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     Abstract—Retinal fundus images play an essential role in the 

diagnosis of retina-related diseases and hence, their quality 

enhancement is essential for doctors to make a reliable clinical 

diagnosis. This paper presents an advanced retinal fundus image 

enhancement method by employing an efficiently modified and 

biologically inspired levy-flight firefly optimizer in association 

with a novel optimally weighted piecewise gamma corrected 

energy redistributed dominant orientation based texture 

histogram equalization framework for imparting overall quality 

improvement of retinal fundus images.  The key intelligence is to 

utilize a weighted summation of intensity as well as texture based 

enhancement along with an efficiently defined cost function. The 

cost function has been framed such that more and more intensity 

span can be explored in a positive manner. Rigorous 

experimentation by employing the performance evaluation and 

comparison with recently proposed enhancement approaches so 

that the explicit outperformance can be underlined. 

Index Terms—Retinal fundus imaging; piecewise gamma 

correction; cuckoo search optimization; quality enhancement. 

I. INTRODUCTION 

IGITAL imagery and its various forms aggregate the core 

basis for digital information era. Day-by-day increasing 

audacious happenings and corresponding revolutionary 

improvements in any sphere of science and technology cannot 

be imagined without digital imaging techniques in one form or 

the other. It grants much wider range of algorithms to be 

applied to the input data and can avert many disputes [1]. 

Despite of surprising advancements for image capturing 

devices, still there are various natural as well as artificial 

artifacts, which lead to poor quality of the image captured, and 

hence, quality improvement for raw captured images is an 

indispensible part of pre-processing of the images [2]. Retinal 

fundus imaging provides rich information of pathological 

changes those are usually with sporadic illumination, low 

contrast and blur of the details due to the complex imaging 

environments [3]. Retinal imaging is an important and 

effective tool for screening retinal diseases such as Diabetic 

Retinopathy (DR), Glaucoma, hypertension, stroke, and age-

related Macular Degeneration (AMD) and Cardiovascular 

disease.  
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    As a standard image modality, fundus camera is usually 

used to acquire retinal images, showing structure like optical 

disc, retinal vessels and several others [4]. The changes 

detected in these structures can be As a standard image 

modality, fundus camera is usually used to acquire retinal 

indications of a pathological condition associated with 

diseases such as glaucoma and diabetic retinopathy, which can 

further be confirmed by performing detailed analysis of these 

retinal mages [5]. The main intention of this enhancement 

method is to correct the contrast and highlight the retinal 

vessels. Therefore the analysis of retinal images is an 

important and helpful diagnostic tool. In fact, the analysis of 

retinal images can also render beneficial to the classification 

of the disease stages, on identifying the underlying problem. 

In various domains of engineering and technology, image 

processing is in very high demand, both for human vision as 

well as machine vision perspective. Some of the retinal images 

are clinically unacceptable due to eye lesions and imperfect 

imaging techniques which include exudates, hemorrhages, 

opacity of refractive media and patient’s eye movement. 

Irregular blurring, illumination, low contrast and imprecise 

focus truncate the aspect of retinal images, emerging in loss of 

sensitivity and specificity for diagnostic scope. It may also 

prejudice ophthalmologists’ capability to enact significant eye 

features or categorize retinal diseases. Retinal images which 

are of poor quality make it difficult for consequent authentic 

segmentation and computer-aided diagnosis of retinal related 

diseases, which can be used to automate the disclosure process 

and to assist ophthalmologists. Thus, it is significant to 

overcome the objections associated with poor quality retinal 

images [6]. Wide variety of histogram based and transform-

domain based techniques have already been available in 

literature for general images [5-6]. First, general histogram 

equalization (GHE) approach [7] was initially introduced, 

thereafter its various variants have been proposed by many 

researchers. In the same context, requirement of localized 

processing seems more ambitious and hence various sub-

equalization motivated histogram based enhancement 

approaches have also been contemplated. A detailed literature 

analysis in this ambience is also available in [5-6]. Momentous 

contributions like contrast-limited adaptive HE also dragged 

the core attraction of the researchers. Statistical segmentation 

based sub-equalization like median-mean based sub-image 

clipped HE (MMSICHE) [8] has also been introduced. 

Afterwards, the averaging histogram equalization (AVGHEQ) 

[9], HE based optimal profile compression (HEOPC) [10] 

method for color image enhancement followed by HE with 
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maximum intensity coverage (HEMIC) [11] were proposed. 

Also, the adaptive gamma correction with weighting 

distribution (AGCWD) [12] and its productive variations [13-

17] were proposed for dark images. Eventually, the intensity 

and edge based adaptive unsharp masking filter (IEUMF) [18] 

based enhancement has been proposed by operating the 

unsharp masking filter for edge enhancement followed by the 

significant proposal of dominant orientation-based texture 

histogram equalization (DOTHE) [19] especially of textural 

improvement. In this paper, the piecewise gamma correction is 

optimally associated with energy redistributed texture-

orientation dominance framework for transmitting intensity as 

well as for the texture based quality enhancement approach 

and is employed for optimal enhancement of dark images. 

Remaining content is organized as: Section II which deals 

with the problem formulation followed by the proposed 

methodology. Experimentation is discussed in Section III and 

finally, conclusion is drawn in Section IV. 

II. PROPOSED METHODOLOGY 

Parallel band processing is generally required for multiband 
images, but for enhancing equivalent color images Hue-
Saturation-Intensity (HSI) model can be applied to decouple 
the chromatic and non-chromatic information content, as [1]: 

              HSI

RGB

T T
H m,n ,S m,n ,I m,n T R m,n ,G m,n ,B m,n ,  (1) 

Here, 
HSI

RGBT is RGB to HSI transformation process. The color 

image enhancement can be done by upgrading only the 
brightness intensity values, keeping rest (hue and saturation) 
values preserved, followed by linear stretching. The gamma 
compressed interim intensity channel can be evaluated as [1]: 

   ,          >1,gcp inI I


  (2) 

The corresponding gamma expanded interim intensity channel 
can be evaluated as [1]: 

  
1

,         >1,gex inI I


  (3) 

Later on, evaluation for third interim channel can be done by 

identifying the tile-wise texture dominance followed by 

variance based thresholding (for separate identification of 

smooth as well as non-smooth patches). For this purpose, the 

entire image is sectioned into tile-wise collection of several 

5 5 (or any odd-ordered) sized patches. These extracted 

patches are divided into smooth or rough by implanting a 

variance threshold  on each image patch. Further, the rough 

patches are classified into dominant or non-dominant 

orientation patches by reckoning their local orientation which 

is based on singular value decomposition (SVD) of the 

gradient vectors of the patch. The procedure required for 

categorizing the rough patch into dominant or non-dominant 

orientation patches and the method to construct the histogram 

is highlighted below. The local estimate of gradient i( , )I m n at 

each pixel  ,m n in patch is calculated as: 

  
   , ,

, , ,
i

I x y I x y
I x y

x y

   
   

   
 (4) 

Collectively for N patches, the gradient map can be framed as: 

         1 2 3
, , , , , ,..., , ,

T

N
GM I x y I x y I x y I x y      (5) 

Next, SVD of the gradient map is computed. 

 TU V    (6) 

Where n nU R  represents the contribution of each vector to the 

corresponding singular vector; 2nR  represents the energy in 

the dominant directions; and 2 2V R  represents the orientation. 

In matrix ,V  the dominant and the subdominant orientations of 

the gradient field are represented by the columns 1v and 2v

respectively. The dominant measure D divides the rough 
patches into dominant and non-dominant orientation patches, 
which can be calculated by: 

 
    1,1 - 2,2

,
2

D
 

  (7) 

In the above equation,  1,1  and  2,2 are singular values 

representing the energy in the dominant direction. The patches 
having dominant measure lesser than the significance level 
threshold 'D contains no dominant orientation as they are only 
pure white noise. The patches which have dominant measure 
greater than the significance level threshold 'D are dominantly 
oriented. Now, the intensity distribution (histogram) of the 
texture patches is computed. All the intensities present in the 
texture patches are required for histogram formation. Further, 
Cumulative Density Function (CDF) is used to map the input 
image histogram into new dynamic range. Locations of various 
local maxima values have to be observed and accordingly 
admissible sub-histograms can be derived. Individual CDFs are 
evaluated for all the sub-histograms as: 

    
0

1
,

i

j j
j k

c i h k
N



   (8) 

Here, jN is the net pixel-count in thj sub-histogram 

(corresponding to the thj patch). Equalize all the j sub-

histograms autonomously as: 

  j_min _ _ * ,j j max j min jI I I I c (i)  %  (9) 

Access the overall equalized image as: 

 _ ,tex dom m

m

I = I



%U  (10) 

Now, the weighted summation input intensity channel with 

uniformly equalized intensity channel  ˆ
enI can be obtained as- 

 _
1ˆ ,

1 1 1
en gcp gex tex domI I I I

  

  

     
       

       
 (11) 

Here, unfortunately over-ranging may get resulted, and it 
should be minimized efficiently without affecting the resulted 
enhancement and hence it can be included as a penalty term in 
the cost function framed here, as: 

 
2

2
1 ov

n
J H . . . ,

M * N





  

   
  
  

 (12) 

Here,
2 2, , and H   stands for output brightness, contrast, 

relative contrast, and output Shannon entropy, respectively for 

an L-bit, M * N image. Here, ovn is the count of the normalized 

over-ranged pixels, which can be evaluated as: 

  0 1ov mn mnn i i ,   % %U  (13) 
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Here,  ĥ i stands for histogram of the processed image. Cost-

function is devised here, so that the relative variance along 

with maximal information restoration can be imparted with 

proper check on relative mean brightness. Biologically 

inspired and later on efficiently modified CSOA is employed 

for optimal enhancement for dark images, by efficient 

exploration followed by generous exploitation in a three-

dimensional search space so that the required optimal values 

for , ,   and  can be obtained.  The efficient parametric 

variation for framing search space derived analytically is

        0 1 0 5 1 5, , , , , , , .     Combative psychology of the 

cuckoo bird, and its interesting breeding behavior (more 

precisely, its brood parasitism) fascinated various researchers 

to frame an analogously designed population oriented 

metaheuristic optimization algorithm. CSOA is highly 

perceptible for determining multimodal, multi-objective, and 

highly non-linear optimization issues deprived of any kind of 

comprehensive search. Core structure for CSOA and its 

problem solving approach in its original form has been already 

detailed in [20].  Following the Levy distributed quasi-random 

flight; a suitable intelligence has been also introduced, where 

the prevailing step has to be decided by keeping “current 

location” and “next-state transition probability” in the mind. 

This type of step flight pattern is highly compatible and 

beneficial with CSOA behaviour. Simplified analogous 

demeanoral modelling has been done by establishing three 

rules, as already existed in the admissible literature. Levy 

distributed flight is generally for both local as well as global 

analysis of the corresponding search space. Levy flight for 

iterative new solution 1tx  for the thi cuckoo can be forged as: 

  1 0t t

i i Lévy ,      where  ,,x x        (14) 

Here, entry-wise walk during multiplications can be 

determined through product operation . Random exploration 

follows Levy distributed (having both first as well as second 

moment infinite) random step size, as [20]: 

  1 3Lévy u t ,           , ,   :   (15) 

This power law step-flight assigned random walk leads to the 

introduction of few new solutions in the proximity of best 

solution (identified so far), and in this manner local search can 

be boosted up. In addition, a benevolent share of new solutions 

should be created through far-field randomization, so that the 

local deceiving can be avoided and global inspection can be 

renewed. Finally, enhanced channel is obtained and hence, 

correspondingly enhanced color image can be derived as: 

            RGB

HSI

TT
R m,n ,G m,n ,B m,n T H m,n ,S m,n , m,n ,I  

 

)) ) $   (16) 

Here, RGB

HSI
T is HSI to RGB transformation process. 

III. EXPERIMENTATION AND RESULT ANALYSIS 

A. Assessment Criterion 

Comparative evaluation is performed qualitatively for 

resultant images [21] and for further quantitative assessment, 

performance metrics such as brightness (B), contrast/variance 

(V), entropy (H), sharpness (S), and colorfulness (C) are 

derived here. 

B. Qualitative Assessments 

Reimplementation for various recent state-of-the-art 

methodologies (namely, GHE, ADAPHE, AGCWD, and 

HEOPC) has been done. Visual results for enhanced images 

are presented in Fig. 1. 

TABLE I  

QUANTITATIVE EVALUATION WITH COMPARISON AMONG GHE [7], ADAPHE [3], AGCWD [12], HEOPC [10], AND THE PROPOSED APPROACH USING METRICS 

TERMED AS BRIGHTNESS, CONTRAST, ENTROPY, SHARPNESS AND COLORFULNESS. 

S. No. INDICES INPUT GHE ADAPHE AGCWD HEOPC OURS 

 

 

1. 

Brightness 0.6368 0.5497 0.6545 0.7273 0.5764 0.6545 

Contrast 0.068 0.1223 0.0694 0.0528 0.0889 0.0694 

Entropy 5.6271 5.1901 5.7954 5.7838 5.5716 5.912 

Sharpness 0.0802 0.1535 0.1904 0.1186 0.102 0.1904 

Colorfulness 0.2827 0.2551 0.3082 0.3746 0.2441 0.3899 

 

 

2. 

Brightness 0.6921 0.5462 0.6859 0.764 0.6949 0.6859 

Contrast 0.0598 0.1208 0.0709 0.0528 0.0597 0.0709 

Entropy 5.6508 4.9697 5.7605 5.7137 5.7504 5.8098 

Sharpness 0.102 0.1217 0.199 0.1178 0.1086 0.199 

Colorfulness 0.3722 0.275 0.3772 0.4473 96.3018 0.4446 

 

 

3. 

Brightness 0.7191 0.549 0.7026 0.7882 0.6756 0.7026 

Contrast 0.0467 0.122 0.0595 0.0398 0.0617 0.0595 

Entropy 5.6671 4.9553 5.7758 5.75 5.7236 5.8308 

Sharpness 0.0747 0.1204 0.1626 0.0898 0.0909 0.1626 

Colorfulness 0.3934 0.2815 0.3881 0.4688 91.8551 0.4609 

 

 

4. 

Brightness 0.6562 0.5466 0.6707 0.7332 0.6637 0.6707 

Contrast 0.0744 0.1207 0.0737 0.0658 0.0708 0.0737 

Entropy 4.5803 4.0234 4.6757 4.6092 4.6801 4.6893 

Sharpness 0.095 0.1029 0.1849 0.1068 0.0972 0.1849 

Colorfulness 0.3903 0.3079 0.4081 0.4824 103.0327 0.492 
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1a 2a 3a 4a 

 

   

1b 2b 3b 4b 

    
1c 2c 3c 4c 

    
1d 2d 3d 4d 

    
1e 2e 3e 4e 

Fig. 1. Visual evaluation with comparison among 1a-4a: GHE [7]; 1b-4b: ADAPHE [3]; 1c-4c: HEOPC [10]; 1d-4d: AGCWD [12]; and 1e-4e: the proposed 

approach. 
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C. Quanitative Assessments 

For explicit quantitative comparison and evaluation, relevant 

performance metrics have been evaluated and listed in Table I. 

IV. CONCLUSION 

As a concluding remark, it can be explicitly identified that the 

prospective path will be highly suitable for overall quality 

enhancement of retinal fundus images and hence directly helps 

the radiologists in various kinds of medical diagnosis as well 

as early detection of symptoms of retinal disorders. Especially 

when followed by segmentation and further by classification 

the quality enhanced fundus images outperforms for medical 

diagnostic purposes. The dominant texture-orientation based 

equalization when associated with the recently proposed 

piecewise gamma corrected weighted summation framework, 

yields highly appreciable results when intuitively governed by 

highly efficient exploration as well as exploitation following 

the biologically inspired cuckoo search optimization (CSO). 

Although the approach is some-how iterative, but the 

associated robustness and it’s highly flexible behavior 

counter-balances for that. Highly consistent performance 

metrics are examined for proper image quality evaluation and 

accordingly, the outperformance of the proposed framework 

can be easily highlighted in addition to the qualitative 

evaluation through visual results. 
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