposed by Ahlswede et al. in [17]. With the advent of

NC, the simple but interesting result was made that in network systems, we can allow

intermediate nodes to not only forward but also process the incoming independent

messages. Combining independent messages at a node enables us to maximize the

information flow in the networks. Since then, NC has been a recent alternative to

routing that offers the potential to surpass performance limits (i.e., throughput, delay,

and optimization of wireless resources) throughout various network environments.

NC provides some benefits in the areas of communication networks, i.e., throughput,

wireless resources and security. Showing the following examples for the benefits of NC,

we illustrate the basic notions of NC.

� Maximizing Throughput [17]-[19]

Let us consider the butterfly network shown in Figure 1.3, assuming that per time

slot one bit can be sent through corresponding channel. There are two sources A and

B, and two receivers E and F. Let x1 and x2 denote one bit of each source.

We send x1 from A along the path (A → E), and x2 from B along the path ( B →

C → D → E) to the receiver E as shown in Figure 1.3(a). Similarly, F also receives

two bits x1 and x2 from both sources. We route x1 from A along the path (A → C →

D → F), and x2 from B along the path (B → F) to the receiver F as shown in Figure

1.3(b).

Now suppose that both receivers wish to simultaneously receive the information

from both sources. In other words, we consider multicasting schemes. We assume that
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(a) (b) (c)

Figure 1.3: An Butterfly Network. Sources A and B send their information: (a) to the

receiver E using the conventional routing, (b) to the receiver F using the conventional

routing, (c) to E and F using NC.

only one bit per time slot is sent, while we wish to simultaneously send x1 to the

receiver F, and x2 to the receiver E.

In this multicasting network, we would have to make a decision at the node C:

either use it to send x1, or use it to send x2 in a conventional approach. Therefore, if

we send x1, then the receiver E will only receive x1, while the receiver F will receive

both x1 and x2.

The simple but important observation made in the seminal work by Ahlswede et

al. is that we allow intermediate nodes in the network to process their incoming infor-

mation, and not just forward them. In particular, the node C takes both bits x1 and

x2, and XOR them to generate a new bit as x3 = x1 + x2, which it can be then sent

via the path ( C → D). The receiver E receives x1 and x3, and can retrieve x1 and x2.

Similarly, the receiver F receives both bits x2 and x3, and can also retrieve x1 and x2
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(a) (b)

Figure 1.4: Nodes A and C exchange a pair of messages using relay B: (a) without NC

in 4 transmissions, (b) with NC in 3 transmissions.

by solving the linear system.

The previous example shows that if we allow intermediate node in the network to

combine information and decode the information at the receivers, we can increase the

throughput when multicasting.

� Resource Efficiency ([17], [19], and [20])

Let us consider a wireless ad-hoc network, where nodes A and C wish to exchange

their information x1 and x2 using the node B as a relay. We assume that time is

slotted, and that a node use only half-duplex communications. Figure 1.4(a) shows the

conventional approach: nodes A and C send their information to the relay B, who in

turn forwards each message to the corresponding destination.

NC takes advantage of the wireless nature for broadcasting to provide benefits

in terms of resource utilization as shown in Figure 1.4(b). In particular, the node B

receives both information x1 and x2, and take XOR them to generate a new message as
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(a) (b)

Figure 1.5: Mixing information streams offer natural protection against wiretapping,

(a) without NC, (b) with NC.

x3 = x1 +x2, which it then broadcasts to both receivers using a common transmission.

The node A has x1 and can thus decode x2. Also the node C has x2 and can thus

decode x1.

This idea offers benefits in terms of energy efficiency (the node B transmits once

instead of twice), delay (the exchange of data is completed after three time slots instead

of four), wireless bandwidth (the wireless channel is occupied for a smaller amount of

time).

The benefits in the previous example originate from the fact that broadcasting

transmissions are made maximally useful to all their receivers.

� Security [21]

Sending linear combinations of packets instead of uncoded data provides an im-

proved way to avoid wiretapping attacks. Thus, networks that only require protection

against such simple attacks can get it for free without additional security mechanisms.

Let us consider the node A that sends information to the node D through two paths
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(A → B → D) and (A → C → D) shown in Figure 1.5. Assume that an adversary

can wiretap a single path, and does not have access to the complementary path. If

the independent uncoded symbols x1 and x2 are sent, the adversary can intercept

one of them. If instead linear combinations (over some finite field) of the symbols are

sent through the different routes, the adversary cannot decode any part of the data.

Although the adversary retrieves x1 + x2 or x1 + 2x2, the symbols x1 and x2 cannot be

decoded successfully.

NC allows intermediate nodes to perform encoding operations on packets traversing

the network [17]. Interestingly, linear mixing of packets is sufficient for achieving mul-

ticast capacity in wireline networks [18], [19]. This optimality result has encouraged

harvesting the benefits of linear NC to areas as diverse as distributed storage [22], [23],

peer-assisted file delivery [24], streaming media [25], [26], [27], network tomography

[28], [29], security [30], [31], data collection in sensor networks [32], and ad hoc net-

works [33]. The potential of NC in wireless applications is also well appreciated by now

[34], [35], and some of the early prototypes include [36], [37]. The emerging conclusion

is that NC is not just a simple routing, but a new paradigm for information collection,

storage, and dissemination.

1.3 Contributions and Outline of this Dissertation

The first part of this dissertation considers the inverse problems of CS schemes for

recovery of sparse signals in Chapter 2 and 3, which were published in [38]–[40].

[38] Jin-Taek Seong and Heung-No Lee, “Necessary and Sufficient Conditions for
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Recovery of Sparse Signals over Finite Fields,” IEEE Communications Letters,

vol. 17, no. 10, pp. 1976–1979, Oct. 2013.

[39] Jin-Taek Seong and Heung-No Lee, “Method for reconstructing sparse sig-

nal in finite field, apparatus for reconstructing sparse signal in finite field, and

recording medium for recording reconstruction method,” US patent, Pending,

PCT/KR2013/004875.

[40] Jin-Taek Seong and Heung-No Lee, “Concatenation of LDPC codes with Golden

Space-Time Block Codes over the Block Fading MIMO Channels: System Design

and Performance Analysis,” 45th Annual Conference on Information Science and

Systems (CISS), MD, USA, Mar. 2011.

The second part of this dissertation considers the inverse problems of cooperative

wireless networks for recovery of source information in Chapter 4 and 5, for more

details, see [41]–[45].

[41] Jin-Taek Seong and Heung-No Lee, “Predicting the Performance of Cooper-

ative Wireless Networking Schemes with Random Network Coding,” Early Ac-

cess,IEEE Transactions on Communications

[42] Jin-Taek Seong and Heung-No Lee, “4-ary Network Coding for Two Nodes

in Cooperative Wireless Networks: Exact Outage Probability and Coverage Ex-

pansion,” EURASIP Journal on Wireless Communications and Networking,

2012:366, Dec. 2012.
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[43] Jin-Taek Seong and Heung-No Lee, “Evaluation Framework for Reconstruction

of Messages in Cooperative Coding Schemes of Multiple-Sources and Multiple-

Relays,” IEEE International Conference on Computing, Networking and Com-

munications (ICNC), Honolulu, USA, Feb. 2014.

[44] Jin-Taek Seong and Heung-No Lee, “Exact Outage Probability of Two Nodes

for Cooperative Networking using GF(4),” IEEE IEEE International Workshop

Signal Processing Advances in Wireless Communications (SPAWC), Darmstadt,

Germany, Jun. 2013.

[45] Jin-Taek Seong and Heung-No Lee, “Exact Outage Probability and Power

Allocation of Two Nodes in Cooperative Networks,” IEEE International Wireless

Communications and Networking Conference (WCNC), Shanghai, China, Apr.

2013.

Let us consider the problem of the data collection of spatially correlated measure-

ments in a wireless sensor network. All sensors quantize their measured values, and map

them to q level symbols. In decoding processing, each decoded symbol is reversed to

a quantized value with one-to-one corresponding. A sink receives coded packets which

are linear combinations of source packets over finite fields in a cooperative scheme.

In this case, NC is used for data delivery at intermediate nodes. Due to the physical

nature of the sensed phenomenon, and to the spatial distribution of the nodes in the

network, correlation between the measurements at different nodes occurs. It means that

measured values at nodes are represented as sparse signals in a certain domain, which
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Figure 1.6: Contributions of this dissertation for compressed sensing and cooperative

networks.
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has been well known in CS theory. Thus, this problem of cooperative communications

combined with NC is connected to the problem of CS over finite fields. Several papers

discuss reconstruction of correlated signals in wireless sensor networks, e.g., [46], [47],

and [48]. The following describes the contributions of each chapter in detail.

In general, the problems of CS have been considered mainly over the field of real and

complex numbers. One of the key points in CS problems is to minimize the number

of measurements while unknown signals are perfectly recovered. In this chapter, we

aim to again investigate the core question of CS problems, but for the CS systems

over finite fields where the sparse signals, the sensing matrix, and the measurements

are made of the elements from a finite field. We use the ideal L0 norm (which is

equal to the Hamming weight in coding theory) minimization with a goal of providing

benchmark to performance of any practical recovery routines. We address in Chapter 2

the problem of reconstruction of sparse signals over finite fields. We derive sufficient and

necessary conditions for recovery of sparse signals in terms of the ambient dimension

of the signal space, the sparsity of the signal, the number of measurements, and the

field size. We show that the sufficient condition coincides with the necessary condition

if the sensing matrix is sufficiently dense while both the length of the signal and the

field size grow to infinity. One of the interesting conclusions includes that unless the

signal is very sparse, the sensing matrix does not have to be dense to have the upper

bound coincide with the lower bound. Recently, [49] as an extension of our work [38]

showed necessary and sufficient conditions for exact recovery of sparse signals, assuming

a Bayesian setting and MAP decoding. The authors considered three classes of prior
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distributions on the signal vector: i) elements are statistically independent, and the

signal vector is ii) a Markov process and iii) an ergodic process. The result of our

work is the same of the work [49], considering that there exists no communications

noise and no measurement noise. In addition, Draper and Malekpour [50] showed the

error exponents for recovery of sparse signals using uniform sensing matrices over finite

fields. Tan et al. [51] extended the work of [50] to the problem of rank minimization,

and showed that the minimum rank decoder achieves the information theoretic lower

bound as long as the fraction of nonzero entries of the sensing matrices scales as Ω( logN
N

)

where N denotes the size of signals.

Furthermore, in Chapter 3, we propose a recovery algorithm of sparse signals for a

CS framework. The main idea of this algorithm originates from the message passing

algorithm in coding theory. A probability passing in the recovery algorithm is derived

which utilizes the apriori information of signal sparsity. The Gallager’s low density

parity check codes (LDPC) are used as sensing matrices. We show that proposed algo-

rithm is practical and useful when the size of signals increases. In addition, Rajawat et

al. [48] proposed a network-compressive transmission protocol, and modeled statistical

dependencies of source information by using factor graphs. The authors developed a

sum-product algorithm to estimate a set of measured values.

Next, we study in Chapter 4 a performance evaluation framework for a cooperative

wireless network in which there are multiple sources and multiple relays. The inher-

ent nature of wireless channels includes that unreliable links occur between users; this

in turn leads to variant network connections in the spatial and temporal domains. In
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other words, when a user cannot successfully decode incoming messages received from

other users, the corresponding link failure results in the modification of the network

code matrix. Since an intermediate node is not able to combine the failed messages to

generate coded messages, the predefined coefficients of a network code matrix cannot

be used for linear combinations in NC schemes. For performance evaluation of these

dynamic network topologies, in [68] and [69], Xiao and Skoglund proposed a DNC

scheme varying the network code matrices according to the conditions of the wireless

links. Furthermore, Rebelatto et al. [70] extended and generalized the framework of the

DNC to the GDNC to increase the rate and diversity order. In addition, Nguyen et al.

[74] have derived upper and lower bounds on recovery performance for GDNC schemes.

For random linear NC schemes, Trullols-Cruces et al. [73] have shown the exact de-

coding probability having network codes of full rank. In this chapter, we propose an

analytical framework to evaluate the recovery performance of source messages at the

base station. To this end, we consider a random transmission matrix by which each ele-

ment of the transmission matrix as a random variable whose distribution is function of

the outage probability. We derive an upper bound for the reconstruction performance,

i.e., decoding failure probability and nullity. The proposed framework provides an eval-

uation tool which allows us to investigate the impact of a large number of sources and

relays as well as the field size of network codes on the system performance.

Analyses of outage probability in cooperative networks are presented in [65]–[68],

[70], [72], [116]. Chen et al. [66] showed that binary NC, based on the arithmetic of a

Galois Field of size 2, provides improved diversity gains and bandwidth efficiencies in
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wireless networks in which each user employs a simple decode-and-forward scheme that

assumes a perfect inter-user channel. It was recently shown in [68] that BNC is not

optimal for achieving full diversity in a system of multiple users and multiple relays. It

has also been shown that full diversity order can be achieved using non-binary NC with

GF(q) for q > 2 [68], [70], [72]. In Chapter 5, we consider a cooperative wireless network

with two nodes and one base station, and investigate the effect of using nonbinary NC

on the enhancement in power efficiency. First, we derive the exact and general outage

probability in our NC scheme. We show that full diversity order can be obtained using

a nonbinary network code with GF(4) in the considered network. We use this result to

study the extent to which the coverage area of a wireless source node can be expanded

by NC without increasing transmit power. Our results indicate that the benefit in

terms of coverage expansion is substantial. The results included in this study show the

influence of optimal power allocation on power efficiency. The optimum ratio of power

allocation varies according to the wireless channel environments and the field size of

network codes.

Finally, concluding remarks and summary of this dissertation is given in Chapter

6. Figure 1.6 briefly summarizes the overall contributions of this dissertation.
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Chapter 2

Lower and Upper bounds on Recovery of

Sparse Signals over Finite Fields

2.1 Introduction

In general, the problems of CS have been considered mainly over the field of real

and complex numbers. One of the key points in CS problems is to minimize the number

of measurements while unknown signals are perfectly recovered. There are some appli-

cations that this CS problem over finite fields can be useful, including, i) the problems

of collecting data samples from a group of correlated sources [46], [47], ii) group testing

[52] , iii) the problem of sensor failure detection [53], and iv) minimization of file servers

in order to complete download in file sharing networks [54].

For instance, in [46], Bassi et al. addressed the problem of the collecting spatially

correlated measurements in a wireless sensor network. All sensors quantize their mea-

sured values, and map them to q-level symbols. A sink receives coded packets which

are linear combinations of source packets over Galois fields. In addition, in network

tomography, Firooz et al. [55] introduced an innovative approach based on linear NC.

The authors provided sufficient conditions on NC coefficients and trade-offs between

the length of training slots and the size of a finite field to uniquely detect one failure

link. This network tomography allows us to consider one of CS problems in finite fields
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as long as failure links of the network are sparse.

In this chapter, we aim to investigate the core question of CS problems, but for

the CS systems over finite fields where the sparse signals, the sensing matrix, and the

measurements are made of the elements from a finite field. We use the ideal L0 norm

(which is equal to the Hamming weight in coding theory) minimization with a goal of

providing benchmark to performance of any practical recovery routines. We first derive

an upper bound on the probability of error. By using Fano’s inequality [57], we derive a

lower bound. We show that the upper bound and the lower bound converge with each

other if the sensing matrix is sufficiently dense

2.2 Description of Compressed Sensing Frameworks

We describe the CS framework over a finite field of size q, Fq: Let x ∈ FNq be a sparse

signal of length N with sparsity k1 which indicates the number of nonzero entries in

x, k1 ∈ {1, 2, . . . , K}, where K, 2K ≤ N , denotes the maximum number of nonzero

entries in x. Let L denote the set of sparse signals, L :=
⋃K
k1=1 Lk1 where Lk1 denotes

the set of signals x of length N with sparsity k1. The size of the set L is given by

|L| =
∑K

k1=1

(
N
k1

)
(q − 1)k1 where |·| denotes the cardinality of the set. A sparse signal

x is randomly and uniformly selected from the set L. Let A ∈ FM×Nq be an M × N

sensing matrix with N > M . The measured signal y is given by

y = Ax. (2.1)

We assume that the elements of the sensing matrix A are independent and identi-
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cally distributed (i.i.d.), so that

Pr{Aij = α} =


1− γ, if α = 0

γ/(q − 1), if α 6= 0

(2.2)

where γ denotes the sparse factor which is the probability that an element of the

sensing matrix has nonzero values, and Aij denotes the element of the ith row and the

jth column of the sensing matrix, for i ∈ {1, 2, . . . ,M} and j ∈ {1, 2, . . . , N}, and α

denotes a dummy variable, i.e., α ∈ Fq.

2.3 Upper and Lower Bounds for Recovery Performance

2.3.1 Probability of Error for L0 norm Minimization

In this section, we aim to derive an upper and a lower bound for recovery of sparse

signals in a CS framework for given parameters, i.e., N , K, M , and γ. We assume

that the decoder in our scheme finds the sparsest feasible solution x̂ using the L0 norm

minimization as follows,

(P0) x̂ = min‖x̄‖0 subject to Ax̄ = y, (2.3)

where x̄ ∈ L is a feasible solution. Let k2 be the sparsity of x̄ as k2 := ‖x̄‖0.

For a given x, the decision x̂ is a function of the random matrix A. Let us define two

sets of matrices, E0(x) := {A : x 6= x̂} and E(x, x̄) := {A : Ax = Ax̄}. Given these

definitions, an error is then said to occur when a realized sensing matrix belongs to the

set E0(x), i.e., A ∈ E0(x). Note the following inclusion: E0(x) ⊆
⋃

x̄∈L,x 6=x̄ E(x, x̄). Let

Pr{x 6= x̂} be the probability of error averaged over all x. We consider Pr{x 6= x̂} =
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∑
x∈L Pr{A ∈ E0(x)|x}Pr{x}. Then, the probability of error is upper bounded by the

inclusion as follows:

Pr{x 6= x̂} ≤ 1

|L|
∑
x∈L

Pr
{

A ∈
⋃

x̄∈L,x 6=x̄

E (x, x̄)
∣∣∣x}

(a)

≤ 1

|L|
∑
x∈L

∑
x̄∈L
x 6=x̄

Pr
{

A ∈ E (x, x̄)
∣∣∣x}

(b)
=

1

|L|
∑
x∈L

2K∑
h=1

∑
x̄∈L̄h(x)

Pr
{

Ax = Ax̄
∣∣∣x}

(c)
=

1

|L|
∑
x∈L

2K∑
h=1

∣∣∣L̄h (x)
∣∣∣Pr
{

Adh = 0
}

=
1

|L|

2K∑
h=1

K∑
k1=1

∑
x∈Lk1

∣∣∣L̄h (x)
∣∣∣Pr
{

Adh = 0
}

=
1

|L|

2K∑
h=1

Pr
{

Adh = 0
} K∑
k1=1

(
N

k1

)
(q − 1)k1

∣∣∣L̄h (x)
∣∣∣

(d)
=

1

|L|

2K∑
h=1

Nh Pr
{

Adh = 0
}
,

(2.4)

where inequality (a) is due to the union bound, and (b) is due to partition of the set

{x̄ ∈ L} with respect to the Hamming weight h, i.e., L̄h (x) :=
{
x̄ ∈ L : ‖x− x̄‖0 = h

}
,

for h = 1, 2, . . . , 2K. For equality (c), we will show shortly that for each x̄ ∈ L̄h (x), the

probability is identically the same with each other, i.e., Pr
{
Ax = Ax̄

∣∣x} = Pr
{
Adh =

0
}

, where dh := x− x̄ denotes a difference vector with the Hamming weight h. Before

moving on, please note that Pr
{
Adh = 0

}
=
∏M

i=1 Pr
{
Aidh = 0

}
where Ai denotes

the ith row of A since the elements of A are i.i.d.

For example, let us take h = 1. Then, it is easy to show Pr
{
Ai1β1 = 0

}
=

Pr
{
Ai1 = 0

}
for any β1 ∈ Fq\{0} since it follows the property of multiplication

over finite fields. Thus, Pr
{
Ax = Ax̄

∣∣x} = Pr
{
Ad1 = 0

}
for each x̄ ∈ L̄1 (x) re-
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gardless of position of the nonzero entry in d1. For h = 2 and two nonzero elements

β1, β2 ∈ Fq\{0}, the following holds: Pr
{
Ai1β1 + Ai2β2 = 0

}
=
∑

α∈Fq
Pr
{
Ai1β1 =

α,Ai2β2 = −α
}

=
∑

α∈Fq
Pr
{
Ai1 = αβ−1

1

}
Pr
{
Ai2 = −αβ−1

2

}
. It is trivial to show

Ai1 = Ai2 = 0 for α = 0. A little tricky is the case for any α ∈ Fq\{0}. But note

that both αβ−1
1 and −αβ−1

2 are nonzero, thus from the probability distribution (2.2),∑
α∈Fq\{0} Pr

{
Ai1 = αβ−1

1

}
Pr
{
Ai2 = −αβ−1

2

}
=
∑

α∈Fq\{0} Pr
{
Ai1 = α

}
Pr
{
Ai2 =

−α
}

. Thus, Pr
{
Ai1β1 + Ai2β2 = 0

}
= Pr

{
Ai1 + Ai2 = 0

}
. For 3 ≤ h ≤ 2K,

we can show Pr
{∑h

j=1 Aijβj = 0
}

= Pr
{∑h

j=1 Aij = 0
}

using a recursion, i.e.,

Pr
{∑h

j=1Aijβj = 0
}

=
∑

α∈Fq
Pr
{∑h−1

j=1 Aijβj = α
}

Pr
{
Aihβh = −α

}
.

The last equality (d) of (2.4) is due to the collection of difference vectors with the

same Hamming weight, where Nh denotes the total number of difference vectors with

‖x− x̄‖0 = h, i.e., Nh =
∑K

k1=1

(
N
k1

)
(q − 1)k1|L̄h (x)|, which will be exactly figured out

in Chapter 2.3.2.

2.3.2 Upper Bound

In this subsection, we aim to complete the derivation on the upper bound given

in (2.4). Let Ph be denoted as Ph := Pr
{
Aidh = 0

}
= Pr

{∑h
j=1Aij = 0

}
. Given the

distribution (2.2) and noting P0 = 1, Ph can be rewritten in a recursive form,

Ph = Pr

{
h−1∑
j=1

Aij = 0

}
Pr
{
Aih = 0

}
+

∑
α∈Fq\{0}

Pr

{
h−1∑
j=1

Aij = α

}
Pr
{
Aih = −α

}
= Ph−1 (1− γ) + (1− Ph−1)

γ

q − 1
.

(2.5)
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Figure 2.1: One example for x and x̄.

Let Qh := Ph − q−1. Then, the following equality can be obtained

Qh = Qh−1

(
1− γ

1− q−1

)
. (2.6)

Solving the recursion, a closed form expression for Ph is obtained

Ph = q−1 +
(
1− q−1

)(
1− γ

1− q−1

)h
. (2.7)

Next step is to compute Nh. To this end, we use a combinatorial approach which

is to enumerate all difference vectors into mutually exclusive groups with the same

Hamming weight. Please see Figure 2.1 for counting Nh. Let us consider x in which

the first k1 elements are nonzero and the rest of the N − k1 elements are zero, i.e.,

x = [x1x2 · · ·xk10 · · · 0] where xj denotes the j th element of x. Let the first and second

index set denote {1, 2, . . . , k1} and {k1 + 1, k1 + 2, . . . , N} respectively. Suppose that

a candidate signal x̄ has k2 nonzero entries in total. Among them, t ∈ {0, 1, · · · , k2}

nonzero elements are placed in the second index set of x̄. The rest k2 − t nonzero

elements of x̄ are in the first index set as shown in Figure 2.1, where x̄j denotes the

jth element of x̄.
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Table 2.1: The number of difference vectors Nh,k1,k2,t.

Nh,k1,k2,t t = 0 t = 1 t = 2 t = 3

h = 1 6 0 0 0

h = 2 12 63 0 0

h = 3 8 252 0 0

h = 4 0 252 567 0

h = 5 0 0 1134 0

h = 6 0 0 0 945

We enumerate all feasible signals x̄ with sparsity k2 corresponding to the same

Hamming weight h. It is to be noted that for a given t, the Hamming weight of the

difference vector is in the following range, i.e., k1 − k2 + 2t ≤ h ≤ k1 + t. Given k1, k2,

and t, the number of difference vectors with the Hamming weight h for q > 2 can be

computed by

Nh,k1,k2,t =

(
N − k1

t

)
(q − 1)t

(
k1

k2 − t

)(
k2 − t

h− 2t− k1 + k2

)
(q − 2)h−2t−k1+k2 , (2.8)

where the first term
(
N−k1
t

)
(q−1)t indicates the number of sequences of the lengthN−k1

with t nonzero entries in the second set, and the second term
(
k1
k2−t

)(
k2−t

h−2t−k1+k2

)
(q −

2)h−2t−k1+k2 indicates the number of sequences of the length k1 having h − 2t − k1 +

k2 nonzero entries. For q = 2, the second term is
(
k1
k2−t

)
by only considering binary

sequences.

Example 2.1: Let us consider one example of counting Nh,k1,k2,t where N = 10,

k1 = 3, k2 = 3 and q = 4. There are
(

10
3

)
(4 − 1)3 signal vectors with sparsity 3. We

assume that the first 3 elements of x are nonzero, i.e., x = [1110000000], a feasible

signal x̄ has t nonzero entries in the second set, i.e., for t = 2, x̄ = [1001100000]. In
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this example, the maximum t is 3, the Hamming weight of the difference vectors ranges

from 1 to 6. Table 2.1 shows the number of difference vectors, Nh,k1,k2,t, with respect

to t and h. End of Example

So far, we have found Nh,k1,k2,t for given k1, k2, and t. Since we aim to find Nh, we

take summation with respect to k1, k2, and t,

Nh =
K∑

k1=1

(
N

k1

)
(q − 1)k1

k1∑
k2=1

k2∑
t=0

Nh,k1,k2,t. (2.9)

Substituting (2.7) and (2.9) into (2.4), we complete the derivation on the upper bound.

Theorem 2.1 (Upper bound). For any sensing matrix with the distribution (2.2),

an upper bound on probability of error for the P0 problem is given by

Pr{x 6= x̂} ≤ 1

|L|

2K∑
h=1

K∑
k1=1

(
N

k1

)
(q − 1)k1

k1∑
k2=1

k2∑
t=0

Nh,k1,k2,tP
M
h . (2.10)

This result is general. For sparse sensing matrices, one may use the distribution given

in (2.2) and obtain Ph from (2.7).

For dense sensing matrices, let γ = 1 − q−1 in (2.2); then, Pr {Aij = α} = q−1 for

any α ∈ Fq and the matrix becomes uniform random. In this special case, Ph = q−1.

Note there is no dependency on h. Thus, the upper bound (2.10) can be simplified as

Pr{x 6= x̂} ≤ 1

|L|

2K∑
h=1

Nhq
−M

(a)
=(|L| − 1)q−M

< Kq−M
(
N

K

)
(q − 1)K

≤ 2log2K−M log2 q+NHb(K/N)+K log2 (q−1),

(2.11)

where Hb (·) denotes the binary entropy function. The equality (a) originates from the

fact that
∑2K

h=1Nh = (|L| − 1) |L|, which is the total number of sequences except for
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the original vector x. Consequently, from the condition that the exponent of the R.H.S.

of (2.11) remains negative so that the probability of error goes to 0 as N → ∞, we

derive the following sufficient condition on M ,

M ≥ log2K +NHb (K/N) +K log2 (q − 1)

log2 q
. (2.12)

Corollary 2.2 (Sufficient condition on M ). Let γ = 1− q−1. If (2.12) is satisfied,

then Pr{x 6= x̂} → 0 as N →∞.

2.3.3 Lower Bound

Next, we aim to derive the lower bound on the probability of error for the P0

problem. For this, we use the Markov chain relation, a decision x̂ is made given A

and y, i.e., x→ (A,y)→ x̂, a standard approach in information theory. Then, by the

Fano’s inequality, the probability of error is lower bounded as follows,

Pr{x 6= x̂} ≥ H (x|y,A)− 1

logq |L|

=
H (x)−H (y|A)− 1

logq |L|
,

(2.13)

where H (·) denotes the entropy. According to the definition of conditional entropy,

H (x|y,A) = H (x)−I (x; y,A) where I (·) denotes the mutual information. Assuming

that A is independent of x, we have I (x; y,A) = I (x; y|A). We use the following

I (x; y|A) = I (y; x|A) = H (y|A) − H (y|x,A). Since y is a function of A and

x, then H (y|x,A) = 0, so that H (x|y,A) = H (x) − H (y|A). Since H (y|A) ≤

H (y) ≤ MH (y1) ≤ M logq q = M and x is randomly and uniformly chosen from the
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set L, we obtain the lower bound,

Pr{x 6= x̂} ≥ 1− M + 1

logq |L|
. (2.14)

If the number of measurements is smaller than logq|L| − 1 in the R.H.S. of (2.14),

the probability of error of the CS system is strictly away from and greater than or

equal to the positive number in the R.H.S. of (2.14). This means that the negated

condition, M > logq|L| − 1, is a necessary condition for an unboundedly arbitrary

probability of error. Note the following inequities, logq|L| > logq
(
N
K

)
+ logq(q − 1)K ≥

logq
2NHb(K/N)

N+1
+ logq(q − 1)K .

Theorem 2.3 (Necessary condition on M ). For an arbitrarily small probability of

error, the following

M >
NHb(K/N) +K log2(q − 1)− log2(N + 1)

log2 q
, (2.15)

is a necessary condition.

Furthermore, in the limit case, we prove that M > K is necessary and sufficient

for successful recovery by solving P0 problem. To do this, from both Corollary 2.2 and

Theorem 2.3, by dividing both sides of the inequalities by N , and we have
logqK

N
→ 0

in (2.12) and log2(N+1)
N

→ 0 in (2.15) as N → ∞ while the ratios M/N and K/N are

fixed. In addition, when the field size goes to infinity, q → ∞, then Hb(K/N)
log2 q

→ 0 and

log2(q−1)
log2 q

→ 1. Thus, for both the necessary and the sufficient condition, we come to the

following condition, M > K.

Corollary 2.4 (Coincidence). For fixed ratios M/N and K/N , as N → ∞ and

q → ∞, the necessary, and the sufficient condition, for successful recovery of the K
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sparse signals over finite fields Fq is M > K.

2.4 Numerical Results and Discussion

Figure 2.2 and 2.3 shows the compression ratio (=M /N ) versus the sparsity ratio

(=K /N ) for recovery of a K sparse signal of length N = 1000 at the probability of error

of 10−2. We consider the following size finite fields: q = 2, 4, 16, and 256. Fixing K, we

find the smallest integer M satisfying the upper (2.10) and the lower bound (2.14) at

10−2. One interesting feature of Figure 2.2 is that for the lower bound, the compression

ratio required for recovery of unknown sparse signals dramatically decreases as the field

size grows. This result means that less number of measurements is needed for a larger

finite field. In addition, the upper bound for uniform random sensing matrix is nearly

identical with the lower bound.

In Figure 2.2, with respect to different sparse factor γ for a fixed field size, i.e.,

q = 4, we obtain the compression ratio which satisfies the upper bound at 10−2. It

can be observed that a higher value of sparse factor γ is required for recovery of very

sparse signals. The aim of Figure 2.2 is to show that as the sparse factor of the sensing

matrix increases, the upper bound approaches the lower bound even in the region of

small sparsity ratios. In other words, if the sensing matrix is sufficiently dense, the

upper bound coincides with the lower bound over finite fields. It is easy to see that

if the signal and the sensing matrix are both sparse, the chance of making a zero

measurement gets high; then the number of measurements needs to increase so as to

compensate for missed sensing opportunities.
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Figure 2.2: Lower bounds for N = 1000 (note that if N is sufficiently large and γ =

1−q−1, the upper and lower bounds coincide with each other). Solid black line indicates

the lower bound [56] in the real number, M ≥ K.
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Figure 2.3: Upper and lower bounds with different sparse factors for N = 1000 and

q = 4. In the region above the upper bound, the probability of error is less than 10−2,

while in the region below the lower bound, the probability of error is greater than 10−2.
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2.5 Conclusions

In this chapter, we considered a CS framework over finite fields. We derived the

sufficient and necessary conditions for recovery of sparse signals. We showed that the

both conditions are tight, and they coincide when the sparse factor of the sensing matrix

is sufficiently large. We found that for recovery of ultra-sparse signals, the sensing

matrix is required to be dense. One interesting result is that when the sensing matrix

is sufficiently large and dense, and the field size is large, the number of measurements

needed for perfect recovery is only M > K.
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Chapter 3

Recovery Algorithm for Compressed Sens-

ing Frameworks over Finite Fields

3.1 Introduction

In CS, a sparse signal can be recovered from a small number of linear projection

measurements [14]. The reconstruction of a sparse signal is performed through an

optimization process such as linear programming and greedy algorithms. For sparse

signals with discrete values, e.g., bit streams for computer storage and pixel images,

the recovery algorithms developed thus far for CS are mainly for the real valued system.

They are not efficient for discrete signals as they cannot effectively exploit the digitized

nature of the signal and the sensing matrix elements. This motivates us to explore an

efficient recovery algorithm for a CS framework for finite fields.

In CS, one compressed sample is obtained by the inner product of a row of the so-

called sensing matrix and a sparse signal. From some compressed samples, the sparse

signal can be reconstructed using a CS recovery algorithm. This has a strong analogy

with the syndrome decoding in the linear channel coding context. In other words,

sparse error patterns are identified from the syndrome equation which is obtained by

multiplying the parity-check matrix to the received signal vector. From this observation,

we aim to utilize the parity-checking frames as the sensing matrix over finite fields. In
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Figure 3.1: A CS framework over a finite field.

particular, we use the Gallager’s parity-check matrices and extend his probabilistic

decoding (PD) method for CS context [58]. In other words, low density frames over

finite fields are used for sensing matrices. Then, we can see the possibility of using

this framework for CS of discrete valued signals. We design a sparse signal recovery

routine which is a PD algorithm utilizing signal sparseness. We provide extensive system

simulation verification of this recovery algorithm.

3.2 Compressed Sensing over Finite Fields

3.2.1 System Description

In Figure 3.1, we describe a compressed sensing framework in a finite field of size

q, Fq: Let x ∈ FNq be an signal vector of length N with sparsity K which indicates

the number of the nonzero entries in x, A ∈ FM×Nq be an M ×N sensing matrix with

N > M . The measured signal y is

y = Ax. (3.1)

The received signal z obtained after passing the q-ary symmetric channel is

z = y + e. (3.2)
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where e ∈ FMq is the M × 1 noise vector whose element follows an independently

identical distribution (i.i.d.). The distribution pi of the q-ary symmetric channel for a

noise vector e is defined by

Pr {zi|yi} =


1− ε for yi = zi,

ε/(q − 1) otherwise,

(3.3)

where yi and zi are the ith measured and received signal for i ∈ {1, 2, ...,M}, i.e., ε = 0

is the noiseless case. In this chapter, we assume that an element of the signal x follows

a probability distribution pj with i.i.d.,

Pr {xj = θ} =


1− δ if θ = 0,

δ/(q − 1) if θ 6= 0,

(3.4)

where xj are the jth element of x for j ∈ {1, 2, ..., N}, δ is the sparsity ratio (= K/N),

and a dummy variable θ ∈ Fq.

In this chapter, we use a sparse matrix for A. The generation of a sparse sensing

matrix A follows the Gallager approach named as a parity-check matrix randomly

chosen from the ensemble of a regular (dc, dv) LDPC codes, where dc and dv are the

number of nonzero entries in the column and the row of the matrix. In this chapter,

all arithmetic operations for multiplication and addition are performed over a finite

field. In order to recover an unknown sparse signal x, we use a variant of the message

passing algorithm [64].

3.2.2 Connection to Syndrome Decoding

Error correction is required for reliable communications, and performed by adding

redundant parities to original information. Suppose that a codeword c ∈ Fn with length
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n is chosen from the codebook C over finite fields F. And it is transmitted through a

noisy channel, and received as ĉ, where ĉ = c + w and w ∈ Fn is the additive noise.

With the received codeword ĉ and the knowledge of the codebook C, the decoder tries

to estimate the correct codeword c. For linear codes, the codebook C can be described

in terms of its m× n parity-check matrix H ∈ Fm×n as C = {c ∈ Fn|Hc = 0}.

At the receiver, a syndrome decoder performs the computation of the syndrome

in the enabling way: r = Hĉ = H(c + w) = Hw since Hc = 0. From the syndrome

r, it is desired to find the exact error pattern w by using the calculated syndrome r

and the parity-check matrix H. The error correction capability of this code C mainly

relies on its minimum distance, which is the minimum Hamming weight (the number

of nonzero elements) of any codeword. Recently, the tight connection between CS and

coding theory was reported in [59], [60], and [61].

3.3 Recovery Algorithm of Sparse Signals

3.3.1 Message Passing Algorithm

In this section, we discuss the PD algorithm. The maximum a posterior (MAP)

detection is used which utilizes the prior knowledge that the distribution of each element

defined in (3.4) is known for reconstruction. Then, the reconstruction problem of xj is

expressed by

x̂j := arg max Pr
{
xj = θ

∣∣y,A}. (3.5)

Figure 3.2 shows the graphical representation of the reconstruction problem, which

is drawn from a sensing matrix A by mapping the rows to the measured signal y and
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Figure 3.2: Graphical representation of the sensing matrix A with the measured signal

y and the sparse signal x.

the columns to the sparse signal x with the entries forming the edges of the graph.

The presence of an edge between a sensing node and a signal node represents the

nonzero coefficient of the sensing matrix A. In order to perform the PD algorithm in

the graphical representation, we define the two extrinsic probabilities as follows: fv,ij

is the message from the ith sensing node to the jth signal node; fh,ji is the message

from the jth signal node to the ith sensing node.

We now discuss several related works. Sarvotham et al. proposed a belief propaga-

tion algorithm for recovery of real valued sparse signals in [62]. Donoho et al. in [63]

proposed an approximate message passing algorithm for CS with dense Gaussian sens-

ing matrices. In this algorithm, the authors introduced a variant of density evolution

that provides a precise characterization of its performance.
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3.3.2 Probabilistic Decoding Algorithm for Recovery of Sparse Signals

The idea behind this algorithm is based on decoding of nonbinary LDPC codes

in Davey and Mackay [64]. The main difference between our algorithm and the work

[64] is that we exploit the knowledge of the prior information of sparse signals for

reconstruction. Then, the initial process of decoding is different as well as updating the

probability messages between sensing nodes and signal nodes. We assume the following

ways: an unknown signal x is compressed into a measured signal y, and it is transmitted

through the noisy channel. With the received signal z and a prior distribution of x, we

determine the unknown signal x by using the proposed recovery algorithm.

For reconstruction, there are four main steps: i) initialization, ii) update of message

fv,ij, iii) update of message fh,ji, and iv) tentative decoding. In the initialization, we

set the values for all the nodes. The prior probability distribution pj of the jth signal

x defined in (3.4) is used. Also the transition probability for each sensing node z is as

given in (3.3). This information is utilized to determine the message fv,ij. This makes

it possible to the major difference from Davey’s work. In the next step, we update

all the messages fv,ij as follows. The transformed version Fv,ij of the message fv,ij is

calculated

Fv,ij =

( ∏
j̃∈L(i)\{j}

Hqf̃h,j̃i

)
×Hqpi, (3.6)

where L(i) = {j : Aij 6= 0} denotes the set of indices of xj that participate in the

ith row of the sensing matrix, Hq is the q × q transform matrix, i.e., the Hardamard

transform matrix or the Fourier transform matrix. In this case, we set the rearranged

message f̃h,j̃i corresponding to its coefficient of the sensing matrix A, which is initially
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the same with the signal probability pj. And then, using the inverse transform, the

message fv,ij is obtained from

fv,ij = H−1
q Fv,ij. (3.7)

The ith sensing node follows the constraint, i.e., yi =
∑

j Aijxj.

In the third step, the computation of the message fh,ji from messages fv,ij is per-

formed by

fh,ji = γpj
∏

ĩ∈M(j)\{i}

f̃v,̃ij, (3.8)

where M(j) = {i : Aij 6= 0} denotes the set of indices of yi that participate in the

jth column of the sensing matrix, the message f̃v,̃ij is obtained from rearranging the

message fv,̃ij according to the coefficient of the sensing matrix. Then fj denotes the

posterior probability of the jth signal node xj, which is conditioned on the information

obtained via yi and pj. Then, the posterior probability is obtained from as follows,

fj = pj
∏

i∈M(j)

f̃v,ij. (3.9)

The jth signal node xj is then estimated: x̂j = arg maxθ∈Fq {fj}. The decoder checks

if x̂ satisfies the constraint condition, i.e., Ax̂ = y.

3.4 Simulation and Discussion

3.4.1 Simulation Results

In Figure 3.3 and Figure 3.4, we evaluate the performance of our CS scheme consid-

ered in finite fields. In all simulations, the maximum number of iterations is set to 50

for the PD algorithm. For simulation, we use a sparse signal of length 1200, N = 1200.
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Algorithm 1: Proposed Probabilistic Decoding (PD) Algorithm

Input: Prior probability pj of a sparse signal

Channel error probability pi

Randomly generated sensing matrix A

Output: Estimated x̂j

1) Initialization:

Set pj and pi

Initialize message fh,ji ← pj

Set maximum iterations

while Ax̂ = z or Maximum Iterations do

2) Update the message fv,ij:

Fv,ij =

(∏
j̃∈L(i)\{j}Hqf̃h,j̃i

)
×Hqpi

fv,ij = H−1
q Fv,ij

3) Update the message fh,ji:

fh,ji = γpj
∏

ĩ∈M(j)\{i} f̃v,̃ij

4) Tentative decoding:

fj = pj
∏

i∈M(j) f̃v,ij

x̂j = arg maxθ∈Fq

{
f θj
}

return Estimated x̂
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Figure 3.3: Failure probability for recovery of sparse signals with fixed N = 1200,

M = 600, and ε = 0.1 varying K
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Figure 3.4: Failure probability for recovery of sparse signals with fixed N = 1200,

M = 600, and K = 120 varying ε.
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With the sparsity ratio δ(= K/N), the compression ratio ρ(= M/N), and the error

probability ε of the q-ary symmetric channel, we show the failure probabilities for re-

construction of CS. Figure 3.3 shows the performance of our CS scheme with a regular

(dc = 3, dv = 6) sensing matrix A, i.e., M = 600, over a finite field of size: q = 2, 4,

16, and 256. In this case, we set the error probability ε = 0.1 for the q-ary symmetric

channel. The horizontal axis indicates sparsity K. It is obvious that as the size of finite

fields increases, the larger number of the sparsity can be successfully decoded. In Figure

3.4, we show the failure probability with different error probability ε. We observe that

a larger finite alphabet is not sensible with the channel noise.

3.5 Conclusion

In this chapter, we considered a CS framework over finite fields. In this framework,

low-density frames were used as the sensing matrices. We proposed a PD based the

message passing algorithm which shows very good performance closely achieving the

theoretical bounds in coding theory. This allows us to utilize the low-density sensing

matrices to be good reconstruction performance into a CS framework.
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Chapter 4

New Performance Evaluation Framework of

Cooperative Wireless Networking Schemes

with Random Network Coding

4.1 Introduction

Channel fading is one of the underlying causes of performance degradation in wire-

less networks. One naive approach to combat channel fading is to increase the transmit

power. A more advanced approach is to utilize modern diversity techniques, which can

be performed without increasing the transmit power. In recent years, numerous diver-

sity techniques have been proposed and employed in the time, frequency, and space

domains. Cooperative networking is one of the current approaches that aim to uti-

lize spatial diversity via user cooperation. Each user participates collaboratively, and

shares the benefit of a virtual antenna array in transceiver messages that are available

through another user’s antenna [65].

Network coding [17] first proposed by Ahlswede et al. is shown to achieve max-

imum information flow in a single source multicast network. Numerous efforts have

subsequently been attempted; these efforts focused on elucidating if network coding

can provide additional advantages compared to other cooperative networking schemes.
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For example, network coding over the binary field [66], [67] has shown to improve diver-

sity gain and provide higher spectral efficiency in wireless networks, whereas network

coding with a nonbinary field further increases those benefits [68]–[72]. In particular,

numerous studies have investigated the extent to which network coding can improve

the performance of media access control and routing protocols, in terms of energy effi-

ciency [84], transmission delay [86], and throughput [85], [87], compared to traditional

forward-and-relay-only based designs [81]–[83]. The performance of cooperative wire-

less networking schemes with network coding has been analyzed, and compared with

erasure channel models [68]–[71], and error propagation models [92]–[95]. We will fur-

ther address recent cooperative communication schemes in Chapter 4.2 by categorizing

them with respect to their decoding techniques, spectral efficiencies, and cooperative

strategies.

Xiao and Skoglund [68], [69] recently proposed a network coding scheme called

Dynamic Network Codes (DNC) to handle a dynamic network topology. The inherent

nature of wireless channels implies that links are unreliable and that link failures will

occur randomly in the inter-user channels. DNC is designed to perform successfully

over such a dynamic network channel topology, in conjunction with techniques such as

enhanced diversity order. In the DNC scheme, multiple network code matrices are used;

each one is designed to manage a particular occurrence of link outages. In particular, an

intermediate node in a network may fail to decode some of the messages received from

the other nodes. The intermediate node creates a linear combination of the messages it

could successfully decode, and then forwards it to the base station. That is, a certain
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occurrence of link outages results in a particular restriction to the elements of the

network code matrix. Thus, each network code matrix in the DNC scheme, referred to

as the transmission matrix in this chapter, is designed carefully to work effectively for

the occurrence of a specific set of link failures. In addition, Rebelatto et al. in [70], [71]

extended the two-phase transmission framework of the DNC to multiple phases in the

the Generalized Dynamic Network Codes (GDNC), to further enhance the transmission

rate and the diversity order.

In this chapter, our goal is to focus on the system models of the DNC and GDNC

schemes, and provide a novel analysis framework for them. As noted earlier, there are

other recently studied cooperative communications schemes, each with an advantage

in a different perspective such as spectral efficiency and higher decoding performance.

These will be discussed further in Chapter 4.2. DNC’s system model was selected,

because it is the first network coding schemes designed for dynamic network topology.

To the best of the authors’ knowledge, DNC is the first attempt to adaptively use

different network code matrix as the link failure varies, and is designed to achieve the

so-called the min-cut capacity of randomly changing links [68]. GDNC is shown to

achieve full diversity order and increases the transmission [70].

Although a series of performance analyses for DNC and GDNC are provided in

[68]–[71], the authors rely on the exhaustive investigation of all individual network

code matrices to determine if the resultant transmission matrix at the base station is

sufficiently able to decode the source messages. This is an exceedingly time-consuming

and tedious process; thus, it cannot be extended to larger and more general networks

– 47 –



where the link outage probabilities throughout the networks are, in general, different

from each other.

In particular, the performance analyses in [68]–[71] to determine the probability of

successful decoding at the base station are performed only for small and non-general

networks. A successful decoding is assumed to be achieved when the network code

matrix at the base station has a sufficient number of linearly independent vectors that

at least equals the number of unknown source messages. The successful event begins

by determining whether the rank of the network code matrix at the base station is

full. Then, the success probability is obtained by adding all individual probabilities

of such events over all possible link failures. To achieve this outcome, the authors,

Theorem 1 in [68] and Section V in [70], followed the approach of tracking down each

network code matrix individually, and determining if each was full in rank. This is an

exhaustive process. When the number of nodes in a network increases, it is evident

that this approach becomes intractable, because of the exponential increase in possible

combinations. For example, the total number of distinct N ×N random matrices with

full rank is
∏N

i=1

(
qN − qi−1

)
for the finite field of size q [73].

As a result, the analyses performed in [68]–[71] are limited to small and homoge-

neous networks, i.e., a network of fewer than 10 nodes, with link failure probabilities

set to be equal throughout the network. These methods are not suitable for analyz-

ing networks where nodes are randomly deployed in an area of interest, and wireless

networks present heterogeneous link outage probabilities. The lack of a general and

systematic performance analysis framework to deal with such networks has motivated
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this study.

In this chapter, our main goal is to propose a novel evaluation framework for co-

operative network coding schemes. The contributions of this work are summarized as

follows.

• (Design of random transmission matrix ) We model a random transmission matrix

with uniform and maximum distance separable (MDS) distributions in (4.6),

(4.7), and (4.8) of Chapter 4.4. The elements of this matrix are represented with

random variables as a function of the outage probability of each wireless link. This

new system model enables us to avoid the exhaustive counting of each network

code metric occurrence.

• (Tight upper bounds to probability of decoding failure) We derive a series of tight

upper bounds on the probability of failure. In particular, the dimension of the

nullspace of the random transmission matrix is used to derive an upper bound, as

discussed in Proposition 4.3. It is then linked to the decoding failure probability

where the rank of the network code matrix is not full, which is defined in Theorem

4.4. The upper bounds have proven to be considerably tight in comparison to

simulation results.

• (Generality and scalability) The developed analysis framework is general and

scalable, offering the capability of analyzing large wireless networks with ran-

dom deployments where all outage probabilities of wireless links are different.

For example, see one network scenario of randomly deployed nodes. In addition,

– 49 –



Table 4.1: Summary of Recent Techniques for Cooperative Communications.

Recent technique References

Decoding

techniques

Maximum ratio combining [67], [75]–[77]

Rank-based decoding [68]–[71], [73], [74]

High spectral

efficiency

Multiuser detection [79]

Interference cancellation [80]

Non-orthogonal channel [78]

Cooperative

strategies

Amplify-and-Forward [65], [97]

Decode-and-Forward [65], [98]

Compute-and-Forward [96]

the developed framework can handle a large cooperative network that has more

than 100 nodes. To the best of our knowledge, this scale of wireless networks

is unprecedented in DNC and GDNC performance evaluations. The proposed

framework enables us to investigate its impact on the successful reconstruction

of source messages based on varying outage probabilities, and on various key

parameters such as the number of relays and the field sizes in DNC and GDNC

schemes.

4.2 Other Recent Works and Relation to Our Work

In this section, and in Table 4.1, we provide an overview of the prevalent cooperative

communications schemes believed to be closely related to the network coding schemes

considered in this chapter.
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Two cooperative wireless communications decoding approaches have been recently

considered. The first is the Maximum Ratio Combining (MRC) decoding scheme [67],

[75]–[77]. The main concept is to configure the network to coordinate the transmis-

sions, and repeat a signal with a weak signal-to-noise ratio (SNR) multiple times over

independent fading channels. In this manner, MRC allows the destination to maxi-

mize SNR. To implement an MRC scheme, all decoding information, as well as the

success or failure of each source message at the base station, should be identified and

forwarded to the relays. This is required to determine the source of the low SNR, for

which retransmission was required. To enable its deployment in large-scale networks,

the scheduling issue must be resolved.

Recently, two research groups have proposed advanced cooperative network schemes

to achieve high spectral efficiency. In [78], Youssef and Amat have proposed the use of

non-orthogonal channel allocation to improve spectral efficiency. For wireless networks

where a multiuser detection receiver is utilized at the base station, cooperative trans-

mission protocols with high spectral efficiency have been developed [79]. Furthermore,

the work described in [80] has aimed to improve the spectral efficiency of cooperative

systems using superposition coding and iterative detection methods.

We believe our analysis framework could be utilized in [78] with a necessary but

simple modification. The first aspect to consider is that all wireless channels should not

be modeled independently in the future. The outage probabilities are not independent

from each other. This can be achieved by designing a joint probability distribution for

the random matrix. The probability that the random transmission matrix is not full
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rank can be obtained by considering such an event over the joint probability distribu-

tion.

Using NC on lattice codes, Nazer and Gastpar recently proposed the compute-

and-forward (CF) relaying scheme [96]. In CF, a relay is configured with a linear

combination of multiple codeword signals, which are simultaneously transmitted and

superposed in the air. The key idea of using CF relaying in network coding is to uti-

lize the lattice code property stating that the integer combination of lattice codewords

remains a lattice codeword. Thus, the relay receives a codeword with additive noise.

After a denoising step, the relay retransmits the decoded lattice codeword to the base

station. Therefore, the benefit of using CF relaying in network coding is evident. Be-

cause transmissions from all sources to the relay are performed simultaneously, the

spectral efficiency is significantly enhanced.

There are two widely recognized cooperative relaying strategies, referred to as

amplify-and-forward (AF) [65], [97] and decode-and-forward (DF) [65], [98]. AF and DF

cooperative relaying strategies perform effectively in either low or high SNR regimes,

while CF approach offers advantages in moderate SNR regimes where both interference

and noise are significant factors [96]. The DNC and GDNC schemes we consider in this

chapter are categorized as DF-based network coding strategies.

ooperative wireless communications with multiple sources and multiple relays closely

related to our work have attracted significant attention because of their higher achiev-

ability rate [88], and better error performance [90], [91] as well as diversity-multiplexing

tradeoffs [72], [89]. There are two types of error propagation models that should be con-
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sidered here. The authors in [92]–[95] assume a network channel model where erroneous

messages are permitted to propagate throughout the network. For the erasure channel

model, [68]–[71], erroneous messages at the relays are discarded, to avoid unnecessary

error propagation caused by encoding and forwarding operations.

The recent studies [68]–[74] closely related to this paper have focused on the per-

formance analysis and the design of network code matrices for cooperative networks

with erasure channel models. In particular, the problem of designing network code ma-

trices subject to link failures was studied [68]–[71], to maximize diversity order in a

multiple-access network. In [70] it is shown that the design of network code matrices

is equivalent to the design of linear block codes for erasure correction coding. It was

shown that maximum diversity order is guaranteed if an MDS code generator matrix is

utilized as the network code matrix. In addition, Nguyen et al. [74] have defined upper

and lower bounds on GDNC scheme recovery performance. For random linear network

coding schemes, Trullols-Cruces et al. [73] have derived the exact decoding probability

of obtaining network codes of full rank.

4.3 Cooperative Network

We consider an (N , M) cooperative scheme for wireless networks as shown in Figure

4.1, in which there are N sources, {U1, U2, . . . , UN}, and M relays, {R1, R2, . . . , RM}.

There are two cooperating transmission phases: broadcasting and relaying. In the broad-

casting phase, each source transmits its message to the base station (BS). Owing to

the nature of wireless channels, the relays in this phase can, in general, receive and
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Figure 4.1: An (N , M) cooperative network with N sources and M relays.

successfully decode the messages from the sources. In the relay phase, each relay can

generate a parity message constructed from a linear combination of these messages, and

forward it to the BS. In this work, we assume that the received message for a single

channel is considered either completely corrupted – an outage and therefore not avail-

able at the receiver – or error-free, i.e., no outage. For more complicated cooperative

communications error models that have been studied in [92]–[95], we have a discussion

included in Chapter 4.2.

For both transmission types, we assume that all transmitters send their signals

through orthogonal channels using either time- or frequency-division multiple access,

and that all channels are spatially independent, flat-faded, and perturbed by additive

white Gaussian noise (AWGN). We further assume that the channel gains are indepen-
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dent in both the broadcasting and relay phases. A discussion is included in Chapter

4.2 in which no orthogonal transmissions are utilized and inter-user channels are not

independent.

In the broadcasting phase, the signal yu,d1 received at node d1 for d1 ∈ {R1, R2, . . . , RM , BS}

is given by yu,d1 =
√
Puhu,d1xu,d1 + nu,d1 , where u denotes the transmitter node, i.e.,

u ∈ {U1, U2, . . . , UN}; Pu denotes the transmit power at node u; hu,d1 denotes the chan-

nel gain between the two nodes u and d1, which is a circular symmetric complex-valued

Gaussian random variable with zero mean and variance σ2
u,d1

/2 per dimension; xu,d1 is

the signal transmitted from node u; and noise nu,d1 denotes the complex-valued AWGN

with zero mean and variance N0/2 per dimension. In the relay phase, the signal yr,d2

received at the BS is yr,d2 =
√
Prhr,d2xr,d2 + nr,d2 , where r denotes the relay node,

i.e., r ∈ {R1, R2, . . . , RM}; d2 denotes the BS; Pr denotes the transmit power at relay

node r; hr,d2 denotes the channel gain between the relay node r and the BS, which is

a circular symmetric complex-valued Gaussian random variable with zero mean and

variance σ2
r,d2
/2 per dimension; xr,d2 is the signal transmitted from relay node r; and

noise nr,d2 denotes the same AWGN as in the broadcasting phase. For Rayleigh fading

channels, the variances of channel gains are defined as σ2
u,d1

:= ρ−ηu,d1 and σ2
r,d2

:= ρ−ηr,d2 ,

letting ρu,d1 and ρr,d2 be the distances for u–to–d1 and r–to–d2, respectively, and η be

the path-loss exponent, i.e., 2 ≤ η ≤ 6 [99]. Throughout this chapter, we use η = 3.

The instantaneous SNRs of the two channels are denoted as γu,d1 := |hu,d1|2Pu/N0 and

γr,d2 := |hr,d2 |2Pr/N0.

In the broadcasting phase, the outage probability δu,d1 for a given channel is repre-
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sented as follows [100]

δu,d1
(a)
:= Pr

{
log(1 + γu,d1) < Rth

}
(b)
= 1− exp

{
−N0(2Rth − 1)

Puσ2
u,d1

}
,

(4.1)

where Rth is the predefined threshold of the spectral efficiency in bits/s/Hz. Throughout

this chapter, we use Rth = 1 bits/s/Hz. The expression (a) in (4.1) originates from

the definition of channel capacity, (b) reflects the assumption that |hu,d1|2 follows the

exponential distribution with parameter Pu/N0ρ
η
u,d1

. Similarly, the outage probability

δr,d2 of each channel in the relay phase is obtained as follows:

δr,d2 := Pr
{

log(1 + γr,d2) < Rth

}
= 1− exp

{
−N0(2Rth − 1)

Prσ2
r,d2

}
.

(4.2)

Each of both outage probabilities (4.1) and (4.2) is a function of the instantaneous

SNR and the distance between two nodes. We can use these outage probabilities to

model the elements of a transmission matrix.

4.4 Modeling of Transmission Matrices

4.4.1 Transmission Matrix

We utilize the outage probabilities defined in Chapter 4.3 the elements of the trans-

mission matrix. A random transmission matrix can be used to represent a family of

network coding matrices for an (N , M) cooperative scheme shown in Figure 4.1 in

which two transmissions occur over a multiple access network with N sources and M

relays. Let Fq be a finite field of size q. Let x ∈ FN×1
q denote the N × 1 vector of trans-

mitted messages, y ∈ F(N+M)×1
q denote the (N +M)× 1 vector of messages received at
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the BS, and A ∈ F(N+M)×N
q denote the (N +M)×N transmission matrix. The vector

y received at the BS is then given by

y = Ax, (4.3)

where the transmission matrix A consists of the N×N direct matrix D and the M×N

combination matrix P; i.e., A :=
[
D
P

]
. Note that all of the arithmetic operations are

performed over finite fields.

The direct matrix D can be modeled as a diagonal matrix, i.e., one with zeroes for

all off-diagonal elements. If there are no outage events for the channel links between

the sources and the BS, the diagonal elements of this direct matrix are all set to one;

otherwise, the corresponding elements are set to zero. Let αii denote the ith diagonal

element of D, i.e., αii ∈ {0, 1} for i ∈ {1, 2, . . . , N}, then the ith element yi,1 of y

is represented as yi,1 = αiixi, where xi ∈ Fq denotes the ith element of x, and 1

in the subscript of yj,1 indicates the broadcasting phase for j ∈ {1, 2, . . . ,M}. Let

βji ∈ Fq denote an element of P, then the (N + j)th element yj,2 of y is represented

by yj,2 =
∑N

i=1 βjixi, where 2 in the subscript of yj,2 indicates the relay phase. As

the BS receives N + M messages from N sources and M relays, we can represent the
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Figure 4.2: The (2,1) cooperative wireless network with N = 2 and M = 1. The solid

lines indicate the broadcasting phase, and the dashed line indicates the relay phase.

transmission matrix as

y1,1

...

yN,1

y1,2

...

yM,2



=



α11 · · · 0

...
. . .

...

0 · · · αNN

β11 · · · β1N

...
. . .

...

βM1 · · · βMN





x1

x2

...

xN


. (4.4)

Note that all elements of the transmission matrix A are random variables except

for the off–diagonal terms of D. The following simple example illustrates the method

for determining the elements of the transmission matrix.

Example 4.1: Consider two sources (U1 and U2) and one relay (R1) in a (2,1)

cooperative wireless network shown in Figure 4.2. Let the size of the finite field for the

network coding be 2, q = 2. In the broadcasting phase, source U1 transmits message
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x1 to the BS and relay R1, while U2 transmits message x2 to the BS and R1. The relay

overhears, decodes, and then linearly combines the decoded messages to generate a par-

ity message that is forwarded to the BS. Thus, the BS receives three messages: x1 and

x2 from the respective sources and a parity message from the relay. This transmission

mechanism is depicted in Figure 4.2.

The transmission matrix in this example is given by
y1,1

y2,1

y1,2

 =


α11 0

0 α22

β11 β12


 x1

x2

 . (4.5)

Here, the connectivities of the channel links (U1–BS and U2–BS) are represented by

α11 and α22 in the transmission matrix. If a channel link (U1-BS) or (U2-BS) incurs

an outage, then its associated connectivity, α11 or α22, will be set to zero; otherwise,

this element is set to one. Similarly, two elements β11 and β12 represent the joint

factors of the qualities of the three channel links: (U1–R1), (U2–R1), and (R1–BS).

If both links, (U2–R1) and (R1–BS), do not simultaneously incurs outages, β12 is set

one; conversely, if either of the two links undergoes an outage, β11 will be set to zero.

Thus, the transmission matrix will be determined by the condition of all five channel

links in the wireless network, and if the transmission matrix at a given condition has

full rank, the BS can successfully decode the two source messages x1 and x2. Table

4.2 summarizes all outage events of the transmission matrix for the (2,1) cooperative

wireless network in which there are two sources and one relay. �
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Table 4.2: Determination of the Transmission Matrix for all Cases of Failures for q = 2,

where “O” indicates no outage, “×” indicates an outage, and “–” indicates Don’t care

U1–BS U2–BS D U1–R1 U2–R1 R1–BS P

O O

 1 0

0 1

 O O O

[
1 1

]

O ×

 1 0

0 0

 O × O

[
1 0

]

× O

 0 0

0 1

 × O O

[
0 1

]

× ×

 0 0

0 0

 ×/– ×/– O /×
[

0 0

]
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4.4.2 Modeling of Random Elements

In this subsection, we provide techniques for defining the elements of the trans-

mission matrix as random variables. We assume that all outage events are mutually

independent from each other, which is reasonable for typical wireless networks. Then,

the probability distribution of the elements can be determined based on the outage

probabilities of the wireless channels as follows. First, the probability distribution for

each diagonal element of D is modeled using the outage probability of the source-to-

BS channels. Second, by simultaneously considering the outage events in both channels

(i.e., source-relay and relay-BS), we determine the probability distribution for each el-

ement of P.

To model each diagonal element of D, the probability of the ith diagonal element

αii, i ∈ {1, 2, . . . , N}, can be defined from the set of possible outage events between

the sources and the BS in the broadcasting phase as:

Pr
{
αii = θ

}
=


δUi,BS if θ = 0,

1− δUi,BS if θ = 1,

(4.6)

where δUi,BS the outage probability defined in (4.1) where an outage occurs in the

single link between the ith source Ui and the BS.

Next, to model each element of the combination matrix P, we consider two types of

probability distributions. The first is to permit the nonzero values of each element in

P to be uniformly distributed. This distribution is reasonable, considering the recent

result in [101] where it is acknowledged that a uniform distribution for linear network

coding provides various benefits, including decentralized operation and robustness to
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network changes or link failures in multisource, multicast networks. The second is to

allow the nonzero value to be predetermined. This specific value can be set using MDS

codes [102] in coding theory. It is well known that MDS codes achieve the Singleton

bounds. This supports the consideration of MDS codes for optimum reconstruction

performance. In the latest literature, Rebelatto et al. [70] have proved that a systematic

MDS code generator matrix, operating over sufficiently large finite fields such as the

transmission matrix, is sufficient for obtaining full diversity in cooperative networks.

However, MDS codes use a large field size that may result in excessive complexity,

especially in cases where the dimension of the code is large.

Uniform distribution

When modeling the elements of the combination matrix P, we have to consider the

outage events in both the source-to-relay and relay-to-BS links, as the occurrence of

either or both of these events will prevent the relay from delivering the source message

to the BS. Let Ēj and Ej denote the nonoccurrence and occurrence of an outage from

the jth relay Rj, j ∈ {1, 2, . . . ,M}, to the BS, respectively. Thus, both probabilities

are: Pr
{
Ēj
}

= 1 − δRj ,BS and Pr {Ej} = δRj ,BS. Because the outage event from a

source to a relay is independent of any other outage events, the conditional probability

Pr
{
βji = θ

∣∣Ēj } of this element of the combination matrix P can be modeled as

Pr
{
βji = θ

∣∣Ēj } =


δUi,Rj

if θ = 0,

(1− δUi,Rj
)/(q − 1) if θ 6= 0,

(4.7)

where δUi,Rj
denotes the probability that the outage occurs from the ith source Ui to

the jth relay Rj. Each outage probability δUi,Rj
can be determined independently in
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(4.1).

In (4.7), the elements of P are nonzero when both outage events do not occur

simultaneously; however, when an outage event from the jth relay to the BS occurs,

i.e., when Ej is true, the conditional probability is set as Pr {βji = 0 |Ej } = 1, regardless

of the condition of the outage event (source–relay).

MDS distribution

Next, we consider modeling the elements of P based on the systematic generator matrix

of MDS codes. The difference from the aforementioned uniform distribution is that the

nonzero value of each element should be taken from the pertinent value of a predefined

MDS code. In this subsection, we refer to this as the MDS distribution. By consid-

ering the MDS distribution, we can compare its reconstruction performance to that

of the uniform distribution given in (4.7). For the MDS distribution, the conditional

probability Pr
{
βji = θ

∣∣Ēj } defined similarly to that in (4.7) is given by

Pr
{
βji = θ

∣∣Ēj } =


δUi,Rj

if θ = 0,

1− δUi,Rj
if θ = χ,

0 otherwise,

(4.8)

where χ denotes the coefficient that is predefined from the systematic generator matrix

of MDS codes. To generate this code, we used the software application SAGE [103].

For N = 8 and M = 4, for example, the 4× 8 submatrix of the systematic MDS code
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is: 

9 13 14 7 2 15 13 12

15 3 9 12 12 10 12 2

14 9 12 7 8 1 3 7

4 5 5 10 9 3 4 1


. (4.9)

In example (4.9), the conditional probability Pr
{
β11 = 9

∣∣Ē1

}
is 1 − δU1,R1 , and for

any θ ∈ F16\{0, 9}, it is set to zero, i.e., Pr
{
β11 = θ

∣∣Ē1

}
= 0. Based on this, we can

investigate the improvement in reconstruction performance that is achieved when using

MDS codes in a cooperative wireless network.

Remark 4.1. In this work, we assume that all the inter-node channels are inde-

pendent from each other. Thereby, probability distributions of random elements are de-

fined independently. If channel correlations are considered, the distributions, i.e., (4.6),

(4.7), and (4.8), should be modeled as a joint distribution corresponding to the channel

correlation. Using joint distributions, we can evaluate the performance of correlated

wireless network coding schemes. Example 4.3 shows that the proposed framework can

be extended to correlation cases. A generalized version of the proposed framework for

channel correlations will be another direction of future research.

4.5 Upper Bound on Reconstruction of Messages

If a transmission matrix for a dynamic network topology randomly generated using

the probability distributions given in (4.6), (4.7), and (4.8), has full rank, the BS can

uniquely decode all messages from all sources. In this section, we aim to derive an

upper bound on the decoding failure probability, and the dimension of the nullspace
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of the random transmission matrix of an (N , M) cooperative wireless network. We

then connect them to investigate the manner in which network coding performance

varies based on wireless channel conditions, the number of relays, field sizes, and the

positions of nodes deployed in a 2D space. Throughout this chapter, we use the random

transmission matrix as a bold face, i.e., A, while the realized transmission matrix in

sans-serif style, i.e., A.

We define the dimension of the nullspace within the column space of a transmission

matrix as follows. Let A be an (N +M)×N matrix over the finite field with size q as

Fq. Based on linear algebra theory, the columns A1, . . . , AN of A are linearly dependent

if and only if a vector c = (c1, . . . , cN) ∈ FNq exists, with at least one nonzero ci, such

that
N∑
i=1

ciAi = 0. (4.10)

Definition 4.1. (Number of nonzero coefficient vectors) Let L(A) be the number of

all such nonzero vectors c beloing to the nullspace of the given matrix A. Let the column

rank of a realized transmission matrix be rank(A). Thus, L(A) can be represented as

L(A) = qN−rank(A) − 1. (4.11)

Definition 4.2. (Nullity) Let nullity(A) be the dimension of the nullspace in the

column space of A.

Proposition 4.3. For a random matrix A, the expectation of the nullity of A is

upper bounded by E [nullity(A)] ≤ logq (E [L(A)] + 1), where E [·] denotes the expec-

tation.

– 65 –



Proof : For any (N +M)×N matrix A, we follow nullity(A) = N − rank(A), known

as the rank-nullity theorem of linear algebra [104]. Considering the expectation for a

random transmission matrix in both sides of (4.11), we obtain the following upper

bound using Jensen’s inequality:

E
[
nullity(A)

]
:= N − E

[
rank(A)

]
= E

[
logq(L(A) + 1)

]
≤ logq

(
E [L(A)] + 1

)
,

(4.12)

�

Theorem 4.4. Let Pfail be the decoding failure probability for the reconstruction

of source messages. Then, Pfail ≤ min
{

1, 1
q−1

E [L(A)]
}

.

Proof : The probability Pfail is defined and upper bounded by

Pfail = Pr {rank(A) < N}

= Pr

{
∃c :

N∑
i=1

ciAi = 0

}
(a)

≤
∑

c∈FN
q \{0T }

Pr
{
Ac = 0T

}
= E [L(A)] .

(4.13)

where inequality (a) is due to the union bound; note that E [L(A)] =
∑

c∈FN
q \{0T }

Pr
{
Ac = 0T

}
.

Then, the upper bound on the probability Pfail can be tightened as

Pfail ≤ min

{
1,

1

q − 1
E [L(A)]

}
, (4.14)

where the 1/(q − 1) factor is due to the following reason. Suppose a nonzero vector

c exists such that Ac = 0T . Then, other q − 2 nonzero vectors θc, θ2c, ..., θq−2c
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certainly exist for a primitive element θ ∈ Fq\ {0}, where each satisfies Aθic = 0T for

i ∈ {1, · · · , q − 2}. Then, we note
⋃

c1∈{θc,...,θq−2c}
{
A : Ac1 = 0T

}
=
{
A : Ac = 0T

}
.

�

Remark 4.2. Proposition 4.3 and Theorem 4.4 provide the groundwork to novel

performance evaluation framework of cooperative wireless NC schemes. These results

allow us to carry out the calculation of the decoding failure probability without going

through the exhaustive search of all the possible cases individually. They belong to the

new key steps in making our evaluation framework to be computationally efficient which

are not available in the literature, such as [68]–[71].

Next, we will derive E [L(A)] for three types of cooperative wireless networks.

4.5.1 Homogeneous and Heterogeneous Connectivity

In this subsection, we aim to find E [L(A)] for two cases: i) homogeneous connectivity

in which all outage probabilities in the wireless network are identical, i.e., δ = δUi,BS =

δUi,Rj
= δRj ,BS given in (4.1) and (4.2) for i ∈ {1, 2, . . . , N} and j ∈ {1, 2, . . . ,M},

assuming that all the channel qualities in networks are equal, and ii) heterogeneous

connectivity in which two types of outage probabilities exist, i.e., δ1 = δUi,BS = δUi,Rj

and δ2 = δRj ,BS, with each outage probability assumed to be merely a function of

transmit power. Note that each element of a random matrix follows the probability

distributions defined in (4.6) and (4.7).

Let Sk denote the probability, i.e., Sk := Pr
{∑k

i=1 βji = 0
}

, for the sum of a linear

combination of the first k random elements k ∈ {1, 2, . . . , N} in the jth row of a
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combination matrix P. For the homogeneous case, Lemma 4.5 gives this probability

Sk.

Lemma 4.5. For the homogeneous connectivity with the distributions (4.6) and

(4.7), the probability Sk is given by

Sk = δ +
(
1− δ

)(
q−1 +

(
1− q−1

)(
1− 1− δ

1− q−1

)k)
. (4.15)

Proof : For the homogeneous connectivity, we use δ = δUi,BS = δUi,Rj
= δRj ,BS.

The conditional probability Pr
{
βji = θ

∣∣Ēj } of each element βji is defined using (4.7),

and the other conditional probability can be set to Pr {βji = 0 |Ej } = 1. Using the

total probability theorem, the probability Pr
{∑k

i=1 βji = 0
}

can be decomposed by

the condition of the outage event Ej, and then given as follows:

Sk = Pr
{
Ej
}

Pr

{ k∑
i=1

βji = 0

∣∣∣∣Ej}+ Pr
{
Ēj
}

Pr

{ k∑
i=1

βji = 0

∣∣∣∣Ēj}
(a)
= δ +

(
1− δ

)
Pr

{ k∑
i=1

βji = 0

∣∣∣∣Ēj},
(4.16)

where (a) follows from the fact that Pr
{∑k

i=1 βji = 0
∣∣Ej} = 1, as Pr

{
βji = 0

∣∣Ej} = 1

(note that the conditional probability Pr
{
βji = θ

∣∣Ēj} is independent of this). Let fk

be the probability, i.e., fk := Pr
{∑k

i=1 βji = 0
∣∣Ēj}. Given the conditional probability

defined in (4.7) and f0 = 1, the probability fk can be rewritten by

fk := Pr

{ k∑
i=1

βji = 0

∣∣∣∣Ēj}

= Pr

{k−1∑
i=1

βji = 0

∣∣∣∣Ēj}Pr
{
βjk = 0

∣∣Ēj}
+

∑
θ∈Fq\{0}

Pr

{k−1∑
i=1

βji = θ

∣∣∣∣Ēj}Pr
{
βjk = −θ

∣∣Ēj}
= fk−1δ +

(
1− fk−1

)1− δ
q − 1

.

(4.17)
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Let gk := fk − q−1. By rewriting (4.17) as a function of gk, we have a simple closed

form:

gk = gk−1

(
1− 1− δ

1− q−1

)
. (4.18)

Applying a geometric series to (4.18), we obtain fk as follows:

fk = q−1 +
(
1− q−1

)(
1− 1− δ

1− q−1

)k
. (4.19)

Finally, the probability Sk can be obtained by substituting (4.19) into (4.16):

Sk = δ +
(
1− δ

)(
q−1 +

(
1− q−1

)(
1− 1− δ

1− q−1

)k)
. (4.20)

The proof of Lemma 4.5 is completed. �

Before attempting to derive E[L(A)] of a random matrix A from Lemma 4.5, recall

that L(A) is the number of all nonzero vectors c satisfying the linear dependency,

i.e., (4.10). The following Proposition 4.6 gives E[L(A)] for the homogeneous (N , M)

wireless cooperative network.

Proposition 4.6. Given an (N , M) cooperative network with the homogeneous

connectivity based on some outage probability δ, E[L(A)] of a (N + M)×N random

transmission matrix A over the finite field Fq is

E [L(A)] =
N∑
k=1

(
N

k

)
(q − 1)kδk

[
δ + (1− δ)

(
q−1 +

(
1− q−1

)(
1− 1− δ

1− q−1

)k)]M
.

(4.21)

Proof : Let us consider a vector c = (c1, . . . , cN) ∈ FNq in which the first k entries

(and only the first k entries) are nonzero, i.e., c =
(
c1, . . . , ck, 0, . . . , 0

)
. Let Pk be the

probability that the sum of a linear combination of the first k column vectors is zero,
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i.e., Pk := Pr
{∑k

i=1 ciAi = 0
}

. As (4.22), E[L(A)] is given by

E [L(A)] =
∑

c∈FN
q \{0T }

Pr
{
Ac = 0T

}
=

N∑
k=1

(
N

k

)
(q − 1)k Pk.

(4.22)

Since all the links in the wireless network are assumed to be spatially and temporally

independent in Chapter 4.2.2, the rows of the transmission matrix are also independent.

Thus, Pk is given by

Pk = Pr

{
k∑
i=1

ciAi = 0

}

=
k∏
i=1

Pr {ciαii = 0}
M∏
j=1

Pr

{
k∑
i=1

ciβji = 0

}
.

(4.23)

Let Hk be the probability as Hk := Pr
{∑k

i=1 ciβji = 0
}

. For k = 1, it is easy to

show Pr {c1βj1 = 0} = Pr {βj1 = 0} for c1 ∈ Fq\ {0} because of multiplication property

in finite fields. Next, we prove that Hk = Sk for k ≥ 2 where c1, c2, ..., ck ∈ Fq\ {0}

denote the k nonzero elements. The probability Hk is represented by

Hk =
∑
θ∈Fq

Pr

{
k−1∑
i=1

ciβji = θ, ckβjk = −θ

}

= Pr

{
k−1∑
i=1

ciβji = 0, ckβjk = 0

}
+

∑
θ∈Fq\{0}

Pr

{
k−1∑
i=1

ciβji = θ, ckβjk = −θ

}
.

(4.24)
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Decomposing the outage event Ej, (4.24) can be rewritten by

Hk = Pr

{
k−1∑
i=1

ciβji = 0, ckβjk = 0

∣∣∣∣∣Ēj
}

Pr
{
Ēj
}

+ Pr

{
k−1∑
i=1

ciβji = 0, ckβjk = 0

∣∣∣∣∣Ej
}

Pr {Ej}

+
∑

θ∈Fq\{0}

(
Pr

{
k−1∑
i=1

ciβji = θ, ckβjk = −θ

∣∣∣∣∣Ēj
}

Pr
{
Ēj
}

+ Pr

{
k−1∑
i=1

ciβji = θ, ckβjk = −θ

∣∣∣∣∣Ej
}

Pr {Ej}

)
.

(4.25)

Since Pr {βji = 0 |Ej } = 1, (4.25) can be represented by

Hk = Pr

{
k−1∑
i=1

ciβji = 0, ckβjk = 0

∣∣∣∣∣Ēj
}

Pr
{
Ēj
}

+ Pr {Ej}

+
∑

θ∈Fq\{0}

Pr

{
k−1∑
i=1

ciβji = θ, ckβjk = −θ

∣∣∣∣∣Ēj
}

Pr
{
Ēj
}
.

(4.26)

Noting that wireless channels are independent with each other under the condition of

Ēj, (4.26) can be decomposed by

Hk = Pr

{
k−1∑
i=1

ciβji = 0

∣∣∣∣∣Ēj
}

Pr

{
ckβjk = 0

∣∣∣∣Ēj}Pr
{
Ēj
}

+ Pr {Ej}

+
∑

θ∈Fq\{0}

Pr

{
k−1∑
i=1

ciβji = θ

∣∣∣∣∣Ēj
}

Pr

{
ckβjk = −θ

∣∣∣∣Ēj}Pr
{
Ēj
}
.

(4.27)

Using recursion, the probability Hk is given by

Hk = Pr

{
k−1∑
i=1

βji = 0

∣∣∣∣∣Ēj
}

Pr

{
βjk = 0

∣∣∣∣Ēj}Pr
{
Ēj
}

+ Pr {Ej}

+
∑

θ∈Fq\{0}

Pr

{
k−1∑
i=1

βji = θ

∣∣∣∣∣Ēj
}

Pr

{
βjk = −θ

∣∣∣∣Ēj}Pr
{
Ēj
}

=
∑
θ∈Fq

Pr

{
k−1∑
i=1

βji = θ, βjk = −θ

}

= Pr

{
k∑
i=1

βji = 0

}
.

(4.28)
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Thus, we simply rewrite Pk as follows

Pk = δkSMk . (4.29)

The proof of Proposition 4.6 is completed. �

Now, let us consider E [L(A)] under the heterogeneous case; i.e., δ1 = δUi,BS = δUi,Rj

and δ2 = δRj ,BS. In what follows, we aim to study how the outage probabilities δ1 and

δ2 affect the recovery performance, assuming that these outage probabilities rely on

the transmit power at the sources and relays.

Proposition 4.7. Given the heterogeneous (N , M) cooperative network defined by

the two outage probabilities δ1 and δ2, E [L(A)] of a (N+M)×N random transmission

matrix A over finite fields Fq is given by

E [L(A)] =
N∑
k=1

(
N

k

)
(q − 1)kδk1

[
δ2 + (1− δ2)

(
q−1 +

(
1− q−1

)(
1− 1− δ1

1− q−1

)k)]M
.

(4.30)

The proof is omitted. But it can be obtained by following the formalism given

in Proposition 4.6, using two outage probability, δ1 and δ2, instead of single outage

probability as done in Proposition 4.6.

4.5.2 General Connectivity

Thus far, we have found E [L(A)] of a random transmission matrix A for the ho-

mogeneous and heterogeneous cases. In this subsection, we extend it to a more general

case, where δUi,Rj
, δRj ,BS, and δUi,BS are used as defined in Chapter 4.2.2. Outage prob-

abilities for the wireless links are obtained using (4.1) and (4.2), which are a function of
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the transmit power and the variance of the channel gain. After finding the outage prob-

ability for each link, we determine the probability distributions for all the elements in

A. We call this the general connectivity case. Because it involves the exhaustive search

of combinations of column vectors in a random matrix, the general connectivity requires

a more complicated computation than that of the homogeneous and the heterogeneous

connectivity in order to derive E [L(A)] where the proposed approach using the upper

bound on the dimension of nullspace will be most powerful.

Proposition 4.8. Given an (N , M) cooperative network with the general con-

nectivity based on the outage probabilities defined in (4.1) and (4.2), E [L(A)] of a

(N +M)×N random transmission matrix A over finite fields Fq is

E [L(A)] =
N∑
k=1

(q − 1)kQk, (4.31)

where Qk :=
∑|Lk|

l=1 Qk,l, l ∈ {1, 2, . . . , |Lk|}, |Lk| :=
(
N
k

)
, and Lk,l is the lth entry

of a set Lk. Let Lk denote the collection of the sets of k distinct indices among

[N ] := {1, 2, ..., N}, i.e., Lk := {{λ1, λ2, ..., λk} : λi ∈ {1, 2, ..., N} , λi 6= λj, i 6= j}. And

the probability Qk,l is defined as: Qk,l := Pr
{∑

i∈Lk,l ciAi = 0
}

.

Proof : For the general connectivity, the probability distribution of each element of

A is different with each other. This leads to different probabilities Qk,l for that any k

column vectors of A are linearly dependent. The total number of Qk,l is |Lk| :=
(
N
k

)
.

We have to consider all different probabilities Qk,l with respect to all the sets Lk,l.

The total probability Qk should be summed over different probabilities Qk,l, i.e., Qk :=∑|Lk|
l=1 Qk,l for l ∈ {1, 2, . . . , |Lk|} and k ∈ {1, 2, . . . , N}. Thus, all Qk,l are enumerated
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and collected to obtain the probability Qk, which is derived as follows:

Qk =

|Lk|∑
l=1

Qk,l

=

|Lk|∑
l=1

Pr

∑
i∈Lk,l

ciAi = 0


=

|Lk|∑
l=1

k∏
m=1

Pr {αlmlm = 0}
M∏
j=1

Pr

{
k∑

m=1

βjlm = 0

}
,

(4.32)

where lm is the mth entry of the set Lk,l, m ∈ {1, 2, . . . , k}. As similarly obtained in

(4.16), (4.32) can be rewritten as

Qk =

|Lk|∑
l=1

k∏
m=1

Pr {αlmlm = 0}
M∏
j=1

(
δRj ,BS +

(
1− δRj ,BS

)
Pr

{
k∑

m=1

βjlm = 0

∣∣∣∣Ēj
})

.

(4.33)

In order to find E [L(A)], we count the number of vectors c having the first k

nonzero elements, i.e., (q − 1)k. Finally, we then take the summation over all k, and

obtain E [L(A)] as follows,

E [L(A)] =
N∑
k=1

(q − 1)kQk. (4.34)

The proof of Proposition 4.8 is completed. �

We use Proposition 4.8 to find E [L(A)] for q = 2 in a (2, 1) cooperative wireless

network as follows.

Example 4.2: Let us consider a (2, 1) cooperative wireless network for q = 2,

N = 2, and M = 1. There are three nonzero vectors c in F2
2: (10), (01), and (11). For

each nonzero vector, we find the probability Qk,l as follows. First, the probability Q1,1
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is

Q1,1 = Pr {c1A1 = 0}

= Pr {α11 = 0}Pr {β11 = 0}

= δU1,BS (δR1,BS + (1− δR1,BS) δU1,R1) .

(4.35)

The probability Q1,2 is

Q1,2 = Pr {c2A2 = 0}

= Pr {α22 = 0}Pr {β12 = 0}

= δU2,BS (δR1,BS + (1− δR1,BS) δU2,R1) .

(4.36)

The probability Q2,1 is

Q2,1 = Pr {c1A1 + c2A2 = 0}

= Pr {α11 = 0}Pr {α22 = 0}Pr {β11 + β12 = 0}

= δU1,BSδU2,BS

(
δR1,BS + (1− δR1,BS) Pr

{
β11 + β12 = 0

∣∣Ē1

})
.

(4.37)

In this example, E [L(A)] is then given by

E [L(A)] = Q1,1 +Q1,2 +Q2,1. (4.38)

�

In addition, it is interesting to see if the proposed evaluation framework developed

thus far can be extended to the cases where the outages between different links are

not independent but correlated. Such cases may arise when the channels between two

nodes are not perfectly orthogonal. Then, it becomes an interesting problem to show

how the proposed analysis framework can be utilized to compute the decoding failure

probability in the correlated link outages cases. This is in general a difficult task which
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requires space of a new entire manuscript to nicely show all the details. Leaving the

details as a future work, in this section, we aim to show that the framework is extendible

to correlated link outage cases.

For this purpose, we again use Proposition 4.8 to compute E [L(A)] and extend

Example 4.2 for correlated cases. The outage probabilities are not independent with

each other. This can be dealt with the consideration of a joint probability distribution

for the random matrix. Using the joint probability distribution, we can again compute

the last line of (4.32) in Appendix, instead of the product of probabilities. This is

a main change for correlated cases to extend the proposed evaluation framework. In

Example 4.3, given joint probability distributions, we compute Q1,1, Q1,2, and Q2,1 as

shown in Example 4.2.

Example 4.3: Let us consider a (2, 1) cooperative wireless network for q = 2,

N = 2, and M = 1. There are two sets of channel correlations we assume in this

example. The first set of correlated channels is between U1-R1 and U2-R1; the sec-

ond set of correlated channels is between U1-BS and U2-BS. We assume that all

other combinations of channels are mutually independent. Note that the both sets

of correlation occur in the broadcasting phase. A pair of two outage events, U1-BS

and U2-BS, makes a joint probability as Pr {α11 = θ1, α22 = θ2} = Θθ1,θ2 for each

(θ1, θ2) ∈ F2
2, where

∑
θ1,θ2

Θθ1,θ2 = 1. For example, when the both channels are simul-

taneously successful in the broadcasting phase, we can set the particular probability

as Pr {α11 = 1, α22 = 1} = Θ1,1. Similarly, other probabilities can be defined by the

conditions of the two outage events, U1-BS and U2-BS. Note that the conditional joint
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Table 4.3: Determination of the Conditional Joint Probability for the Two Elements

β11 and β12 “O” indicates no outage and “×” indicates an outage

(U1-R1, U2-R1) (β11,β12) Pr
{
β11 = γ1, β12 = γ2

∣∣Ē1

}
(O, O) (1, 1) Γ1,1

(O, ×) (1, 0) Γ1,0

(×, O) (0, 1) Γ0,1

(×, ×) (0, 0) Γ0,0

probability is set as Pr {β11 = 0, β12 = 0 |E1} = 1 since the two elements, β11 and β12,

are zero when the channel outage between R1 and BS occurs. In addition, a set of

the two outage events, U1-R1 and U2-R1, can determine the values of the two random

elements β11 and β12 once the channel outage between R1 and BS does not occur,

i.e., when Ē1 is true. In this case, let the conditional joint probability distribution be

known and given as Pr
{
β11 = γ1, β12 = γ2

∣∣Ē1

}
= Γγ1,γ2 for each (γ1, γ2) ∈ F2

2, where∑
γ1,γ2

Γγ1,γ2 = 1. For q = 2, Table 4.3 summarizes this conditional joint probability

distribution according to the conditions of the two outage events U1-R1 and U2-R1.

For three nonzero vectors c in F2
2, we can again compute Q1,1, Q1,2, and Q2,1. The

computation of Q1,1 and Q1,2 is easy because of our assumption that the two sets of

channel correlations are independent. The both results are

Q1,1 = (Θ0,0 + Θ0,1) (δR1,BS + (1− δR1,BS) (Γ0,0 + Γ0,1)) (4.39)

and

Q1,1 = (Θ0,0 + Θ1,0) (δR1,BS + (1− δR1,BS) (Γ0,0 + Γ1,0)) (4.40)
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The computation of Q2,1 is given as follows:

Q2,1 = Pr {c1A1 + c2A2 = 0}

= Pr {α11 = 0, α22 = 0, β11 + β12 = 0}

= Pr {α11 = 0, α22 = 0, β11 + β12 = 0 |E1}Pr {E1}

+ Pr
{
α11 = 0, α22 = 0, β11 + β12 = 0

∣∣Ē1

}
Pr
{
Ē1

}
(a)
= Pr {α11 = 0, α22 = 0}

×
(

Pr {β11 + β12 = 0 |E1}Pr {E1}+ Pr
{
β11 + β12 = 0

∣∣Ē1

}
Pr
{
Ē1

})
= Θ0,0

(
δR1,BS + (Γ0,0 + Γ1,1) (1− δR1,BS)

)
,

(4.41)

where equality (a) is from the fact that the relation between the two sets, (α11, α22)

and (β11, β12), is independent. We finally obtain E [L(A)] = Q1,1 + Q1,2 + Q2,1 for

correlated cases by using the proposed evaluation framework. �

4.5.3 Asymptotic Nullity

In practice, the computation of (4.31) spends a lot of time due to collecting all

combinations of column vectors as the number of sources and relays grows. In a larger

size of networks, this work is complicated so that we need to alleviate the load of

this computation. In this subsection, we aim to find an asymptotic form of (4.31) for

utilization in large scale networks.

As previously mentioned, the scheme of the homogeneous connectivity is a specific

case of the general connectivity schemes. We can show a simple form of E [L(A)] in

terms of Qk for the homogeneous topology of cooperative networks. From this approach,

we can obtain an asymptotic result of (4.31) in general connectivity schemes. Let
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us consider E [L(A)] for q = 2 in the homogeneous connectivity. Thus, E [L(A)] =∑N
k=1Qk in (4.31). Using (4.32), Q1 is given by

Q1 = NδS1. (4.42)

For k = 2, we have Q2 =
(
N
2

)
δ2S2. We further find Q3 =

(
N
3

)
δ3S3 for k = 2. The general

expression of Qk is given by

Qk =

(
N

k

)
δkSk. (4.43)

In this case, E [L(A)] in (4.31) is

E [L(A)] =
N∑
k=1

(
N

k

)
δkSk. (4.44)

In high SNR regions, assuming δ is small, an approximation form of (4.44) is obtained

as follows

E [L(A)] =
N∑
k=1

Qk

(a)
≈
(
N

1

)
δ1S1 +

(
N

2

)
δ2S2,

(4.45)

where (a) is from the fact that the order of Qk for k ≥ 3 is greater than 2 with

respect to δ. This approximation means that for computation of E [L(A)], two terms

Q1 and Q2 are sufficient in high SNR regions. Therefore, in the high SNR regions,

E [L(A)] converges to 2 order of the transmit SNR. For any finite fields and the general

connectivity, this approximation holds.

Corollary 4.9. Given an (N , M) cooperative network with the general connectivity

with the distributions (4.6) and (4.7), E [L(A)] is simplified in the high SNR regime

E [L(A)] ≈ (q − 1)Q1 + (q − 1)2Q2. (4.46)
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Remark 4.3. Proposition 4.8 provides a closed form solution to the expectation of

the number of nonzero vectors in the nullspace of the random transmission matrix. This

enables us to evaluate the performance of a general network with randomly deployed

nodes without going through each count of transmission matrices separately. Corollary

4.9 is an approximation of (4.31) which is useful for performance evaluation of large

size networks.

4.6 Numerical and Simulation Results

In this section, the reconstruction performance of source messages at the BS is

investigated by means of the proposed evaluation framework, i.e., E [nullity(A)] and

Pfail. For the homogeneous connectivity scheme, we use Proposition 4.6 to analytically

evaluate the upper bound on E [nullity(A)] as a function of the outage probabilities of

the channel links. We compare the upper bounds with numerically simulated results of

E [nullity(A)] as well as Pfail. Subsequently, we use Proposition 4.8 to evaluate the upper

bounds for a general cooperative network in which sources and relays are deployed in a

2D space. Further, we examine the results of upper bounds on E [nullity(A)] and Pfail

for a given transmission matrix in order to investigate the impact of the number of

relays and the field size of NC

Figure 4.3 shows analytically obtained upper bounds and numerically averaged

results of E [nullity(A)] for a random transmission matrix in a (10, M) cooperative

wireless network given the homogeneous connectivity scheme, where N = 10 and M =

3, 10, and 20 for q = 2 and 4. We see that E [nullity(A)] increases as the outage
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(a) (b)

Figure 4.3: The nullity of random matrix A for a homogeneous (10, M) cooperative

wireless network with N = 10 and M = 3, 10, and 20. Solid lines indicate the up-

per bounds on E [nullity(A)] using Proposition 4.6, and markers indicate numerically

simulated results of E [nullity(A)], respectively: (a) q = 2 and (b) q = 4.
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(a) (b)

Figure 4.4: Upper bounds on E [nullity(A)] using Proposition 4.3 and 4.7 in a hetero-

geneous (20, 20) cooperative wireless network with two outage probabilities δ1 and δ2

for (a) q = 2, and (b) q = 4.

probability slightly increases. From Figure 4.3(b), it is clearly seen that a nonbinary

NC scheme provides better reconstruction performance for source messages at the BS

than binary coding, and that increasing the field size of NC also improves recovery

performance. As the outage probability goes to zero, E [nullity(A)] approaches zero

for all field sizes. The analytical results in Figure 4.3, which are indicated by solid

lines, have a higher upper bound than the numerically simulated result indicated by a

symbol, which has been evaluated by averaging random matrices in simulation.

Figure 4.4 shows the analytically derived upper bounds by using Proposition 4.7 for

a heterogeneously connected (20, 20) cooperative wireless network. Regardless of the
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value of δ2, when the outage probability δ1 goes to 1, E [nullity(A)] barely reaches 20

at both field sizes, i.e., q = 2 and 4. This means that all channel links undergo outage

events, causing all elements of the transmission matrix to become zero. In Fig. 4.4(a),

for q = 2, there is an oscillation around δ1 = 0.3 such that E [nullity(A)] decreases as

δ1 increases up to 0.3, and beyond this point E [nullity(A)] increases. This oscillation

also appears in Fig. 4.3(a). This behavior is from the fact that the rows of P tend to

be identical as the outage probabilities δ1 and δ2 approach zero. For q = 4, however,

this behavior vanishes due to the extension of the field size from binary to quaternary.

Now let us consider the (16, 6) cooperative wireless network shown in Figure 4.5(a),

in which there are 16 sources and 6 relays: R1 through R6. We randomly deploy these

relays in a 2D space. We assume that all the transmit powers of sources and relays

in both transmission phases are the same. Figure 4.5(b) shows the upper bound on

E [nullity(A)] of the transmission matrix for q = 2, 4, and 8; the benefit of increasing

the field size of NC appears in this scheme. Figure 4.5(c) shows the upper bound on

E [nullity(A)] with respect to the number of relays. When M = 1, R1 is used, while R1

and R2 are used as relays for M = 2, and relays R1, R2, and R3 are used for M = 3.

For M = 4, 5, and 6, we deploy one relay in order. We investigate the impact of the

number of relays, as shown in Figure 4.5(c), where as increasing the number of relays

contributes to increasingly high likelihood of deriving random transmission matrices of

full rank.

Other interesting results include that the value of E [nullity(A)] differs slightly for the

uniform and MDS distributions of the combination matrix defined in Chapter 4.3.2, and
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(a) (b)

(c)

Figure 4.5: (a) Location of 16 sources and 6 relays in 2D space for an (16, 6) cooperative

wireless network. (b) Results of upper bounds on E [nullity(A)] with differing NC field

sizes q = 2, 4, and 8, (c) varying the number of relays at q = 4.
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(a) (b)

Figure 4.6: (a) Comparison of upper bounds on E [nullity(A)] for the uniform and MDS

distributions. (b) Comparison of the decoding failure probabilities with the numerical

simulation and the upper bound using Proposition 4.8 for q = 2 and 4.
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(a) (b)

(c)

Figure 4.7: (a) Location of 100 sources and 10 relays in 2D space for an (100, 10) coop-

erative wireless network, (b) Comparison of E [nullity(A)] with numerically simulated

result and the asymptotic upper bound Corollary 4.9 with q = 2 and the uniform dis-

tribution. (c) Comparison of decoding failure probability with the numerical simulation

and the upper bound using Corollary 4.9.
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that the recovery performance obtained using the MDS distribution is better than that

of the uniform distribution in high SNR regions. Comparative results of E [nullity(A)]

for the two cooperative networks are shown in Figure 4.6(a). We see that there is nearly

no difference between the uniform and MDS distributions for the recovery performance

in the low SNR regions. In other words, the benefit of using the systematic generator

of MDS codes appears only at high SNRs.

To validate usefulness of our asymptotic nullity, we consider a (100, 10) cooperative

wireless network as a large scale network in which 100 sources and 10 relays are deployed

in the 2D space shown in Figure 4.7(a). For Corollary 4.9, we show that in the high SNR

regions, the asymptotic nullity of (4.46) closes to the numerical results which was made

from randomly generated transmission matrices. Comparison of those results is shown

in Figure 4.7(b). Using the asymptotic nullity, the complexity of (4.31) can be not only

dramatically reduced, but also the nullity of the random transmission matrix can be

found efficiently. Our propose framework enables one to evaluate the reconstruction

performance in large scale networks.

Figure 4.6(b) shows the comparison of numerically simulated decoding failure prob-

abilities and upper bound on that Theorem 4.4 for a (16, 6) cooperative wireless network

with q = 2 and 4. The gap of both results appears in small SNR regions. But, the upper

bound on decoding failure probability is tight in high SNR regions. This behavior is

shown in Figure 4.7(c) in which the upper bound is obtained from the approximation

form of E [nullity(A)] in (4.46). From those results, we show that predicting the recon-

struction performance of source messages for a (N , M) cooperative wireless network is
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easily possible in large scale networks.

4.7 Conclusions

In this chapter, we considered a cooperative wireless network where N sources are

assisted with M relays in two phase transmissions. Our main goal was to propose a

new performance analysis framework for evaluating the reconstruction performance of

source messages at the BS. In other to cope with dynamic network topologies, we took

the direction of modeling the elements of the transmission matrix as random variables.

It allowed us to develop a systematic approach which can avoid the exhaustive evalua-

tion used in DNC and GDNC schemes [68]–[71]. To complete the performance evalua-

tion, we derived two tight upper bounds on the expected dimension of the nullspace of

the random transmission matrix, as well as the decoding failure probability. What has

been developed throughout this chapter is a more effective framework as it is compared

to the rank-based method proposed in the earlier literature.

Three types of connectivity schemes are considered in this chapter as they make

the framework to be general and scalable. They allowed us to show the reconstruction

performance of our proposed framework using multiple sources and multiple relays

randomly deployed in a 2D space, and to investigate the impact of the number of

relays and the field size of NC on the system performance. In particular, being able to

make precise prediction of the system performance for a network with a large number

of sources and relays is a big empowerment. We can ask more challenging questions and

have answers for them quickly without resorting to extensive computer simulations. For
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example, we now can ask how much advantage there is exactly to use an MDS code

rather than using a random code in designing the transmission matrices, as relays are

added and field sizes are increased; how the position of relays and sources with respect

to the base station locations affect the performance of cooperative communications.

All these questions are important engineering inquires when it comes to the design of

wireless networks. They were not possible to be answered in the past but they can now

be answered precisely using the proposed framework of this chapter. In addition, we

show that the proposed framework can be extended to channel correlation cases, but it

is needed to generalize for any family of cooperative wireless network coding schemes.
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Chapter 5

Outage Probability for Cooperative Network

Coding Schemes

5.1 Introduction

In wireless sensor networks (WSNs), sensor nodes operate on the limited energy

source of onboard batteries, making power efficiency a key issue because replacement

or recharging of batteries is difficult. The very high energy expenditure of WSNs makes

long-range message transmission undesirable. Consequently, there are several ways to

improve power efficiency, such as optimal transmit power allocation [105]-[109].

In this chapter, we consider a cooperative wireless network, where there are two

source nodes and one base station (BS) as depicted in Figure 5.1. We investigate the

effect of using NC and optimal transmit power allocation on power efficiency. Power

efficiency is expressed as i) the outage probabilities from sources to destinations and

ii) expansion of the network coverage area. We also derive a general and exact outage

analysis framework using which we can investigate the impact of field size in NC,

transmit powers, transmission rates, and network topologies on the outage performance

of the network. Specifically, we show that using nonbinary NC (NBNC) yields full

diversity order as well as expansion of the network coverage area. We show that a mere

increase in the size of the finite field in NC, i.e., without incurring additional cost such
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(a) (b)

Figure 5.1: Two transmissions for cooperative schemes: (a) broadcasting, (b) relaying.

Solid lines indicate the transmission of N1, and dashed lines for N2.

as boosting the transmit power level, can lead to a substantial gain in the network

coverage area. To the best of our knowledge, there have been no reports that associate

an increased field size in NC to expansion of network coverage area. In addition, an

analysis of the optimal power allocation (OPA) for both cooperative schemes is useful

for determining the power efficiency of various network environments, i.e., according

to the positions of source nodes. Another interesting result obtained in this study is

that the OPA depends on the size of finite fields.

5.2 System Description

5.2.1 Cooperative Schemes

Cooperative transmission schemes can be divided into two categories based on the

method employed to process messages at intermediate nodes: the amplify-and-forward

(AF) scheme and the decode-and-forward (DF) scheme are widely used relay protocols

[65]. In the AF scheme, an intermediate node receives a noisy signal of the source’s
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message, amplifies it in non-regenerative mode, and forwards it to a destination. In the

DF scheme, a relay node decodes the source’s message, re-encodes it, and forwards it

to the destination. We focus on the second of these cooperative transmission protocols,

i.e., the DF scheme.

We consider a cooperative scheme for wireless networks as shown in Figure 5.1.

There are two source nodes, nodes 1 (N1) and 2 (N2), and two phases: broadcasting

and relaying, in the cooperative scheme. In the broadcasting phase, source nodes N1

and N2 transmit messages, S1 and S2, respectively. In the relay phase, when both

nodes successfully decode the transmitted messages, the messages are re-encoded and

then forwarded to the BS. When a node is unable to successfully perform decoding,

it repeats its message in the relay phase. When receiving repeated messages, the BS

as a destination performs maximum ratio combining (MRC) of these messages, and

recovers the transmitted messages. In this chapter, we assume that the transmission

rate is selected to be sufficiently lower than the capacity of each channel so that near

perfect decoding of messages can be accomplished with the use of a channel code. Thus,

for all wireless channels, the received messages are either completely corrupted, and

therefore not available at the receiving end, or considered error-free.

At the BS, the set of all possible received messages is {S1, S2, Z1, Z2}, where the

subscript denotes the index of the source node. The first two messages are received in

the first phase, and the latter two are linearly combined and sent from the sources in

the relay phase. The alphabet of the combined message, Z1 and Z2, is selected to be a

finite field. The two finite fields considered in this study are GF(2) and GF(4).
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Suppose that the relay nodes use a binary field for the NC operation, a method we

refer to as binary NC (BNC) in this chapter. Then, the received messages at the BS in

the two phases are represented as

S1

S2

Z1

Z2


=



1 0

0 1

1 1

1 1



 S1

S2



= H2S,

(5.1)

where H2 is the NC matrix with its elements drawn from GF(2) and S is the source

message vector. The arithmetic should follow that of GF(2). Most existing NC schemes

are based on BNC.

For the case of NBNC with GF(4), referred to as NBNC-4 in this chapter, the

messages received at the BS are rewritten as

S1

S2

Z1

Z2


=



1 0

0 1

1 1

1 2



 S1

S2



= H4S,

(5.2)

where H4 is the NC matrix composed of elements from GF(4) and the arithmetic

operations are those of GF(4).

The core idea of cooperative communication systems is to alleviate the negative

effects of communication channels, such as fading and noise, and to increase the proba-
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bility of successful message reception via cooperation. With a closer look at the rows of

H4, we note that any two rows of H4 are linearly independent, while those of H2 may

not be. This means that as long as any two messages out of the four, {S1, S2, Z1, Z2},

are received correctly, NBNC-4 can correctly decode the correct transmit messages S1

and S2. This is not possible with the BNC scheme. For example, the last two rows of

H2 are dependent on each other. Thus, with the reception of only Z1 and Z2, the BNC

scheme cannot decode the messages S1 and S2 accurately. For a network of two-user

cooperation, this desirable behavior can be attained by increasing the field size to 4.

This behavior was first observed in [68]. In this chapter, our focus again is to show how

this favorable behavior can lead to power efficiency in terms of coverage expansion,

and to study how the transmit power should be allocated differently between the two

sensors given a fixed power budget.

5.2.2 Channel Model

Our system consists of a multiple access channel network in which there are two

source nodes and one BS. In the broadcasting and relay phases, all source nodes

transmit signals through orthogonal channels using time division multiple access or

frequency division multiple access. The channels used in this study are assumed to

be spatially independent, flat faded, and perturbed by additive white Gaussian noise

(AWGN). We further assume that the channel gains in both the broadcasting and relay

phases are mutually independent. The received signal at the jth node is thus

yi,j,k =
√
Pihi,j,kxi,j,k + ni,j,k, (5.3)
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where k ∈ {1, 2} denotes the transmission phase (broadcasting or relaying), and i ∈

{1, 2} denotes the transmitted node (N1 or N2). Let j denote the received node for

j ∈ {1, 2, d}, where d denotes the BS. The transmitted and received signals are given as

xi,j,k and yi,j,k with i 6= j. Pi denotes the transmit power at the ith node. The channel

gain is represented by hi,j,k, with consist of the fading term pi,j,k and the path-loss

coefficient qi,j,k, i.e., hi,j,k = pi,j,kqi,j,k.

Here, we assume that the fading term pi,j,k is random and the path-loss coefficient

qi,j,k depends on the distance between nodes i and j. Noise is AWGN with a normal

distribution N (0, N0) having a zero mean and power spectral density N0. The path-loss

coefficient is modeled as qi,j,k = (d0/di,j)
η/2, where 2 ≤ η ≤ 6 is the path-loss exponent,

di,j is the distance between i and j, and d0 is the reference distance. In this chapter,

we use d0 = 1 and η = 3, and |hi,j,k| is assumed to be Rayleigh distributed such that

the channel energy of power |hi,j,k|2 is exponentially distributed. We assume that the

fading term pi,j,k is a complex-valued, i.i.d. Gaussian in each dimension with a zero

mean and 1/2 variance. The average power of hi,j,k is then represented by the average

power of qi,j,k, which depends on the distance between the transmitter and the receiver.

All channel gains are assumed to be reciprocal, i.e., hi,j,k = hj,i,k. The instantaneous

signal-to-noise (SNR) of each channel is denoted as γi,j,k := |hi,j,k|2 Pi/N0, where Pi/N0

is the transmit SNR at the source node i.
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5.2.3 Outage Probability

The channel capacity as a function of the received SNR at the node j is given by

Ci,j,k = log2 (1 + γi,j,k) , (5.4)

where Ci,j,k denotes the channel capacity from nodes i to j at the kth transmission

phase. In this chapter, we use the single channel capacity Ci,j,k = 1
2

log2 (1 + γi,j,k) for

each transmission phase because a factor of 2 represents the bandwidth expansion for

each node in the cooperative scheme. Channel outage occurs if the capacity is less than

the transmission rate R, where R is the desired spectral efficiency in bits/sec/Hz. For

the Rayleigh fading channel, the outage probability is given and approximated at a

high SNR in the following manner:

Pout (γi,j,k, R) = Pr
{
γi,j,k <

(
2R − 1

)}
= 1− exp

{
1− 2R − 1

Γi,j

}
≈ 2R − 1

Γi,j
,

(5.5)

where Γi,j = σ2
i,jPi/N0, is the average SNR at the receiver j, σ2

i,j is the variance of the

channel gain hi,j,k which depends only on the distance such that σ2
i,j = σ2

i,j,1 = σ2
i,j,2. The

outage probability Pout (γi,j,k, R) is a function of the average SNR and the transmission

rate.

We assume that MRC is used at the BS for combining identical transmissions.

For the case of MRC, the probability of an outage event is a function of two ex-

ponentially distributed random variables, which denote the instantaneous SNR for

each channel. Thus, the outage probability for MRC at the BS is represented as
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Pr
{
γs,d,k + γr,d,k <

(
22R − 1

)}
, for s, r ∈ {1, 2}. The outage probability with two ran-

dom variables is obtained from the following cumulative distribution function. Let

w := u+v, where u and v are independent exponential random variables with parame-

ters λu and λv. The cumulative distribution function of the random variable w is given

by

Pw(w) =


1−

((
λv

λv−λu

)
e−λuw +

(
λu

λu−λv

)
e−λvw

)
λu 6= λv,

1− (1 + λw) e−λw λu = λv.

(5.6)

5.3 Outage Probability for Cooperative Coding Schemes

In this section, we aim to derive the outage probability that allows us to investigate

the effects of different outage events, transmit power allocation, channel gain, and

field size (GF(2) vs. GF(4)) in NC, on power efficiency. This analysis is somewhat

different from that given in a recent paper [68] that studied outage probabilities under

a number of approximations: i) they did not consider all possible outage scenarios (for a

full consideration see [116]), ii) all channel outages are treated with the same transmit

powers, the same average channel gains, and thus the same average channel SNRs. Our

analysis is exact and generalized, with consideration of different transmit powers, rates,

and average channel gains. This generalized analysis framework enables us to conduct

not only a diversity order analysis but also a complete outage probability analysis as

a function of the transmit SNR. These results help us investigate the coverage area

expansion and the OPA problems. Our outage probability analysis shows that the

diversity order achievable with NBNC-4 is three, instead of two, as obtained in [66].

It should be noted that full diversity order is obtainable in the considered network
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channel.

5.3.1 Outage Events in Cooperative Networks

In the broadcasting phase, both source nodes transmit their messages to the BS

in an orthogonally multiplexed manner, and they overhear each other’s message. In

the relay phase, the two source nodes act independently with no knowledge of whether

their own broadcasted message was successfully decoded by their neighbor node. No

feedback channel is assumed between the two nodes. As such, there are four possible

cooperation scenarios depending on whether the decoding of messages was successful

in the broadcasting phase. These four outage events are depicted in Figure 5.2, and

the four cooperative scenarios for each of the four outage events are denoted as Case

1, 2, 3, and 4.

In Case 1, both nodes successfully decode the partner’s message. In the relay phase,

each node linearly combines the neighbor’s message with a NC, and forwards the en-

coded message to the BS, resulting in a fully cooperative scenario. In Case 2, N1

successfully decodes the message from N2, but N2 does not successfully decode the

message from N1. Hence, N1 combines N2’s message and forwards the re-encoded mes-

sage to the BS in the relay phase in the same manner as in Case 1. However, N2 repeats

its message in the relay phase. At the BS, the repeated messages are decoded using

the MRC strategy. Case 3 is similar to Case 2 except that the role of N1 is switched

with that of N2. In Case 4, every node fails to decode its neighbor’s message in the

broadcasting phase, and hence each node uses the available channel in the relay phase
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Figure 5.2: Four cooperative scenarios for relay phase transmission based on the de-

coding results in the broadcasting phase.

only to repeat its own message created in the broadcast phase. Thus, in this case, the

system automatically reverts to a non-cooperative mode. In our cooperative schemes,

we assume that the BS knows which case out of the four cases has occurred. The trans-

mitted messages of each node for the four scenarios are summarized in Table 5.1. Next,

we derive and evaluate the outage probability for BNC and NBNC-4 schemes.

5.3.2 Derivation on Outage Probability

In the following, we focus on the derivation of outage probability for the NBNC-4

and BNC schemes. First, NC in the relay phase is performed. Message transmission

consists of two phases as described in the previous subsection. We analyze the outage

event based on MRC. In this chapter, we assume that the instantaneous SNRs for the
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Table 5.1: Transmitting messages for two nodes according to the four cases.

Case Broadcasting(N1) Relay(N1) Broadcasting(N2) Relay(N2)

1 S1 Z1 S2 Z2

2 S1 Z1 S2 S2

3 S1 S1 S2 Z2

4 S1 S1 S2 S2

broadcasting and relay phases are mutually independent.

Case 1: In this case, both nodes correctly decode each other’s messages. Correct

decoding events are defined as follows:

{
C1,2,1 > R1

}
∩
{
C2,1,1 > R2

}
(5.7)

We define the transmission rate for each node as R1 and R2, respectively. We con-

sider the outage probability for N1, which is identical to that for N2 as a result of

symmetry. NBNC-4 in the relay phase follows the NC method specified in (5.2).

Next, we consider the outage events for Case 1. Suppose that transmitted messages

in the broadcasting phase from N1 and N2 are not decoded successfully at the BS. This

amounts to an outage event except when both of the combined messages with rates

R1 and R2, respectively, are successfully decoded in the relay phase. In this case, the

outage probability can be written as

Pr

{(
C1,d,1 < R1

)
∩
(
C2,d,1 < R2

)
∩
((
C1,d,2 < R1

)
∪
(
C2,d,2 < R2

))}
= Pr

{
γ1,d,1 < r1

}
Pr
{
γ2,d,1 < r2

}(
1− Pr

{
γ1,d,2 > r1

}
Pr
{
γ2,d,2 > r2

}) (5.8)
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where r1 = 22R1 − 1 and r2 = 22R2 − 1. In addition, consider the case in which the

transmitted message in the broadcasting phase from N1 is not decoded successfully,

but the transmitted message in the broadcasting phase from N2 is decoded successfully.

An outage occurs only when decoding of both messages in the relay phase fails. This

outage probability can be written as

Pr

{(
C1,d,1 < R1

)
∩
(
C2,d,1 > R2

)
∩
(
C1,d,2 < R1

)
∩
(
C2,d,2 < R2

)}
= Pr

{
γ1,d,1 < r1

}
Pr
{
γ2,d,1 > r2

}
Pr
{
γ1,d,2 > r1

}
Pr
{
γ2,d,2 < r2

} (5.9)

As a result, the outage probability of N1 for Case 1 can be obtained as

P 1
out,4−ary = Pr

{
γ1,2,1 > r1

}
Pr
{
γ2,1,1 > r2

}
×
(

Pr
{
γ1,d,1 > r1

}
Pr
{
γ2,d,1 < r2

}(
1− Pr

{
γ1,d,2 > r2

}
Pr
{
γ2,d,2 > r2

})
+ Pr

{
γ1,d,1 < r1

}
Pr
{
γ2,d,1 > r2

}
Pr
{
γ1,d,2 < r1

}
Pr
{
γ2,d,1 < r2

}) (5.10)

Case 2: In this case, N1 correctly decodes the message S2 from N2, but N2 does

not correctly decode the message S1 from N1. This corresponds to the following events:

{
C1,2,1 < R1

}
∩
{
C2,1,1 > R2

}
(5.11)

According to the transmission protocol, the BS receives N2’s message S2 twice, and

decoding is performed using MRC. Hence, the outage probability of N2 for MRC is

obtained as

Pr
{
MRC2

}
= Pr

{
γ2,d,1 + γ2,d,2 < 22R2 − 1

}
= 1−

(
1 +

r2

Γ2,d

)
exp

(
− r2

2Γ2,d

)
.

(5.12)
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The outage probability in the conditional case is

Pr

{((
C1,d,1 < R1

)
∩
(
C1,d,2 < R2

))
∪
((
C1,d,1 < R1

)
∩
(
C1,d,2 > R1

)
∩
(
MRC2

))}
= Pr

{
γ1,d,1 > r1

}
Pr
{
γ1,d,2 < r2

}
+ Pr

{
γ1,d,1 < r1

}
Pr
{
γ1,d,2 > r1

}
Pr
{
MRC2

}
(5.13)

where the first term of the R.H.S. of (5.13) is the outage probability for N1, and the

second term is for N2 that uses MRC. The overall outage probability for Case 2 is

P 2
out,4−ary = Pr

{
γ1,2,1 < r1

}
Pr
{
γ2,1,1 > r2

}
×
(

Pr
{
γ1,d,1 < r1

}
Pr
{
γ1,d,2 < r2

}
+ Pr

{
γ1,d,2 > r1

}
Pr
{
MRC2

}) (5.14)

Case 3: In this case, N2 correctly decodes N1’s message S1, but N1 cannot decode

the message S2. The corresponding event is

{
C1,2,1 > R1

}
∩
{
C2,1,1 < R2

}
(5.15)

Using the same approach as for Case 2, we obtain the overall outage probability as

follows

P 3
out,4−ary = Pr

{
γ1,2,1 > r1

}
Pr
{
γ2,1,1 < r2

}
× Pr

{
MRC1

}(
Pr
{
γ2,d,1 < r2

}
+ Pr

{
γ2,d,1 > r2

}
Pr
{
γ2,d,2 < r2

}) (5.16)

The outage probability for N1 that uses MRC is

Pr
{
MRC1

}
= Pr

{
γ1,d,1 + γ1,d,2 < 22R1 − 1

}
= 1−

(
1 +

r1

Γ1,d

)
exp

(
− r1

2Γ1,d

)
.

(5.17)

Case 4: Neither node decodes the message in the broadcasting phase successfully.

The overall outage probability for Case 4 is

P 4
out,4−ary = Pr

{
γ1,2,1 < r1

}
Pr
{
γ2,1,1 < r2

}
Pr
{
MRC1

}
(5.18)
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Next, the exact outage probability with NBNC-4 for N1 is obtained by adding the

results so far, i.e., (5.10), (5.14), (5.16) and (5.18), as follows:

Pout,4−ary = P 1
out,4−ary + P 2

out,4−ary + P 3
out,4−ary + P 4

out,4−ary. (5.19)

Using the high SNR approximation given in the last line of (5.5), we can approxi-

mate the outage probability as follows:

Pout,4−ary ≈
A1

P 2
1P2

+
A2

P1P 2
2

+
A3

P 3
1

, (5.20)

where

A1 :=
2r21r2N

3
0

σ4
1,dσ

2
2,d

+
r21r2N

3
0

2σ2
1,2σ

2
1,dσ

2
2,d

+
r21r2N

3
0

2σ2
1,2σ

2
2,1σ

2
1,d

A2 :=
r1r22N

3
0

σ2
1,dσ

4
2,d

+
r1r22N

3
0

σ2
2,1σ

2
1,dσ

2
2,d

A3 :=
r21r2N

3
0

σ2
1,2σ

4
1,d
.

The outage probability analysis for BNC is performed similarly to the analysis per-

formed for the NBNC-4 scheme, with the result that the outage probabilities for BNC

are identical to those for NBNC-4, except for Case 1, i.e., P 2
out,binary = P 2

out,4−ary, P
3
out,binary =

P 3
out,4−ary, P

4
out,binary = P 4

out,4−ary. The reason for this is that the outage events, in each

of Case 2, 3, and 4, for the BNC scheme are identical to those of NBNC-4. The only

difference comes from Case 1.

The outage probability of BNC for Case 1 is given by

P 1
out,binary = Pr

{
γ1,2,1 > r1

}
Pr
{
γ2,1,1 > r2

}
× Pr

{
γ1,d,1 < r1

}(
Pr
{
γ2,d,1 < r2

}
+ Pr

{
MRC1

}
Pr
{
γ2,d,1 > r2

}) (5.21)

The exact outage probability for BNC using (5.1) is again obtained by summing

the results

Pout,binary = P 1
out,binary + P 2

out,binary + P 3
out,binary + P 4

out,binary. (5.22)
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The high SNR approximation is then given by

Pout,binary ≈
B1

P1P2

+
B2

P 2
1P2

+
B3

P1P 2
2

+
B4

P 3
1

, (5.23)

where

B1 :=
r1r2N2

0

σ2
1,dσ

2
2,d

B2 :=
r21r

2
2N

3
0

2σ2
1,2σ

2
1,dσ

2
2,d

+
r21r2N

3
0

2σ2
1,2σ

2
2,1σ

2
1,d

B3 :=
r1r22N

3
0

σ2
2,1σ

2
1,dσ

2
2,d

B4 :=
r21r2N

3
0

σ2
1,2σ

4
1,d
.

Due to the dominant term of (5.20) and (5.23) in the high SNR regime, we conclude

that the diversity orders of BNC and NBNC-4 are two and three, respectively. This

result well matches with the result of [68]. Our outage probabilities, however, are exact

and general in terms of variances of channel gains and transmit powers compared to

the Xiao’s work. Next we investigate the performance of cooperative wireless networks

with respect to transmit powers and location of nodes.

5.3.3 Performance Evaluation for Various Channel Environments

In this subsection, we evaluate the outage probability of N1 for both BNC and

NBNC-4 in terms of the average SNRs and the transmission rates and . We show that

using NBNC-4 provides improved outage probabilities compared to BNC for different

channel environments. In Figure 5.3, we show evaluation results for which the benefits

of NC can be obtained at mid to high SNR regions. We compare the outage prob-

abilities for different network schemes, i.e., a non-cooperative scheme, a cooperative

communication scheme with the binary network code, and a cooperative communica-
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tion scheme with the 4-ary network code. These are labeled as Non Coop, Binary Coop,

and 4-ary Coop, respectively.

In order to investigate the influence of different channel gains, we assume that

the transmit powers of the two nodes are equal, i.e., P1 = P2, and we use the same

transmission rates R1 = R2 = 1 b/s/Hz. As shown in Figure 5.3, we evaluate the effect

of variances of the channel gains. We can observe that the NBNC-4 scheme achieves a

diversity order of three, in contrast to a diversity order of two for both the BNC and

the non-cooperative schemes. In Figure 5.3(a), we set all variances of the channel gains

as σ2
1,d = 1, σ2

2,d = 125, σ2
1,2 = 2. This means that the link quality between N2 and BS is

better than the other. Since the variance of the channel gain depends on the distance,

the case of Figure 5.3(a) reflects the channel environment where N2 is close to the BS.

In Figure 5.3(b), σ2
1,d = 1 and σ2

2,d = σ2
1,2 = 8, which means the link quality from N2

to the BS is higher than that from N1 to the BS, with equal power allocation (EPA).

This setting has a geometrical meaning such that N2 is located in the middle of N1

and the BS. In Figure 5.3(c), we consider the case where N2 is located closer to N1,

by setting σ2
1,d = 1, σ2

2,d = 2, and σ2
1,2 = 125 with EPA. Note that the diversity orders

for the three different schemes still hold. The diversity order for the non-cooperative

scheme is still two, owing to the time diversity obtained by using MRC at the BS.

5.4 Power Efficiency Schemes

In this section, we consider two approaches for enhancing power efficiency. One is

to increase the field size in NC and assess its effect on power efficiency. The other is to
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(a) (b)

(c)

Figure 5.3: Exact outage probability with BNC and NBNC-4 for N1: P1 = P2, (a)

σ2
1,d = 1, σ2

2,d = 125, σ2
1,2 = 2, (b) σ2

1,d = 1, σ2
2,d = σ2

1,2 = 8, (c) σ2
1,d = 1, σ2

2,d = 2, σ2
1,2 =

125.
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allocate a given level of transmit power to the two source nodes. In this section, power

efficiency is expressed in terms of both outage probability and coverage expansion.

5.4.1 Coverage Expansion

Location Source Nodes

In cooperative networks, the location of source nodes should be taken into consider-

ation so that with increasing distance between the transmitter and the receiver, the

transmit power should be utilized for reliable transmissions. The advantage of using

NC is investigated, without loss of generality, in a particular scenario in which a source

node N1 is moved around in a two-dimensional (2D) network area, while the BS and

the relay node N2 are fixed at given locations. Specifically, the BS is located at the

origin and N2 at (1, 0) in the 2D space. The variance of the channel gain between

N2 and the BS is set as σ2
2,d = 1. Consider the location of the source N1 in the 2D

space. As mentioned in the channel model of Chapter 5.2.2, we make the variance of

each channel gain depend on the distance between the two nodes. We use equal power

allocation, P1 = P2, for both N1 and N2. The location (x, y) of N1 is varied inside the

plane. Variances of the channel gains are obtained by

σ2
1,2 =

(√(
x− 1

)2
+ y2

)−η
,

σ2
1,d =

(√
x2 + y2

)−η
.

(5.24)

Based on this 2D setting, the outage probability from the source N1 to the BS can

be readily analyzed by substituting the variances in the relevant outage expressions

given in Chapter 5.3.2.
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Evaluation of Coverage Area Expansion

The contour of outage probabilities evaluated at 10−4 for the source N1 is plotted

in Figure 5.4, where the blue and red lines indicate the results of using the BNC and

NBNC-4 schemes, respectively. Figure 5.4 shows that the position of N1 is expanded by

NBNC-4. We assumed that the transmit power of both nodes is P1/N0 = P2/N0 = 20

dB and R1 = R2 = 1 b/s/Hz. Suppose that the source N1 is located at (2, 0). Then,

NBNC-4 achieves an outage probability of 10−4 or less, whereas BNC does not. The

contour of the outage probability at 10−4 for N1 has been extended with the use of

NBNC-4, as compared to the use of BNC

In this work, we define the coverage area of N1 as the geographic area within which

the outage probability of N1 is less than a particular level. We evaluate the coverage area

of N1 having a guaranteed outage probability of 10−4 for the two different NC schemes.

The results with respect to total transmit power constraints are shown in Figure 5.4. We

assume EPA for both nodes, because OPA results in little improvement, as discussed

in the following section. In this case, the coverage area for NBNC-4 is greater than that

of BNC. However, in the high SNR region, say Pt/N0 > 25 dB where Pt = P1 +P2, the

effect of the field size interestingly is small. At a high SNR, the relay is less important

since direct transmission from N1 to the BS shows good error performance. In the mid

SNR region, the effect of field size is the greatest. For example, at 18 dB SNR the

coverage area for NBNC-4 is about twofold greater than that for BNC. The low SNR

region, in which there is no NC benefit, is of no further interest.
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Figure 5.4: Contour plot of the locations of the source node (N1) whose outage proba-

bility is less than or equal to 10−4, with the fixed BS and N2 locations as shown in the

plot: the blue and red lines indicate for BNC and NBNC-4 schemes, respectively.
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Figure 5.5: Coverage area of the source node (N1) for the outage probability of 10-4

with the fixed BS and N2 in a 2D space: the blue and red lines indicate for BNC and

NBNC-4 schemes.
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5.4.2 Optimal Power Allocation

The other power efficiency technique investigated in this study is a transmit power

allocation. We investigate this problem for the two network codes, using the outage

analysis framework developed in Chapter 5.3.2.

Formulation of Optimal Power Allocation

In [106], the authors attempted to minimize outage probability under a total transmit

power constraint. Based on a symbol-error-rate analysis with M-PSK and M-QAM

modulations, power allocation schemes for decode-and-forward protocols are presented

in [108] and [117], where the authors considered MRC receivers. A power allocation

problem for Nakagami fading channels is considered in [118]. We assume that each

node knows all the channel state information by using an appropriate channel feedback

scheme. We investigate the outage performance of optimal transmit power allocation

subject to a total power constraint. In other words, the OPA solution is obtained based

on minimization of the outage probability given under a total power constraint

We use the outage probabilities, Pout, in (5.20) and (5.23), for the BNC and NBNC-

4 schemes, to deal with the optimization problem. Note that these are functions of

transmit powers, variances of channel gains, and transmission rates. Given variances

of channel gains and a transmission rate, the optimization problem can be written as

follows

Pout
(
P ∗1 , P

∗
2 , σ1,2, σ1,d, σ2,d, R1, R2

)
= arg min

P1,P2

Pout
(
P1, P2, σ1,2, σ1,d, σ2,d, R1, R2

)
,

(5.25)
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subject to P1 + P2 ≤ Pt, P1 ≥ 0, and P2 ≥ 0, where Pt is the total transmit power,

and P ∗1 and P ∗2 denote the optimal transmit powers for the two nodes. For the outage

probability for the NBNC-4 scheme, the Lagrangian with λ as the Lagrange multiplier

can be written as

L(P1, P2, λ) =
A1

P 2
1P2

+
A2

P1P 2
2

+
A3

P 3
1

+ λ(P1 + P2 − Pt). (5.26)

Similarly, the Lagrangian for the BNC scheme is

L(P1, P2, λ) =
B1

P1P2

+
B2

P 2
1P2

+
B3

P1P 2
2

+
B4

P 3
1

+ λ(P1 + P2 − Pt). (5.27)

for either the binary or the 4-ary network code. Using a first-order derivative condition,

the optimal power must satisfy

∂L(P1, P2, λ)

∂P1

=
∂L(P1, P2, λ)

∂P2

= 0. (5.28)

To find the optimal transmit power P1 at the source for both cooperative schemes,

we use the following equations:

ΛN,1P
3
1 + ΛN,2P

2
1 + ΛN,3P1 + ΛN,1 = 0, (5.29)

where

ΛN,1 := 3A1 − 3A2 − 3A3,

ΛN,2 := 9A3Pt − 5A1Pt + A2Pt,

ΛN,3 := 2A1P
2
t − 9A3P

2
t ,

ΛN,4 := 3A3P
3
t .

For BNC,

ΛB,1P
4
1 + ΛB,2P

3
1 + ΛB,3P

2
1 + ΛB,4P1ΛB,5 = 0, (5.30)
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where

ΛB,1 := 2B1,

ΛB,2 := 3B2 − 3B3 − 3B4 − 3B1Pt,

ΛB,3 := B1P
2
t + 9B4Pt − 5B2Pt +B3Pt,

ΛB,4 := 2B2P
2
t − 9B4P

2
t ,

ΛN,4 := 3B4P
3
t .

For both cases, (5.29) and (5.30) correspond to the NBNC-4 and BNC schemes under

the total power constraint. We define the ratio of the power allocation as

ρ =
P1

Pt
. (5.31)

We investigate the effect of variances of channel gains on the optimum ratio of power

allocation, while the outage probability is minimized.

Discussion for Various Link Qualities

In this subsection, we discuss optimal transmit power allocation for various channel

environments. We consider the position of nodes as follows: source node (N1) is located

at coordinate (1, 0), the BS is at (0, 0), the relay node (N2) is free to move around

in the 2D space. We investigate the effect of the position of the relay node N2 on

optimal transmit power allocation. In addition, we aim to investigate the effect of the

size of finite fields, used in the underlying NC scheme, on the results of optimum power

allocation.

Let us consider three cases, based on the position of N2: i) N2 is at (0.5,
√

3/2), ii) N2

at (0.5,0), and iii) N2 is at (-2,0). From the relation given at the channel model (Chapter
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5.2.2), the variances of the channel gains can be found as i) σ2
1,2 = σ2

1,d = σ2
2,d = 1, ii)

σ2
1,d = 1, σ2

1,2 = σ2
2,d = 8, and iii) σ2

1,d = 1, σ2
1,2 = 0.037, σ2

2,d = 0.125, respectively. From

these, one can find the exact outage probabilities by substituting them into (5.19) and

(5.22). We fix the total transmit power, i.e., Pt ≥ P1 +P2 at a particular level and show

the outage probability as a function of total transmit power. The corresponding results

are shown in Figure 5.6. Note that in both cases the link qualities of the two wireless

channels, i.e., N1-to-N2 and N2-to-BS, are the same and they are good in terms of

SNRs. In such cases, as indicated by Figure 5.6(a) and (b), EPA is as good as OPA.

In the third case, OPA is obviously better than EPA in general, but this behavior is

substantial only in the low-SNR region. From Figure 5.6(c), we note that as the total

transmit power increases, the EPA results approach the results of OPA.

Since it is difficult to see from Figure 5.6 the amount of difference between EPA

and OPA, we now aim to investigate how the outage probability changes as the ratio

ρ of the transmit power allocation is swept from 0 to 1, while fixing the total transmit

power to noise ratio at 20 dB. The result is given in Figure 5.7. We observe that at

around EPA, i.e., ρ = 0.5, the outage probability is relatively flat, which is reasonable.

Next, we aim to find the optimum ratio ρ when N2, taking the role of relay for N1,

is moved directly on a straight line from the BS to N1 and to investigate how much

transmit power should be allocated at N1 to obtain the minimum outage probability.

Figure 5.8 shows the results, where the x-axis indicates the x-coordinate of N2, and

the y-axis is the optimum ρ.

A noteworthy observation in Figure 5.8 is that there are two different approaches
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(a)

(b) (c)

Figure 5.6: Outage probability as a function of total transmit power: (a) P1 = P2, (a)

σ2
1,d = σ2

2,d = σ2
1,2 = 1, (b) σ2

1,d = 1, σ2
2,d = σ2

1,2 = 8, (c) σ2
1,d = 1, σ2

2,d = 0.125, σ2
1,2 =

0.037.
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Figure 5.7: Outage probability as a function of the power allocation ratio ρ at Pt/N0 =

20 dB.
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Figure 5.8: Optimum ratio of power allocation for the position of the relay node (N2)

from 0 to 1 at Pt/N0 = 20 dB.

for obtaining the optimum ratio. One is the analytical approach of solving the op-

timization problems (5.29) and (5.30), which are based on the approximated outage

probabilities (5.20) and (5.23). Another observation is the results obtained from ex-

haustive numerical evaluations of the exact outage probabilities (5.19) and (5.22) as a

function of ρ for both the BNC and NBNC-4 schemes. Note that the results from the

two approaches are almost identical. This validates the optimization problem set up in

(5.25).

Now returning to our discussion of the optimum ratio ρ, Figure 5.8 shows that,
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the optimum ratio ρ is, approximately, less than 0.8 and larger than or equal to 0.5

for the two NC schemes. In more exact terms, when the relay N2 moves closer to the

BS, i.e., x → 0, the transmit power P1 rises to 0.78Pt (ρ = 0.78), while the transmit

power P2 for the relay N2 goes to 0.22Pt. 78 percentage of the total transmit power

should be allocated at the source N1 for optimum results. The technical reason for this

result is found from close investigation of (5.20) and (5.23) approximated, such that

the channel variance σ2
2,d becomes much larger than the other fixed parameters, and the

approximated outage probabilities are dominated mainly by the two terms A1/P
2
1P2

and A3/P
3
1 . Note that P1 is taken to the second and third powers in these terms, while

P2 is at its first power. Therefore, it is easy to see that more power should be allocated

to P1 than to P2 in order to obtain a smaller outage probability. The result that more

transmit power should be allocated to the source N1 rather than to the relay N2 as

x→ 0 is reasonable, since the role of the relay becomes decreasingly critical as it moves

away from the source and becomes closer to the BS.

On the other hand, we consider the other case in which relay N2 is moved closer

to source N1. In the BNC case, we note that, the optimal ratio approaches 1/2, i.e.,

the transmit powers P1 and P2 approach Pt/2. In the NBNC-4 case, however, a very

interesting behavior is observed. More transmit power P1 should be used at the source

rather than at the relay to achieve the minimum outage probability. This phenomenon

is more interesting with NBNC-4 in the case where relay N2 is closer to source N1.

The optimum ratio increases as the size of the finite field used in NC is increased

from 2 to 4. We can observe from Figure 5.8 that the optimum ratio of power allocation
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for the NBNC-4 scheme is generally much greater than that of the BNC at any position

of x. In other words, more transmit power should be used at source N1 to obtain smaller

outage probability. This is because the combined messages Z1 and Z2 are maximally

used in NBNC-4. Recall the two different NC matrices, H2 for BNC and H4 for NBNC-

4, defined in (5.1) and (5.2) respectively. The rank of any 2×2 submatrix, i.e., any two

rows of H4, is always 2, while that of H2 is not always 2 (some may be 1) . The crucial

difference between the two NC schemes can be seen in Case 1 in Chapter 5.3.2. This is

the outage event considered in (5.8). With the NBNC-4 scheme, it is possible for only

the BS to recover the original messages S1 and S2 with the availability of only Z1 and

Z2. This is not possible with the BNC scheme. Figure 5.7 and Figure 5.8 show this in

detail. In other words, they show how the crucial difference in Case 1 affects the result

of OPA, as well as the corresponding outage probability results.

5.5 Conclusions

In wireless sensor networks, sensor nodes operate from finite capacity energy sources,

i.e., onboard batteries; thus, designing a system with high power efficiency is a key is-

sue. In this study, the power efficiency is investigated as the size of finite fields for the

linear NC is increased from 2 to 4, and as the allocation of transmit power, i.e., the

power used at the source node vs. the power at the relay node, is varied. To evaluate

the benefits of these techniques, we derived the outage probability expressions for the

considered NC schemes. We then analyzed the diversity order for the NC schemes, one

with GF(2) and the other with GF(4). Our results indicate that the diversity order
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using GF(4) is three, but that the diversity order using the binary network code is

only two. We studied the effects of increased field size on the expansion of the network

coverage area. Coverage area expansion by only changing the field size in NC, without

increasing the transmit powers, is a creditable and interesting research result of this

study. Our result indicates that the power efficiency benefit of GF(4) as compared to

that of GF(2) is substantial and, it manifests not only in increased diversity order but

also in noteworthy coverage area expansion.
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Chapter 6

Conclusions and Future Research

6.1 Summary and Conclusions

This dissertation investigates multiple instances of inverse problems under the per-

spective of modern challenges in CS and cooperative networks. We have first studied

the recovery problems of sparse signals in the field of CS. We have derived upper and

lower bounds on the recovery performance of CS frameworks in finite fields. Next, we

have proposed a newly analytical framework for performance evaluation in cooperative

networks. In particular, we have derived upper bounds on the decoding failure proba-

bility and nullity of random matrices. We have then studied the outage probability of

a simple cooperative network, and investigated the impact of the field size of NC and

transmit power on system performance.

We fist addressed the inverse problem of a CS framework over finite fields. We

derived the sufficient and necessary conditions for recovery of sparse signals. We showed

that the both conditions are tight. Both bounds coincide when the sparse factor of the

sensing matrix is sufficiently large. We found that for recovery of ultra-sparse signals,

the sensing matrix is required to be dense. One interesting result is that when the

sensing matrix is sufficiently large and dense, and the field size is large, the number of

measurements needed for perfect recovery is only M > K.
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Next, we considered the recovery problem of sparse signals for CS frameworks over

finite fields. In this framework, low-density matrices, e.g., Gallager’s regular LDPC

codes, were used as the sensing matrices. We proposed a PD algorithm based on

the message passing algorithm which was shown to be very good performance closely

achieving the information-theoretical bounds. This work enables us to evaluate the

transition diagram in a finite field based on CS.

We considered a cooperative wireless network where N sources are assisted with M

relays in two phase transmissions: broadcasting phase and relaying phase. We proposed

a newly analytical framework for evaluating the reconstruction performance of source

messages at the BS. The evaluation framework was based on the expectation of the di-

mension of the nullspace in a random transmission matrix. Due to a dynamic network

topology, we modeled the elements of the transmission matrix as random variables.

We utilized outage probabilities of wireless links between nodes. Using these proba-

bilities, the probability distributions of the elements of a random transmission matrix

were made. And then, for performance evaluation, we derived the upper bound on the

expected dimension of the nullspace and decoding failure probability of the random

transmission matrix. This is a more effective and useful framework compared to the

rank based method developed in the earlier literature. We showed the upper bounds

for three types of connectivity schemes as varying outage probabilities and the field

size of NC. Furthermore, we demonstrated the reconstruction performance of our pro-

posed framework using multiple sources and relays deployed in a 2D space, and showed

the impact of system performance on the number of relays and the field size of NC.
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We compared the upper bounds for two types of modeling of a combination matrix,

generated from the uniform and MDS distributions, and showed that the advantage

of using the systematic generator of MDS codes appeared in high SNR regions. For a

large scale network, we showed that the asymptotic nullity closes to the numerically

simulated results in high SNR regions.

We investigated the outage probability for a simple cooperative network in which

that two source nodes and one base station are deployed. To do this, we derived the

outage probability expressions for the considered NC schemes. We then analyzed the

diversity order for the NC schemes, one with GF(2) and the other with GF(4). Our

results indicate that the diversity order using GF(4) is three, but that the diversity

order using the binary network code is only two. We studied the effects of increased

field size on the expansion of the network coverage area. Coverage area expansion

by only changing the field size in NC, without increasing the transmit powers, is a

creditable and interesting research result of this study. Our result indicates that the

power efficiency benefit of GF(4) as compared to that of GF(2) is substantial and, it

manifests not only in increased diversity order but also in noteworthy coverage area

expansion.

6.2 Directions for Future Research

6.2.1 Construction of Sensing Matrix over Finite Fields

The good construction of the sensing matrices in CS theory is a main work such

that RIP property is satisfied. So far, most of the approaches to construct the sensing

– 123 –



matrices have intensively been from random techniques, e.g., Gaussian and Bernoulli

sensing matrices. The benefit is that this construction allows us to provide incoher-

ence with a basis and universal property for any signal. Even though random sensing

matrices ensure high probability in reconstruction, they also have many drawbacks

such excessive complexity in reconstruction, significant space requirement for storage,

and no efficient algorithm to verify whether a sensing matrix satisfies RIP property.

Therefore, exploiting specific structures of deterministic sensing matrices is required

to overcome these drawbacks of the random sensing matrices. Recently, several studies

have proposed the construction of deterministic sensing matrices by using algebraic

curves over finite fields [119], second order Reed-Muller codes [120], and unbalanced

expander graphs [121]. In addition, for data gathering using CS in wireless sensor net-

works the constrained construction of the sensing matrix should be considered due to a

predefined routing topology [122]. Over finite fields, we shall consider good construction

of the sensing matrix for the future research.

6.2.2 Sparse Representation over Finite Fields

Sparsity in CS theory is important notion. Using sparsity of signals, Candes, Tao,

and Donoho have proved that unknown signals are reconstructed with fewer samples

than the Nyquist-Shannon theorem requires. Since then, many researchers have inves-

tigated which basis in a certain domain is better to represent a signal with the smallest

sparsity, e.g., Fourier, Wavelet, Curvelet, Wave atom transform, etc. Indeed the most

works of sparse representation are performed in real and complex valued numbers. To
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the best of our knowledge, however, no study for sparse representation over finite fields

has been performed. To reduce decoding complexity in coding theory, sparse encoding

vectors [123] are exploited so that a fast algorithm by Wiedemann [124] for solving a

system of linear equations can be used. Future research about sparse representation

over finite fields is one of possible directions. In addition, it is need to consider relation

between RIP condition and Hamming weight in coding theory.
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