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Abstract—In this paper, we study mixing sequences of modu-
lated wideband converters (MWC). The MWC is a sub-Nyquist
sampling system which mixes an input analog signal by multiple
numbers of fast mixing sequences in parallel. When the mixing
sequences are random cyclic shifts of a base sequence for a
memory efficiency, the system turns into random partial Fourier
structured MWC (RPFMWC). In RPFMWC, the spectrum
distribution of a base sequence is important in reconstruction
of the input signal. We show that a reconstruction of the input
is guaranteed if and only if all the discrete Fourier transform
(DFT) elements of a base sequence are nonzero. The sufficient and
necessary conditions allow more flexible lengths for bipolar base
sequences compared to existing results. In addition, we propose a
measure for evaluating a base sequence in order to predict noisy
performance of the RPFMWC.

I. INTRODUCTION

A continuous-time signal, if sampled at the Nyquist rate,
can be perfectly reconstructed from the discrete-time samples.
However, sampling wideband analog signals at the Nyquist
rate would be a severe burden for practical implementation.
If the spectrum of a signal sparsely resides across a wide-
band with unknown spectral constitution, lossless sub-Nyquist
sampling can be achievable by exploiting compressed sensing
(CS) theory [1], [2]. Researchers have developed concrete
sub-Nyquist sampling schemes such as modulated wideband
converters (MWC) [3], [4], multi-coset samplers [5], random
demodulators [6], compressive multiplexers [7], and multirate-
samplers [8]. In this paper, we restrict our attention to MWC.

In the MWC, the input signal is mixed with a multi-
ple number of periodic mixing sequences in parallel. The
mixing sequences play a significant role in recovering the
input from the sub-Nyquist samples by CS theory. In [3],
independently drawn random Bernoulli sequences were chosen
as the mixing sequences to exploit a theoretical result of CS.
For a memory efficient generation of mixing signals, a well
designed base sequence has been employed to generate all
the mixing sequences by its random cyclic shifts [9]-[11].
In the literatures, the CS recovery was guaranteed if the
discrete Fourier transform (DFT) elements of a base sequence
have flat magnitudes. In [9], deterministic bipolar sequences
having flat spectrum except at zero-frequency such as maximal
length sequences (m-sequences) or Legendre sequences [12]
have been chosen as the base sequence. The deterministic
sequences can be treated as the spectrally flat sequences when

the input signal does not use the frequency near zero, which is
practical in wireless communications. In [10] and [11], real-
and complex-valued sequences with flat spectra have been
respectively chosen as the base sequence.

We scope the MWC using random cyclic shifts of a base
mixing sequence, which is referred to as random partial
Fourier structured MWC (RPFMWC). The prior works of [9]-
[11] restricted their focuses on the base sequences having
flat spectra. Although it is well known to construct non-
bipolar sequences with flat spectra [13], using arbitrary-
valued sequences requires high complexity in implementation.
Meanwhile, it is conjectured that a bipolar sequence with flat
spectrum exists only for the length 4. Instead, m-sequences
and Legendre sequences with the nearly-flat spectra can be
considered [9], but their lengths are inflexible. For example,
m-sequences exist in lengths M = 2n−1 for a positive integer
n, and Legendre sequences exist in prime lengths M such
that M ≡ 3 (mod 4). Since a length of mixing sequence is a
major parameter in deciding a sampling rate for the lossless
sampling, the inflexible lengths of the spectrally nearly-flat
sequences can increase the sampling rate unnecessarily. In
the perspective of flexible sequence length, using a bipolar
sequence having non-flat spectrum as the base sequence would
be a reasonable choice. Therefore, it is needed to investigate
the CS recovery performance of the RPFMWC with the
bipolar base sequence having non-flat spectrum.

Our main contribution is sufficient and necessary conditions
for the base sequence of RPFMWC. We show that the CS
recovery of the RPFMWC is guaranteed if and only if all the
DFT elements of a base sequence are nonzero. Unlike [9]-
[11], our conditions provide an opportunity for the RPFMWC
to use the bipolar base sequence having non-flat spectrum that
results in more flexibility in the length of base sequence. Our
second contribution is to present a measure for evaluating a
bipolar base sequence of the RPFMWC in terms of the spectral
distribution. The proposed measure can be easily calculated
and predicts the noisy recovery performance in the sense of
signal-to-noise ratio (SNR) required for successful recovery.

II. THE MODULATED WIDEBAND CONVERTER

We consider sampling a real signal x(t) whose spectrum
consists of N disjoint bands with unknown frequency supports.
Bandwidth of each band does not exceed B, and the positive
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spectrum of x(t) is bandlimited by a frequency interval
[fmin, fmax), where imposing the lower limit is practical in
wireless communications due to modulation. The sampling
scheme of MWC consists of m channels as depicted in Fig. 1.
At each channel, x(t) is mixed by a Tp = 1/fp-periodic
mixing sequence pi(t) of odd length M . A chip rate Mfp
should not be less than the Nyquist rate 2fmax to preserve
the spectrum of x(t), and we fix fp = 2M−1fmax. Then, the
mixture is filtered by an anti-aliasing filter of cut-off frequency
1/2Ts and sampled at the rate fs = 1/Ts. In [3], choosing fs
to be an odd times of fp suffices the lossless sampling, and
we set fs = fp.

Conceptually, the MWC splits the input spectrum by an
uniform grid of interval fp and takes time-samples of the spec-
tral pieces occupied by the disjoint bands of input spectrum.
This implies that the sampling rate required for the lossless
sampling would be proportional not to the actual bandwidth
B, but to the grid interval fp ≥ B. In specific, a necessary
total sampling rate of the MWC is mfs ≥ 2Nfp, which is
minimized to mfs ≥ 2NB when fp = B [3]. Hence, the
gap fp − B can be considered as the amount of waste in the
sampling rate, so it is desired to be fp = B.

In [3], every pattern of pi(t) was chosen at random to ensure
channel independence in a sensing model. When the input of
MWC is corrupted by an additive noise n(t), a time-domain
representation of the sensing model in [3] had a matrix form
of

Y = SFD (Z+N) (1)

where the i-th row of Y ∈ Rm×l contains the output samples
yi[n] for discrete-time indices n = 1, · · · , l, and the i-th
row of S ∈ Rm×M is sequence patterns of pi(t) denoted by
[αi,0 αi,1 · · · αi,M−1]. Deterministic matrices F and D are
the DFT matrix of length M and an invertible diagonal matrix,
respectively [3]. Finally, the k-th row of Z ∈ CM×l consists of
zk[n] =

[
LPF

{
x(t)ej2πfkt

}]
t=nTs

, where LPF{·} denotes
the low-pass filtering operation of the cut-off frequency fs
and

fk :=

{
(k − 1)fp if k ≤ (M + 1)/2

(k − 1− L)fp if k > (M + 1)/2

Likewise, the k-th row of N ∈ CL×l consists of nk[n] =[
LPF

{
n(t)ej2πfkt

}]
t=nTs

. We assume that the spectral con-
stitution of x(t) does not change for the observation time
lTs, and thus Z becomes a row sparse matrix with sparsity
K = 2N as long as fp ≥ B [3]. Finally, the Nyquist sample
of x(t) can be obtained by recovering the signal Z from the
measurements Y.

For memory efficiency, we consider the result of [9], where
every mixing pattern [αi,0 αi,1 · · · αi,M−1] is a random
cyclic shifts of a base sequence b = [β0, β1, · · · , βM−1]
satisfying a strict condition that the DFT elements of b have
flat magnitudes. The matrix S can be rewritten to random row-
selections from a row-wise circulant matrix, whose rows are
cyclic shifts of b. From the well-known DFT factorization of
the circulant matrix, the sensing model of (1) turns into

Y = RΩFΣ (Z′ +W) (2)

Fig. 1: Sampling scheme of MWC [3]

where RΩ is the m×M row selection matrix that selects rows
of indices specified by a set Ω ⊂ {1, · · · ,M}, whose elements
are chosen at random without coincidences. A diagonal part
of the DFT factorization remains to Σ = diag (σ), where
σ = bFH is the inverse-DFT of b. The signal and noise
absorb D and are denoted by Z′ = 1

MDZ and W = 1
MDN

since D is a deterministic diagonal [3]. Throughout this paper,
we refer the MWC of sensing model (2) to as random partial
Fourier structured MWC (RPFMWC) for convenience.

In CS theory, the restricted isometry property (RIP) [2]
measures near orthogonality of a sensing matrix Φ in a sensing
model of y = Φx for every sparse vector x. In [9] and [10],
based on the RIP analysis, it was shown that if Σ is unitary
then recovering the input is guaranteed. Unfortunately, the
sufficient condition is quiet strict for binary sequences since
existence of such sequences is known only for length 4. As
alternatives, the nearly-flat sequences such as m-sequences and
Legendre sequences can be exploited. However, their inflexible
lengths can lead to the waste in sampling rate due to the grid
gap fp −B.

III. REQUIREMENTS FOR BASE SEQUENCES

A. Sufficient and necessary conditions

Theorem 1. Consider the sensing model of (2) with fmin = 0.
When m ≥ O

(
K ln4 M

)
, recovering Z′ is guaranteed if and

only if σ has nonzero elements, i.e., Σ is invertible.

Proof. Let X = ΣZ′. In (2), if Σ is diagonal and invertible,
the sparsity of X is kept in K, so recovering X from Y is
guaranteed by the RIP of Φ = RΩF with high probability
when m ≥ O

(
K ln4 M

)
[14]. Once X is recovered, it

is obvious that Z′ is uniquely determined by X if Σ is
invertible. Conversely, if at least one diagonal entry of Σ is
zero, Z′ cannot be uniquely determined by X, regardless of
the recovery of X.

Unlike [9] and [10], we show that using spectrally non-flat
sequences in the RPFMWC theoretically guarantees recover-
ing the input from the measurements. Theorem 1 allows the
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TABLE I: List of Mixing Sequences and Spectral Instabilities
for M = 127 and φ = 1

# Sequence type η(T ) # Sequence type η(T )

1 m-sequences 1.000 8 Bernoulli 5 13.443
2 Legendre 1.000 9 Gold 2 16.527
3 Bernoulli 1 3.878 10 Bernoulli 6 19.917
4 Bernoulli 2 4.933 11 Gold 3 26.946
5 Gold 1 6.609 12 Bernoulli 7 33.423
6 Bernoulli 3 9.344 13 Bernoulli 8 41.296
7 Bernoulli 4 10.987 14 Bernoulli 9 54.820

RPFMWC to exploit any bipolar sequence of any length as
long as the DFT has no zero entry. A more flexible length M
of the base sequence makes it easier to reduce the sampling
rate by minimizing the grid gap fp − B. While keeping the
recovery performance, choosing a longer M subject to fp ≥ B
reduces not only fp but also the sampling rate fs. We provide
an example of the reduction in sampling rate in Section IV.

B. Spectral instability

Although the recovery of the RPFMWC with a base se-
quence having non-flat spectrum is guaranteed by Theorem 1,
the RIP analysis does not explain influence of a base sequence
on actual recovery performance of the RPFMWC. Theorem 2
reveals the influence of a base sequence on the recovery by
the orthogonal matching persuit (OMP) algorithm [15] in a
single measurement vector (SMV) model, where l = 1 in (2).

Theorem 2 (Theorem 4.10 in [16]). Consider a sens-
ing model of y = RΩFΣ (x+w) where the noise vector
w ∈ RM is independent of RΩ with ∥w∥2 ≤

√
En.

Fix β in (0, 1) and δ in (0, 0.5). For a constant C, if
m ≥ Cδ−2K

(
K + ln (M −K) + lnβ−1

)
, then the OMP al-

gorithm can recover the support of a K-sparse vector x ∈ RM

in K iterations with probability exceeding 1− β if

min
i∈L

| (Σx)i | ≥ C1∥RΩFΣw∥2 (3)

where L := {1, · · · , L}, (Σx)i denotes the i-th element of
Σx, and C1 = 2(1− 2δ)−1.

Corollary 3. Consider the sensing model in Theorem 2 and
let SNRmin = Kmini∈L |xi|2/En denote minimum SNR. For
a sufficiently large m, the OMP algorithm can recover the
support of a K-sparse vector x in K iterations with high
probability if

√
SNRmin ≥ C2

maxi∈L |σi|
mini∈L |σi|

(4)

where C2 is a positive constant.

Proof. Since Σ = diag (σ), the left-hand side of (3) has a
lower bound of mini∈L | (Σx)i | ≥ mini∈L |σi|mini∈L |xi|.
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Fig. 2: Successful support recovery rates of the noiseless
RPFMWC versus length of the base sequence M with various
numbers of channels m. The frequency occupancy of input is
fixed to B = 400 MHz and N = 4. For every M , K = 2N .

On the other hand,

∥RΩFΣw∥2 ≤ ∥RΩF∥F ∥Σw∥2
≤ ∥RΩF∥F max

i∈L
|σi|∥w∥2

≤
√
mM max

i∈L
|σi|

√
En

By letting C2 =
√
mKMC1, the inequality (4) is sufficient

for (3).

Under the existence of noise, Corollary 3 states that the
minimum SNR required for successful recovery depends on
the spectral distribution of a base sequence. Corollary 3 is
for the real-valued SMV model, which is a special case
(l = 1) of our sensing model (2). Nevertheless, the sufficient
condition (4) supports an intuition that the RPFMWC with
the higher ratio of maxi∈L |σi|

mini∈L |σi| would require the higher SNR
for successful recovery. Also, note that if En → 0 then the
OMP recovery is always guaranteed as long as mini∈L |σi| is
nonzero, which confirms the result of Theorem 1.

In the sensing model of (2), the positive spectrum of
x(t) is assumed to have a lower limit fmin. This implies
that first φ = ⌊(fmin + 0.5fs) /fp⌋ rows and last φ − 1
rows of Z′ are zero by the definition of zk[n], and we let
T := {φ+ 1, · · · ,M − φ+ 1} denote a set of indices for
the active rows of Z′. The set T indicates two continuous
frequency intervals where the input spectrum can exist. We
then define a measure for the spectral distribution of a base
sequence on the indices of T .

Definition 4. Consider the RPFMWC system of (2). The
spectral instability η(T ) of a base sequence is defined by

η(T ) :=
maxi∈T |σi|
mini∈T |σi|

(5)

As observed in Corollary 3, it is preferred to choose a
base sequence b minimizing η(T ) when the input signal to
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Fig. 3: Successful support recovery rates of the RPFMWC versus SNR for various base sequences of length M = 127. The
number of channels is set to m = 50, and the sequence numbers are assigned in Table I.

the RPFMWC with a sufficiently large m is corrupted by
noise. It is obvious that sequences having flat spectrum have
the minimal η(T ) = 1. However, since a bipolar sequence
with flat spectrum cannot be achieved, the first alternative
is to consider deterministic sequences having the nearly-flat
spectrum such as m-sequences and Legendre sequences. The
spectra of the deterministic sequences are regarded as flat or
η(T ) = 1 if φ ≥ 1.

Despite the minimal η(T ), the deterministic sequences are
not available for every lengths. For the flexible length of base
sequence, bipolar Bernoulli sequences can be considered as
the base sequence of RPFMWC. However, no research efforts
have been reported to answer which outcomes of the Bernoulli
sequences are suitable for the RPFMWC in the aspect of the
minimum SNR required for successful recovery. The spectral
instability of Definition 4 can be used as a measure to predict
the actual recovery performance of the RPFMWC with a
bipolar Bernoulli base sequence in the presence of noise.

IV. SIMULATIONS

In this section, the validity of Theorem 1 and spectral
instability η(T ) is demonstrated by simulation results. The
results show successful recovery rates of supports on the row
sparse matrices Z in (2). For the support recovery, we use the
l2-norm based OMP algorithm for a multiple measurement
model (MMV) [17]. A successful recovery is declared if
an estimated support includes the true support with a few
additional entries. The results are averaged by 500 trials, and
the input signal and the noise are redrawn at every trial. The
spectrum of x(t) consists of even N conjugate symmetric
rectangular bands of bandwidth B with random carriers within
an observation time lTs, where l = 12 is the length of samples
of each channel. For a sampling rate fs = fp, the minimum
frequency of input is fixed to fmin = fs/2, which implies
φ = 1.

Figure 2 shows successful recovery rates versus sequence
length M in noiseless RPFMWC with various numbers of
channel m. In the simulation, the input is bandlimited to
fmax = 20 GHz where the bandwidth of each rectangular
band is set to B = 400 MHz and N = 4. Also, we vary M
while satisfying fp ≥ B, which implies K = 2N . Samples

of Bernoulli sequences satisfying the conditions of Theorem
1 are used as the base sequence. As expected by Theorem 1,
the Bernoulli sequences having non-flat spectrum can achieve
a reliable recovery. In addition, the result shows that the incre-
ment of M rarely affects the recovery performance for high m
sufficient for a reliable recovery (lines for m = 20, 25, 30). By
noting that the longest Legendre sequences satisfying fp ≥ B
exist in M = 83, one can reduce the sampling rate at every
channel by 77.89 MHz by employing a Bernoulli sequence of
length M = 99 satisfying the conditions of Theorem 1.

Figure 3 shows successful recovery rates versus SNR for
candidate base sequences with various K. In addition to the
Legendre and the m-sequences, we pick the candidate bipolar
base sequences of length M = 127 satisfying the conditions
of Theorem 1 from Bernoulli and Gold [18] sequences of
arbitrary initial seeds. The candidate base sequences are listed
in Table I in increasing order of the spectral instability η(T ).
In the simulation, the input is bandlimited to fmax = 1 GHz.
We fix the number of channels m = 50 since Corollary 3 is
effective for a sufficiently large m. By setting B = fp, the
sparsity of Z is K = 2N . As expected, it is shown that the
RPFMWC of a base sequence having the lower η(T ) is likely
to require the lower SNR for the reliable recovery.

V. CONCLUSION

We have studied mixing sequences for the RPFMWC that
uses random cyclic shifts of a base sequence. The prior works
of [9] and [10] restricted their focuses on base sequences
with flat spectra due to their theoretical recovery guarantees.
On the contrary, we have considered using a general base
sequence having non-flat spectrum in the RPFMWC and
have shown that the performance is theoretically guaranteed
for the spectrally non-flat base sequences. Employing the
spectrally non-flat bipolar sequences can reduce the hardware
complexity and the waste in sampling rate. Then, we showed
how the spectrum of a base sequence influences on the noisy
recovery performance, and defined the spectral instability as a
measure to evaluate a base sequence in the noisy RPFMWC
system. Empirical results validated that a base sequence having
the lower spectral instability is expected to show the better
recovery performance in the noisy RPFMWC.
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