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Abstract: In this study, joint source–channel decoding for non-binary source samples is conducted. The non-binary source
samples can be modelled as the output of a multi-state Markov chain (MC). As the source samples are directly transmitted
after channel coding without source compression, the transmitted signals can be highly correlated. At the receiver, the multi-
state MC module can be designed to exploit the statistical correlation of source samples to improve the error correcting
performance. However, as the number of states is increased, the multi-state MC module requires high computational
complexity. To alleviate this problem, a simplified MC module is proposed. In the simplified MC module, the multi-state MC
is replaced with multiple number of two-state MCs each of which exploits bit-level correlation of samples. Simulation results
demonstrate that the simplified MC module can lead to competitive reduction in the required signal-to-noise ratio in
comparison with the multi-state MC module with reduced computational complexity.
1 Introduction

Shannon’s source–channel separation principle is that there is
a separable source and channel coding scheme that allows
transmission over the channel with arbitrarily low error
probability [1]. Under this principle, source coding and
channel coding can be independently established for
stationary sources and channels [2]. However, considering
system resources in terms of bandwidth, delay and
complexity, it is sometimes too expensive to implement the
separable source and channel coding to achieve optimal
performance. For limited resource transmission systems
such as wireless sensor devices, for example, joint source–
channel coding schemes have received considerable
attention as a good alternative to the source–channel
separation principle and enhance the performance of coding
systems (see [3, 4]).

There are various joint source–channel coding schemes:
some includes both source coding and channel coding in a
single system or others employ only one of them. One of
the most popular schemes in the former is the unequal error
protection scheme in which different grades of importance
are used for source bits and for providing unequal level of
protection against random channel errors. More important
source bits that cause higher distortion when damaged, for
example, get higher level of error protection [5]. For the
latter, there are some source coding schemes that provide
channel error protection as well, without using an explicit
channel coding scheme. For example, residual redundancy
that may be caused by imperfection of a practical source
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encoder is utilised by the source decoder to enhance the
quality of reconstructed signal [6]. In [7–9], the so-called
‘error concealment’ techniques applied at the receiver
exploit residual redundancy in spatial and temporal domain
of video and image signals. In some approaches,
uncompressed quantised samples are transmitted after
channel coding, that is, without any explicit source coding.
In [10], an iterative maximum a posteriori (MAP) joint
source–channel decoding scheme is proposed to decode the
uncompressed source sample sequence. The redundancy
between source samples is modelled as a hidden Markov
chain (MC) and exploited within the process of the MAP
decoder.

The joint source–channel decoder in [10], however, is only
for binary source samples. In many practical applications,
such as in sensor networks and video/image applications,
non-binary multilevel source samples are obtained [11–14].
The multilevel source samples can be modelled as the
output of a multi-state MC [13, 14]. The decoding process
in [10] thus can be combined with the multi-state MC
module; but this scheme requires enormous computational
complexity as the number of states is increased. The
complexity of the multi-state MC module is O(KM2), where
K is the number of samples and M is the number of states,
that is, the alphabet size of a sample [15].

In this paper, research on joint source–channel decoding
for non-binary source samples is conducted. To reduce the
computational complexity of the multi-state MC module for
correlated samples, a simplified MC module is proposed.
As the sequence of non-binary samples is converted into
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the corresponding binary sequence, we note there exists bit-
level correlation that is exploited in this paper. Therefore a
multi-state MC can be replaced with multiple two-state
MCs which alleviates the computational load for estimating
source correlation at the receiver. In this paper, the multi-
state MC and the multiple two-state MCs are, respectively,
called the sample-level Markov model (SMM) and the bit-
level Markov model (BMM). With BMM, we can obtain
competitive signal-to-noise ratio (SNR) gain in comparison
with SMM.

Section 2 discusses the system model including the multi-
state MC which is defined as a source model to produce
correlated non-binary source samples. In Section 3, joint
source–channel decoding scheme is explained to decode
correlated source samples. In Section 4, BMM is proposed
and its transition probabilities are provided. To justify the
usefulness of BMM, entropy rate is introduced as a
criterion for closeness between the two models. This
analysis on entropy rates would give useful insights without
an extensive computer simulation-based comparison which
is time consuming. Section 5 shows the entropy rates and
bit-error-rate (BER) performance of BMM and SMM.
Finally, conclusions are drawn in Section 6.

2 System model

2.1 Source model

The non-binary source sample, denoted as xk, where k is the
time index, is generated by a stationary first-order MC with
transition probabilities aij ¼ Pr[xk ¼ j|xk21 ¼ i] for 0 ≤ i,
j ≤ M 2 1. At first, the sequence of source samples is
divided into the blocks of length K which is denoted by
x ¼ [x1, . . . , xK]T. As shown in Fig. 1, each block of
samples x is converted to a block of bits b of length Nm.
The bit sequence b is the message vector which is the input
to a binary low-density parity-check (LDPC) encoder [16].
To simplify the notation, the alphabet size M of MC is
assumed to be a power of two, that is, M ¼ 2L, where L is
the length of binary bits of a source sample, so that
Nm ¼ KL. Each source sample xk of the base-10 integer
numeral is converted to binary bits of the base-2 equivalent,
that is, b ¼ [b1,1, . . . , b1,L, . . . , bK,1, . . . , bK,L]T, where bk,l

indicates the lth bit of the kth sample.

2.2 Encoding and modulation

The output of the LDPC encoder is the coded sequence
c ¼ [c1, c2, . . . , cN]T, where N is the length of the coded
sequence. The LDPC code with coding rate Nm/N is a linear
block code which is specified by an (N – Nm) × N sparse
parity-check matrix H. The parity-check matrix can be
represented by a bipartite graph, which consists of N
variable nodes representing the coded sequence and N – Nm
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check nodes representing the parity-check equations. An
edge in the graph is placed between variable node i and
check node j if Hji ¼ 1. Each check node is connected to
coded sequence whose sum modulo-2 should be zero, that
is, Hc ¼ 0. Irregular LDPC codes are characterised by two
polynomials l(a) = S

dv
i=1lia

i−1 and r(a) = S
dc
i=1ria

i−1,
where li is the fraction of the edges in the bipartite graph
that are connected to the variable nodes of degree i, ri is
the fraction of edges that are connected to the check nodes
of degree i, dv is the maximum variable node degree and dc

is the maximum check node degree. Regular LDPC codes
are specified by the pair (dv, dc), that is, l(a) = adv−1 and
r(a) = adc−1.

The coded sequence c is modulated via binary phase-shift
keying (BPSK) into a bipolar sequence d ¼ [d1, d2, . . . , dN]T

with di ¼ 2ci 2 1 and then transmitted over the additive white
Gaussian noise channel. The received symbol vector is
denoted by y ¼ [ y1, y2, . . . , yN]T which is given by

y =
����
2Es

No

√
d + z (1)

where z is the independent identically distributed Gaussian
noise vector with zero mean and the unit variance, No is the
single-sided noise power spectral density and Es is the
energy of the BPSK symbol. In (1), Es/No is the SNR under
the assumption that symbol rate is equal to the bandwidth
of the channel.

To recover the transmitted sequence of source samples,
which is equivalent of reconstructing the transmitted bit
sequence, the receiver utilises a joint decoding scheme that
includes the LDPC decoder and the MC module. The
LDPC decoding module takes the received symbol vector y
and cooperates with the MC module via turbo-iteration, and
produce a final decoded bit sequence b̂. The decoding
process is explained in the next section.

3 Joint source–channel decoding scheme

In this paper, the M-state MC module is combined with the
LDPC decoding module, whereas the two-state MC module
is connected to a channel decoding module for turbo codes
in [10]. The LDPC decoding module generates the
maximum posterior probability on each bit in the coded
sequence by the standard message passing algorithm [16].
The MC module produces prior probability for the bit
sequence b by the forward–backward algorithm [17]. The
two modules cooperate with each other by exchanging the
so-called ‘extrinsic’ information [18]. This exchange of
extrinsic information between the two modules in one
complete round is referred to as ‘super-iteration’ in this
paper. By the super-iteration, performance in BER of the
joint source–channel decoding scheme is improved.
Fig. 1 Block diagram of the transceiver
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3.1 LDPC decoding module

The message passing algorithm that is applied to the LDPC
decoding module is well known. The process is summarised
in this section for a matter of completeness but more details
can be found in [16]. The description should be compact
but complete so that reproduction of the results in this
paper can be made without algorithmic ambiguity. Note that
we also explain the process for conversion of the output of
the LDPC decoding module to make connection with the
M-state MC module.

The decoder takes the prior probability on a bit value, that
is, 1 or 0, from both the channel decoding and the MC
module, respectively. We use log likelihood ratio (LLR) to
represent the extrinsic information, since it is well known to
be more efficient than exchanging the probabilities. The
prior LLRs, denoted as RC,n’s, are described as follows

RC,n = R′
C,n + OSE,n, 1 ≤ n ≤ Nm

R′
C,n, Nm + 1 ≤ n ≤ N

{
(2)

where R′
C,n’s and OSE,n’s are, respectively, the LLRs from the

channel output y and from the MC module. The prior LLRs
are given by R′

C,n ¼ (4Es/No)yn, and stay the same
throughout the whole decoding process for a particular
coded sequence. The prior LLRs from the MC module,
OCE,n’s, are the extrinsic LLRs of the MC module, and get
updated from the extrinsic LLRs of the decoder, denoted as
OSE,n’s, at each super-iteration. At the start of the super-
iteration, we set RC,n¼ R′

C,n for all n, since the extrinsic
LLRs OSE,n’s of the MC module are not available.

The posterior LLRs, denoted as OC,n’s, of the decoder are
generated by enforcing the parity-check relations, which can
be represented as

OC,n = RC,n + ln
Pr[S|cn = 1, y]

Pr[S|cn = 0, y]
(3)

where S is the event that all the parity-check equations
participate on bit n are satisfied simultaneously [16].

Decoder takes the previous posterior LLRs as another prior
LLRs and applies the parity-check relationship again, and this
process is repeated until the zero syndrome vector is obtained
or the number of iterations is less than a prescribed number.
The final decoded bit sequence b̂ is obtained from the
posterior LLRs, OC,n’s, for the message bits at the last
iteration. From the posterior LLRs, OC,n’s, the extrinsic
LLRs OCE,n’s of the decoder are used as the input to the
MC module, which is given by

OCE,n = OC,n − OSE,n (4)

In (2), the input to the LDPC decoding module includes the
LLRs from MC module, OSE,n’s. By subtracting OSE,n’s
from OC,n’s, OCE,n’s contain the new information on the
message bits obtained only from the decoder, which is
extrinsic to the MC module.

To use extrinsic LLRs, OCE,n’s, in the MC module, we
need to transform them to the bit-to-sample probability,
which will be denoted by gk( j)’s for 0 ≤ j ≤ M 2 1. It
is because the MC module is employed in a sample-
level trellis as shown in Fig. 2. In other words, a string of
L message bits, u1( j)u2( j), . . ., uL( j), composes a
1040
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single sample j, that is

j =
∑L

l=1

ul(j)2
L−l (5)

where ul( j) [ {0, 1} and is the lth bit of the string. Since
OCE,n = ln (Pr[bk,l = 1]/Pr[bk,l = 0]), each bit probability
by the decoder is obtained as

Pr[bk,l = 1] =
exp (OCE,n)

1 + exp (OCE,n)

Pr[bk,l = 0] = 1

1 + exp (OCE,n)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(6)

where S iPr[bk,l ¼ i] ¼ 1 and n ¼ (k 2 1)L + l. Then, the bit-
to-sample probabilities gk( j)’s are converted from the bit
probabilities that are given by

gk (j) =
∏L

l=1

Pr[bk,l = ul(j)] (7)

where the message bits are assumed to be independent with
each other.

3.2 MC module

To exploit the statistical properties of received samples in the
MC module, the famous forward–backward algorithm [17] is
used. We briefly summarise forward–backward algorithm
using the notations of this paper.

It is mentioned that the MC module provides the extrinsic
LLRs OSE,n’s for the prior LLRs on the message bits as in (2).
The MC module is constructed by the sample-transition gains
which is denoted by Gk(i, j)’s. The kth trellis section of the
MC in Fig. 2 indicates the sample-transition gains Gk(i, j)’s.
The sample-transition gains Gk(i, j)’s are the weighted
transition probability for the edge from sample i to sample j
at the kth trellis which is specified as

Gk(i, j) = aijgk (j) (8)

for 0 ≤ i, j ≤ M 2 1. With the sample-transition gains
Gk(i, j)’s, the jth sample probabilities, Ck( j)’s, are obtained

Fig. 2 Trellis diagram of the M-state MC
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by forward–backward algorithm [17] as follows

Ck(j) =
∑M−1

i=0 Ak−1(i)Gk (i, j)Bk(j)∑M−1
i=0

∑M−1
j=0 Ak−1(i)Gk(i, j)Bk(j)

(9)

where

Ak(i) =
∑M−1

j=0

Ak−1(j)Gk(j, i) (10)

A1(i) ¼ 1 and

Bk(i) =
∑M−1

j=0

Gk+1(i, j)Bk+1(j) (11)

BK(i) ¼ 1. By forward–backward algorithm, Ak(i)’s and
Bk(i)’s are the probabilities of the ith sample at kth trellis
started from the beginning and from the end of the trellis,
respectively. In (9), the denominator is used for
normalisation which makes SjCk( j) ¼ 1.

In order to be used as one of the prior LLRs of (2) in the
decoder, the sample probabilities Ck( j)’s need to be
converted into bit probabilities. The sample-to-bit
probabilities sn(v)’s are the probabilities corresponding to
the binary notation of the sample, which are given by

sn(v) =

∑
0 ≤ j ≤ M ,
ul(j) = v

Ck(j)

∑
0≤i≤M Ck(i)

(12)

where n ¼ (k 2 1)L + l and v [ {0, 1}. Let OS,n be LLR of
the sample-to-bit probabilities, that is, OS,n ¼ ln(sn(1)/sn(0)).
Then, the extrinsic LLRs OSE,n’s of the MC module are
given, as in (4), by

OSE,n = OS,n − OCE,n (13)

for 1 ≤ n ≤ Nm.
This whole process of the MC module is summarised as

follows.

Algorithm 1: MC module

Input: OCE,n, aij

Output: OSE,n

Step 1: Calculate the bit-to-sample probabilities gk( j)’s from
the extrinsic LLRs OCE,n’s on message bits by (7).
IET Commun., 2012, Vol. 6, Iss. 9, pp. 1038–1044
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Step 2: Generate the sample-transition gains Gk(i, j)’s,
using (8).
Step 3: Calculate sample probabilities Ck( j)’s at the kth trellis
using forward–backward algorithm with the sample-
transition gains Gk(i, j)’s, as in (9).
Step 4: Evaluate the sample-to-bit probabilities sn(v)’s of (12)
from the sample probabilities Ck( j)’s.
Step 5: Obtain the LLRs of the MC module, OS,n’s, from the
sample-to-bit probabilities sn(v)’s.
Step 6: Calculate extrinsic LLRs OSE,n’s of the MC module
from the LLRs OS,n’s by (13).

4 Simplified MC module

In this section, a simplified MC module is proposed to
alleviate the computational complexity of the MC module
in (9)–(11). The M-state MC for non-binary source
samples can be replaced with the log2 M number of two-
state MCs. The M-state MC is SMM and the log2 M
number of two-state MCs are BMM. We observe that each
bit in a sample also preserves a certain degree of
correlation when the sample sequence is correlated. Thus,
each two-state MC of BMM is employed on each bit of a
sample.

The computational load of the BMM module is lower
than that of the SMM module, especially when the
number of states M is large. In order to decode K number
of source samples, the computational complexity of the
SMM module is O(KM2) [15]. In SMM, a current sample
is designated to one of M candidate states with a certain
transition probability. Since all the states are connected
with each other, in general, in a SMM trellis section,
the number of connections is proportional to the square of
the number of states. On the other hand, the
computational complexity of BMM is only O(K log2 M ).
It is because BMM consists of log2 M number of two-
state MCs and the number of connections in a single
trellis section of a two-state MC is 22, regardless of the
number of state M.

To apply BMM instead of SMM, the transition
probabilities of BMM need to be estimated. The transition
probabilities of the two-state MC for the lth bit, denoted by
ql,ij, 1 ≤ l ≤ L, 0 ≤ i, j ≤ 1, are obtained based on that of
the M-state MC as follows (see (14))

where ul(w) ¼ i means the lth bit in the binary representation
of the state w is equal to i, (a) holds by Markov property, the
theorem of total probability [19] is applied in (b) and (c), and
the binary representation of the second equation is expressed
ql,ij =
(a)

Pr[b2,l = j|b1,l = i]

=(b)∑
b1,1

· · ·
∑

b1,(l−1)

∑
b1,(l+1)

· · ·
∑
b1,L

Pr[b2,l = j, b1,1, . . . , b1,(l−1), b1,l = i, b1,(l+1), . . . , b1,L]

Pr[b1,l = i]

=(c) ∑M−1

w = 0,
ul(w) = i

Pr[b2,l = j, x1 = w]

Pr[b1,l = i]

=(d) ∑M−1

w = 0,
ul(w) = i

Pr[b2,l = j|x1 = w]Pr[x1 = w]

Pr[b1,l = i]
(14)
1041

& The Institution of Engineering and Technology 2012



www.ietdl.org
as a sample in the third equation, that is, x1 ¼ [b1,1, . . .,
b1,L]T ¼ w. In (d) of (14), Pr[b2,l ¼ j|x1 ¼ w] can be
calculated from the transition probabilities of the M-state
MC, that is

Pr[b2,l = j|x1 = w] =
∑M−1

v = 0,
ul(v) = j

awv (15)

The denominator of (14), the stationary probability of the lth
bit Pr[b1,l ¼ i], is obtained as the sum of the stationary
probabilities of the corresponding states j where ul( j) ¼ i,
which is given by

Pr[b1,l = i] =
∑M−1

j = 0,
ul(j) = i

Pr[x1 = j] (16)

Note that (14) and (16) are the transition probabilities and the
stationary probabilities of the lth two-state MC. The
same procedure can be repeated for each 1 ≤ l ≤ L to build
L(¼ log2 M ) two-state MCs. Thus, we have every
component to construct BMM. Using (14)–(16), the MC
module can be simplified to the BMM module.

We note that using the BMM module leads to degradation in
performance. In the trellis of SMM, the number of possible
transition paths is M2, whereas in BMM it is 22 log2 M.
Since SMM considers more transition paths than BMM
(M2 . 22 log2 M for M . 2), replacing SMM with BMM can
cause reduction of prior information. This makes it interesting
to study how much reduction one should expect to see.

To justify the usefulness of BMM, an analysis based on
comparison of entropy rates, one for SMM and the other
for the corresponding BMM, is carried out. The entropy
rate of an MC measures the amount of uncertainty per
sample [1]. When the entropy rate of BMM is close to that
of SMM, we can safely say, BMM is equally capable of
representing the correlated source. Thus, we aim to use the
entropy rate as a criterion for closeness between the two
models. This can give us useful insights before carrying
out extensive computer simulations to determine the
performance difference.

The entropy rate of an MC can be calculated if two
quantities, the stationary distribution and the transition
probability, are available. They are obtained in (14) and
(16) for BMM and the transition probability of SMM is
assumed to be known and the stationary distribution of
SMM is obtained from the transition probability [20]. Thus,
the entropy rate of SMM is given by

H(x2|x1) =
∑M−1

i=0

Pr[x1 = i]H(x2|x1 = i)

=
∑M−1

i=0

Pr[x1 = i] −
∑M−1

j=0

aij log aij

( )
(17)

where Pr[x1 ¼ i] is the stationary probability of the ith state.
The entropy rate of BMM is the sum of the entropies of
log2 M separated two-state MCs. The entropy rate of SMM
1042
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and that of BMM are compared as follows

H(x2|x1)=(a)
H(b2,L|b2,(L−1), . . . , b2,1, b1,1, . . . , b1,L) + · · ·

+ H(b2,1|b1,1, . . . , b1,L)

≤
(b)∑L

l=1

H(b2,l|b1,l) (18)

where (a) follows from chain rules and (b) is due to the fact
that more conditioning is to reduce its entropy, and the
equality holds iff H(b2,l|b2,(l21), . . . , b2,1, b1,L, . . . , b1,l, . . . ,
b1,1) ¼ H(b2,l|b1,l) for 1 ≤ l ≤ L.

The entropy rate of BMM is bigger than or equal to that of
SMM as represented by (b) in (18). The difference, from the
entropy rate of SMM to that of BMM, exists and is always
positive since the smaller number of transition paths are
used in BMM than SMM. This difference can be
considered as an indication of model mismatch from SMM
to BMM while it is very difficult to predict the expected
performance degradation from using this mismatched model
analytically. For example, if the difference is small, we can
expect, use of the simplified model, BMM, would work as
effectively as that of the full complexity SMM.

5 Simulation results

We evaluate BER performance difference of the two modules,
the SMM against the BMM, in extensive Monte Carlo
computer simulation. For simulation, correlated non-binary
source samples are generated from a stationary M-state MC in
the following manner: the transition probability to remain in
the same state is assumed to be 1 2 p, where p is a transition
parameter, 0 , p , 1, that is, Pr(xk ¼ i|xk21 ¼ i) ¼ 1 2 p for
all states 0 ≤ i ≤ M 2 1; the probability of making transition
to one of its neighbouring states from the previous state
1 ≤ i ≤ M 2 2 is p/2, that is, Pr(xk ¼ i + 1|xk21 ¼ i) ¼
Pr(xk ¼ i 2 1|xk21 ¼ i) ¼ p/2 and that from the previous
state i ¼ 0, M 2 1 to the neighbouring state is p, that is,
Pr(xk ¼ 1|xk21 ¼ 0) ¼ Pr(xk ¼ M 2 2|xk21 ¼ M 2 1) ¼ p.
The smaller p implies the higher correlation between the
source samples. For simulation, we assume M ¼ 16, that is, a
16-state MC as SMM is considered. Thus, BMM is four 2-
state MCs. As a channel code, a (N ¼ 1024, Nm ¼ 512,
dv ¼ 4, dc ¼ 8) regular LDPC code is used [21]. BER
performance improves with increase in super-iterations, but
the amount of improvement in each additional super-iteration
decreases. We fix two super-iterations throughout simulation,
and ten internal LDPC decoding iterations per super-iteration.
The final decoded bit sequence b̂ is decided after the iteration
is completed.

By evaluating the entropy rates of the source samples with
varying p, the amounts of statistical information that is
representable with a source model, SMM and BMM, can be

Table 1 Entropy rates of SMM and BMM (M ¼ 16) for various

transition probability p

p H(x2|x1) of SMM

(i. bits/sample)

H(x2|x1) of BMM

(i. bits/sample)

Difference of the

entropy rates of

BMM and SMM

0.05 0.333 0.559 0.226

0.10 0.562 0.940 0.378

0.20 0.909 1.514 0.605
IET Commun., 2012, Vol. 6, Iss. 9, pp. 1038–1044
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estimated. For example, when p ¼ 0.05, the entropy rate of the
source sample is 0.333 (i. bits/sample), where i. bits means
information bits. The entropy rate of SMM is also 0.333 (i.
bits/sample) under the assumption that the SMM module
extracts the perfect statistical information of the source
samples. On the other hand, the entropy rate of BMM with
transition probabilities ql,ij as in (14) is estimated to be 0.559
(i. bits/sample). Table 1 shows the entropy rates of SMM
and BMM with varying p. As shown in Table 1, as p
decreases, the correlation of source samples is increased and
the difference of the entropy rates of the two models narrows.

Fig. 3 shows comparison in terms of BER performance of
the two modules. As we expected from the comparison of the
entropy rates, BER performance of the two is improved as p
gets smaller. When p ¼ 0.05/0.10/0.20, performance of the
joint source–channel decoding scheme with the SMM
module is improved by 3.8/3.4/2.8 dB in SNR; whereas the
one with the BMM is 3.0/2.0/1.2 dB in SNR compared to
the BER performance of the plain channel decoding
scheme, that is, without any MC module, measured at
BER ¼ 1024. The cooperation results with the BMM
module are shown sensitive to the values of p, compared to
those with the SMM module. When samples are less
correlated, loss of prior information obtained from the
BMM module becomes more noticeable compared to the
case of highly correlated samples. This is probably because
of smaller number of the transition paths incorporated in
BMM. Fortunately, the difference between the SMM
module and the BMM module is getting reduced with
smaller p. For highly correlated samples, the BMM module
shows competitive BER performance with reduced
computational complexity. The computational complexity of
the SMM module is proportional to M2. When the number
of states M grows for finer representation of samples,
therefore the amount of computations for the SMM module
is drastically increased. However, the computational load of
the BMM module is only proportional to log2 M. Therefore
the BMM module can be applied to the cases where
uncompressed source samples show a certain degree of
correlation, while incurring much smaller complexity to the
receiver.

Theoretical capacity curves as a function of SNRs given the
code rate and the constellation size would be useful to give an
asymptotic limit of the proposed system. As we aim at

Fig. 3 BER comparisons for the SMM and the BMM module
(M ¼ 16)
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checking whether the BMM module can be used as a
complexity reduction alternative to the SMM module at a
finite block length, we do not include capacity results in
this paper. Instead, interested readers are referred to the
capacity results given in [22].

6 Conclusions

In the joint source–channel decoding, as the number of states
of the Markov source model increases, the receiver incurs
computational load of O(KM2) to update the probabilities
used in the forward–backward algorithm. To mitigate this
problem, we have proposed the BMM module that employs
log2 M two-state MCs, instead of single M-state MC. Since
the number of branches in the trellis of BMM is much
smaller than that of SMM, the computational complexity
for forward–backward algorithm can be reduced to
O(K log2 M ). Simultaneously, reduction in the number of
transition paths in BMM leads to degradation of the prior
information obtained from cooperation with the MC
module. BER performance is expected to be degraded using
BMM. However, as anticipated from our observation on the
comparison of the entropy rates of BMM and SMM, it was
shown in simulation that when the transition parameter p is
small, the decoder with the BMM module can achieve more
gain than when the transition parameter p is large.
Simulation results demonstrate the BMM module can lead
to reduction in the required SNR.
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