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Abstract: In this paper, we introduce an implementation of filters with random transmittance for 
miniature spectrometers with limited number of CCD elements. We also present a method for 
estimating the random transmittances, which are needed for recovering the signal spectrum. 
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1. Summary 

Miniature spectrometers play a major role in various academic and industrial applications such as bio-medical, 
chemical, and environmental engineering [1]. A family of spectrometers that are built with an array of optical filters 
offers miniaturization, superior portability, and cost effectiveness [2]. The spectrometers measure properties of light 
source over various spectral components [3].  

The state of the art filter-array based spectrometers are equipped with digital signal processing (DSP) algorithms 
to alleviate distortions and to reconstruct the original signal spectrum. The resolving ability of these spectrometers is 
determined by the number of filters in the filter array and the shapes of the transmittance functions (TF) of these 
filters [4]. In practice, due to low-cost integrated-array fabrication, the number of filters in miniature spectrometers 
is fixed (and hence the CCD elements) and the shape of the TF of each of the filters is non-ideal as in [5]. A signal 
spectrum passing through these non-ideal filters is severely distorted. Hence, digital signal processing of the 
spectrum measured by the spectrometer is necessary. In [5], the L1 norm minimization-based DSP algorithm is used 
for processing the signal spectrum obtained from the spectrometer. In [6], filters with random TFs are proposed that 
was used along with the DSP algorithm in [5] for recovering the input signal spectrum. The random filters have two 
main properties. First, the transmittance of a filter at one wavelength is completely different and uncorrelated with 
that at the other wavelength. Second, the shape of each filter’s transmittance is uncorrelated with other filters in the 
filter-array. With these random TFs, in [6], a mercury signal spectrum was shown to be successfully recovered better 
than using filters with non-ideal TFs in [5]. However, in [6], the TFs of random filters are generated by randomly 
varying the thickness of the layers in thin-film filters.  

In this paper, we propose a new implementation of the random transmittance filter-array by attaching scatter 
filters with random TFs to the existing grating in a spectrometer. Our approach is different from [6] in that now the 
estimation of the random TFs is necessary to recover the original signal spectrum using the DSP. We estimate the 
random TFs by modeling the raw spectrum from the spectrometer and show through real world experiments that 
random filters can be implemented and aid in the recovery of an input signal spectrum.  

 

 
 

Fig. 1. Schematic of the proposed filter-array based spectrometer 

 
We consider a spectrometer that consists of a planar filter array (filter elements attached to a grating) with M 

filters and its corresponding CCD array as shown in Fig. 1. Each filter randomly selects (transmits) the input 
wavelength components which are recorded by the CCD. The output of the CCD is sampled in analog-to-digital 
converter (ADC) and fed into a DSP unit to estimate the spectrum. The data model for the raw spectrum, 1M y , 

which is an input to the DSP algorithm can be represented as a system of linear equations: 

0  y Dx w , x                              (1) 

where the 1N   vector x contains the samples of the original signal spectrum, the matrix D is an M N  TF matrix, 
and w is 1M   noise vector. Each row of D is a TF of a filter. Since the number of spectral components of x is 
greater than the number of filters, the value of N is greater than M, i.e., N > M.  
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In order to estimate TFs, we observe L number of raw spectrum by applying monochromatic light sources with 
various wavelengths. The observed L raw spectrums can be put together as a single matrix equation as 

where 0 .  DXY W X                              (2) 

where the  matrix X is N L  input signal spectrum whose columns are signal spectrum of various light sources , the 
matrix Y is M L  raw spectrum, and W is M L  noise matrix. The goal of the TF estimator is to obtain an 

estimate  M ND   of D from the raw spectrum Y, given the matrix X. We obtain the estimate D  as  

  pinv D Y X                                                           (3) 

where pinv( )  represents the pseudo-inverse . 

Once we obtain the TFs of the random filters, we rewrite Eq. (1) using sparse representation. Any natural signal 
or a vector x in Eq. (1) can be represented as sparse in a certain basis, i.e., x Gs . The basis N NG  is called 

kernel matrix and the signal 1Ns  is K-sparse vector, i.e., only K components of s are non-zero values and 
N K  components are zero, where K << N. Each column of the matrix G contains spectrum of a monochromatic 
light sources. That is, any signal spectrum can be represented by linear combinations of monochromatic light 
sources. With the sparse representation of the input signal spectrum, Eq. (1) can be rewritten as  

 where 0 .
A

   y DGs w=As w s                      (4) 

The DSP algorithm aims to obtain an estimate s  of s from the raw spectrum y, given the estimated TF matrix and G. 
A recovery algorithm in [6] is based on a DSP optimization tool called L1 norm minimization. The L1 norm 

minimization for the recovery of the sparse signal s in Eq. (4) can be expressed as 

1 2
0ˆ min subject to ,

s
DG    ss s s - y            (5) 

where   is a small positive constant. 
In the experiment, we have solved the problem in Eq. (5) for sparse signal recovery. We implement a filter-based 

spectrometer with following parameters: M = 40, N = 800, and L = 255. 
As shown in Fig. 2, we generate 255 numbers of monochromatic light sources range from 428 nm to 682 nm. A 

monochromatic light source is divided into two sources. One is inserted into a spectrometer with random 
transmittance and the output y is obtained. The other is inserted into a high resolution spectrometer which measure 
the input signal spectrum x. We repeat this experiment for L times with different monochromatic light sources in 

order to model the raw spectrum as in Eq. (2) and estimate D  as per Eq. (3). 

 
Fig. 2. Experimental setup of the proposed spectrometer 

 
Three of the estimated TFs are shown in Fig. 3. Each random filter captures holistic and independent information 

about the signal spectrum. 
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Fig. 3. Estimated random transmittances 

 

With the estimated TFs, D , we verify the ability of the spectrometer with only 40 CCD elements in recovering 
the fluorescent light spectrum of 3 dominant wavelengths. As shown in Fig. 4, the spectrometers with random filter 
array can detect three distinct peaks of the source. We did not do much to the effect of noise in Eq. (2) and (4). In 
our future work, we aim to measure the statistical properties of the noise and use them to improve the results. 
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Fig. 4. Reconstruction of fluorescent light of 3 wavelengths 

 
In conclusion, we have shown that the optical filters with random TFs in [6] can be implemented in the real 

world by placing randomly scattering filters between gratings and CCD array. The role of random filters is to 
acquire global information about the signal spectrum, rather than localized information which was the target of 
traditional designs. The set of global information captured by each filter helps the DSP algorithm to recover the 
input signal spectrum in detail. We demonstrated through experiments the signal spectrum recovering ability of the 
proposed random filters after estimating their transmittances.  
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