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1. Introduction
Recently, belief propagation (BP)-based sparse 

recovery algorithms have received significant attention 
due to the availavility of low complexity [1]. The aim 
of such algorithms is to estimate a sparse vector 

N�X � from noisy measurements M�Y � which is a
linear projection of an underdetermined system
( )M N� , represented as

� �Y �X W (1)
where the measurements are corrupted by an additive
Gaussian noise vector M�W � . 

In particular, we are interested in the BP-based 
signal recovery in conjuction with sparse measurement 
matrices {0, 1,1}M N�� �� which is tree-like structured 
in factor graph representation. Such BP algorithms
iteratively approximate the marginal posterior 
corresponding to each element Xi by exchanging 
probability messages over the factor graph associated 
with � . The iterative behavior of BP have been well 
investigated in applications to channel coding [3], but 
still remains elusive in the sparse estimation problem. 

In this paper, we asymptotically analyze such BP 
behavior in the sparse estimation problem using the 
decoupling principle [3-5]. According to this principle, 
the vector measurement channel using BP, shown in 
Fig.1-(a), can be aymptotically decoupled to a 
sequence of scalar Gaussian channels, shown in Fig.1-
(b), if the system is a large-sparse-system (LSS) 
satisfying two conditions below:  

1.  Large-system-limit: The system size is very large, 
i.e., ( , )N M �	 where /M N remains a fixed 
constant. 

2.  No-short-cycle: The bipartite graph of the sparse 
measurement matrix � does not include cycles shorter 
than the number of the BP-iterations denoted by l . 

In this work, we consider spike-and-slab PDF as the 
prior for the sparse signal estimation. Our result shows 
that the marginal posterior PDF takes the form of a 
spike-and-slab PDF, being a function of the signal 
magnitude and noise level. 

2 Main Result
We aim to derive an expression of the marginal 

posterior PDF ( )( | , )l
X ii

f x Z � from the scalar Gaussian 

channel using the concept of the relaxed BP [3]. Let 
( )l

X Yi j
V � and ( )l

Y Xj i
U � be RVs representing the BP-

messages passed from Xi to Yj and from Yj to Xi,
respectively, for all pairs of ( , ) : 0jii j 
 � at the l-th 
iteration. Our derivation starts from the update rule of 

( )l
Y Xj i

U � , expressed as  

( ) ( )

(a)
2 ( )

(b)
( )

:= { | , }

CEI ,=

CEI ,=

l l
Y X ji j jk k X Yj i k j

k i

l
ji i ji ji j

l
i ji j

U Y E X V

X W

X W


 



 


� �
�

� 
�� �
� �

� �

� �

� �

(2)

where (a) holds since we know j jk k
k

Y X
�� and define

the cross-element-interference (CEI) term passed 
through Yj to Xi as 

� �( ) ( )CEI := { | , } ,l l
ji ji jk k k X Yk j

k i
X E X V
 
 �

�

�� � (3)

and (b) also holds since we know 2 = 1ji
 and scaling the 
zero-mean Gaussian RV jW by {1, 1}ji
 � � does not 
change its statistics. By the central limit theorem (CLT), 
as a sum of i.i.d. RVs, ( )CEI l

ji is asymptotically 
Gaussian distributed with zero-mean and the variance 

� �
2 ( ) 2 ( )
CEI CEI

( )
( )

( ) = ( )

( 1) | , ,

l l

ji j

a
l

k X Yk j
R X V

� �

�� � Var �
(4)

under the LSS setup, where R is the number of nonzero 
in a row of the matrix � , and the approximation of (a)
is vaild by the weak law of large numbers. Therefore, 
from (2)-(4), it turns out that the message ( )l

Y Xj i
U � is 

Gaussian distributed with the mean Xi and the variance 
( ) 2 2 ( )

CEI:= ( )l l
j W j

� � �� , i.e.,
CLT( ) ( )( | , , ) ( ; , ).l l

U i i jY Xj i
f x X x X �

�
�Y � � (5) 

The marginal posterior of Xi is obtained after a
certain number of the BP-iterations *l . Let ( )l

i� denote 
a set of the messages from the measurement side with 
respect to Xi, i.e., ( ) ( ):= { | 0}l l

i Y X jij i
U 
� �� . Then, using 

the Bayesian rule (Posterior � Prior�Likelihood), the
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Fig. 1 (a) Vector measurement channel with BP, (b) The 
asymptotically equivalent scalar Gaussian channel

marginal posterior is given as 
* *

*

BP
( ) ( )

( )

: 0

( | , ) ( ) ( | , , ) (6)

= ( ) ( | , , ),

i

l l
X X ii

l
X U iY Xj ik ji

f x f x f x X

f x f x X



�
�

��

� �

Y � Y �

Y �

�

where the likelihood PDF ( ) ( | , , )l
ii

f x X Y �� can be
represented by the product of the message PDFs in

( )l
i� since the no-short-cycle property ensures the 

statistical independency among ( )l
i� . By applying the 

fact that the product of Gaussian PDFs results in a 
scaled Gaussian PDF, the likehood PDF is given as

( ) 1
( )

1( | , , ) ( ; , ( ) ).l
i i li

j j

f x X x X
�

�� �Y �� � (7)

It is important to note from (6) that the PDF of the 
scalar channel output ( )l

iZ corresponds to the 
likelihood PDF ( ) ( | , , )l

ii
f x X Y �� in the decoupling 

principle [3-5], i.e.,
LSS

( ) ( )( | , , ) ( | , )
i

l l
i Z ii

f x X f x X�Y � �� , (8)

in probability. Hence, the scalar output ( )l
iZ is 

Gaussian distributed with the mean Xi and the variance 
( )l� following

1
LSS

( )
( )

1 l
l

j j

�
�

�
� 


�� �� �
� �
� . (9)

In addition, we can describe the iterative behavior of 
( )l� by an fixed point equation resulting from (4) and 

(9), given as

� �
2

( ) ( 1) ( 1)| , , ,l l lW
k i

R X Z
L L
�� �� �� � Var � (10)

where the number of nonzeros L in a column of the 
matrix � should be properly chosen to satisfy the 
weak law of large numbers while holding the no-short-
cycle property. The variance ( )l� consists of two 
factors: the additive noise and CEI. The CEI factor is 

represented as the variance of Xk at the previous 
iteration, obtained from

� �
� �� �

( 1) ( 1)

2( 1) ( 1) ( )

| , ,

| , , ( | , ) ,

l l
k i

l l l
k i X ii

X Z

x X Z f x Z dx

�

�

� �

� �� ��

Var �

E � �
(11)

and it will be continuously approches to zero as 
l �	 if the SNR level is sufficiently high [5]. Such a 
fixed point equation in (10) was originally discussed by 
Guo and Verdu [4] , and has widely investigated to 
analyze performance of the BP-based algorithms.

In the sparse estimation, the marginal posterior is 
computed by imposing a sparsifying prior PDF. In this 
work, we consider the spike-and-slab PDF as the prior,
given as 

2
0( ) := ( ;0, ) (1 ) .X Xf x q x q� �� �� (12)

In addition,  it is obvious from (8) that 
LSS( ) ( )( | , ) ( | , )l l

X X ii i
f x f x Z�Y � � (13)

for every and ,i x in probability under the LSS setup. 
Then , the marginal posterior PDF is expressed as

( ) ( )

2 2 ( )

2 1 02 ( ) 2 ( )

( | , ) (14)

( ; , ) (1 ) ,

l l
X ii

l
i X X

l l
X X

f x Z

X
qc x q c

� � �
�

� � � �
� � �

� �

�

�

where 1 2,c c are some constants such that the marginal 
posterior is valid as a PDF, i.e., ( ) ( )( | , ) 1l l

X ii
f x Z dx �� � .

3 Conclusion
From (14), it turns out that the marginal posterior PDF 

is a spike-and-slab PDF whose parameters are 
functions of the signal value iX and ( )l� which includes 
the noise variance. For the calculation of (11), we refer 
to the paper by Krzakala et al. [6].  This analysis result 
will be very useful to evaluate the BP performance in 
the sparse estimation problems. 
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