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ABSTRACT It has been recently shown that the l0-norm problem can be reformulated into a mixed integer
quadratic programming (MIQP) problem. CPLEX, a commercial optimization software package that can
solve integer programming problems, is used to find the global solution to this MIQP problem for sparse
signal estimation. However, CPLEX uses an exhaustive approach to search a feasible space to this MIQP
problem. Thus, its running time grows exponentially as the problem dimension grows. This means that
CPLEX quickly becomes computationally intractable for higher dimension problems. In this paper, we aim
to propose a fast first-order-type method for solving this MIQP problem based on the alternating direction
method. We conduct extensive simulations to demonstrate that: 1) our method is used to estimate a sparse
signal by solving this problem and 2) our method is computationally tractable for problem dimensions up to
the order of 1 million.

INDEX TERMS Alternating direction method, compressed sensing, mixed integer quadratic program.

I. INTRODUCTION
Compressed sensing [1] has attracted attention because it
allows for the acquisition of signal samples at a rate lower
than the Nyquist rate. The theory of compressed sensing
is built under a sparsity assumption that an n-dimensional
signal x can be sparsely represented using a few non-zero
coefficients in a basis. This sparse signal is sampled to
yield an m-dimensional measurement vector b = Fx + n,
where F is an m × n sensing matrix and n is an m ×
n noise vector. Since m < n, the problem of estimat-
ing x is ill-posed. However, the theory shows that x is
reliably estimated by solving the l0-norm problem:

minx τ ‖x‖0 + 2−1 ‖b− Fx‖22, (1)

where τ is a positive regularization value. In (1), the
l0-norm function is non-convex and discontinuous. Indeed,
(1) is known to be NP-hard. Instead of solving (1), researches
aim to solve an l1-norm problem. This problem is formulated
by relaxing the l0-norm function in (1) and is given by

minx τ ‖x‖1 + 2−1 ‖b− Fx‖22. (2)

Candes and Tao [1] have proved that a solution to (2) is equiv-
alent to a solution to (1) if F satisfies a restricted isometry
constant (RIC) condition. Many l1-norm-based methods have

been proposed to solve (2). The earliest method is l1ls [2].
This method is based on an interior point technique and
can estimate x from a small number of iterations. In each
of iteration, l1ls solves a linear equation system expressed
in a matrix-vector product form. The matrix in each system
changes as the iteration passes. Thus, factorization methods
such as the LU decomposition and the QR decomposition can
be used to reduce the computations for solving this system.
However, solving multiple linear equation systems can be
still burdensome. This makes its computational cost too high
for high-dimensional x. Then, gradient projection sparse
recovery [3], homotopy [4], split-Bregman [5] and your algo-
rithms for l1 (YALL1) [6] have been proposed to solve (2).
These are first-order-type methods that do not require matrix-
inversions in all iterations. This implies that they are compu-
tationally tractable to estimate high-dimensional x. But, there
are known problems on (2). First, the l1-norm function yields
a biased estimation for large non-zero magnitudes, while the
l0-norm function considers all non-zero magnitudes
equally [7]. Second, if F does not satisfy the RIC condition,
– either m is small or the elements of F are correlated – then
a solution to (2) is sub-optimal [8].

In the literature, l0-norm-based methods such as iterative
hard thresholding (IHT) [9], variants of IHT [10]–[12],
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and mean doubly augmented Lagrangian (MDAL) [13] have
been proposed to solve (1). Dong and Zhu [12] have shown
that their method is superior to homotopy [4]. Dong and
Zhang [13] have shown that MDAL restores images with
higher quality than those recovered by split-Bregman [5].
These results in [12] and [13] suggest that more accurate
sparse signal estimation is conducted using the l0-norm func-
tion rather than the l1-norm function.
Recently, Bourguignon et al. [14] have proposed an novel

approach to solve (1). This approach aims to find an esti-
mate for x and the positions of the non-zero elements of x,
i.e., the support set. From (1), they have made a mixed integer
quadratic programming (MIQP) problem:

min
u∈{0,1}n,x∈Rn

τ1Tn u+ 2−1 ‖b− Fx‖22

subject to |x| ≤ Mu (3)

where the binary vector u indicates the support set and M
is a positive value. For (3), M can be known in practical
contexts. For example, if x is an 8-bit greyscale image, M
is set to be 255. Bertsimas et al. [15] have proposed methods
to estimate upper bounds on M if both F and b are known.
Bourguignon et al. [14] used CPLEX [16] to solve (3) and
demonstrated that CPLEX is superior to IHT [9] for sparse
signal estimation. According to explanations in [14], this
result is because CPLEX exhaustively searches for a whole
feasible space to find the global solution to (3) while IHT
finds a local solution to (1).

CPLEX [16] is a commercial solver which can be used
to solve MIQP problems. Then, CPLEX is implemented
based on a branch-and-cut method [30] that is a combination
of a cutting plane method [31] with a branch-and-bound
method [17]. As noted in [22], the branch-and-cut method
has non-polynomial computational costs in the worst-case
and can be troublesome to solve MIQP problems with large
variables. This implies the computational intractability of
using CPLEX in solving integer programming problems with
large variables. In Section V, we empirically confirm this
computational intractability.

In this paper, we aim to propose a fast method based on the
alternating direction method (ADM) for solving (3). We ana-
lyze the computational cost per iteration of the proposed
method, referred to as ADM-MIQP. According to this result,
we can show that ADM-MIQP is a first-order-type method.
We evaluate the quality of its solution using metrics defined
as follows.

First, we define support set error (SSE) as

d1
(
u, û

)
:= k−1

∑n

i=1

∥∥u (i)− û (i)
∥∥
1, (4)

where û is a solution to (3) and u is constructed from

u (i) = 0 if i /∈ I
u (i) = 1 if i ∈ I,

where I is the support set to be detected. Second, we define
mean square error (MSE) as

d2
(
x, x̃

)
:= n−1

∥∥x− x̃
∥∥2
2 , (5)

where x is an original signal and x̃ is an estimate of x. Then,
we compare ADM-MIQP with both YALL1 and MDAL in
terms of SSE and MSE. We observe the following:
• ADM-MIQP significantly surpasses both MDAL and
YALL1 in terms of both MSE and SSE.

• ADM-MIQP exhibits good estimation performance
close to the performance of ORACLE that knows sup-
port set a priori.

• ADM-MIQP is computationally tractable for solving (3)
with the problem dimension up to the order of one
million.

• ADM-MIQP exhibits a computational cost given by
O
(
n1.3

)
in our simulations.

The rest of this paper is organized as follows. Section II
gives notations used in this paper and a summary about ADM.
Section III elucidates the derivation and computational costs
associatedwithADM-MIQP.Also, Section III gives results of
comparison between our proposed approach with that of [22]
for solving our problem. Section IV gives simulation studies
and shows the superiority of ADM-MIQP compared to other
ADM-based methods [6], [13]. Section V gives conclusions
of this paper.

II. PRELIMINARIES
A. NOTATIONS
We present some notations frequently used in this paper and
their meanings in Table 1.

TABLE 1. Summary of the notations.

B. ALTERNATION DIRECTION METHOD (ADM)
A branch and bound method [17] finds the global solution to
a MIQP problem. But, since this method has non-polynomial
computational costs, it is computationally intractable for
solving MIQP problems with large variables. We turn instead
to ADM for solving the MIQP problem (3). In this sub-
section, we introduce ADM and provide its recent results.

It is well-known that ADM is a powerful technique for
solving a large-scale convex problem. ADM involves the fol-
lowing steps: i) ADM splits this problem into sub-problems
and ii) solves alternatively these sub-problems until condi-
tions are satisfied. ADM is then proven to find the global
solution to this problem as the iteration continues [18], [19].
As the number of iterations approaches infinity, the solution
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generated by ADM converges to an optimal solution which
satisfies the Karush-Kuhn-Tucker conditions to a convex
problem.

Recently, ADM has been empirically shown to be a pow-
erful technique to find accurate solutions to integer program-
ming problems [20]–[22]. Yadav et al. [20] have used ADM
to solve an image separation problem that can be modeled
as a binary quadratic programming. Souto and Dinis [21]
have then solved a signal decoding problem modeled as an
integer quadratic programming with an equality constraint
using ADM. Last, Takapoui et al. [22] have solved problems
modeled as MIQPs with an equality constraint, and shown
that ADM could be greatly faster than a commercial integer
programming method. We are motivated to derive a compu-
tationally tractable and accurate method to solve (3) using
ADM, inspired by these results in [20]–[22].

III. SPARSE SIGNAL ESTIMATION VIA MIQP PROBLEM
The MIQP problem (3) has an inequality constraint and this
constraint can be formulated into an equality constraint. Thus,
we can use the approach of [22] to solve (3) by taking a further
formulation. But, no explicit discussion on how this approach
can be used to solve a MIQP problem which has an inequal-
ity constraint was given in [22]. In the sub-section III.C,
we derive an algorithm based on the approach of [22] for
solving (3). We call it Takapoui’s Algorithm with Inequal-
ity Constraint (TAIC). We then compare ADM-MIQP with
TAIC with respect to the computational cost per iteration.
We show that ADM-MIQP requires much less computation
per iteration than TAIC does.

A. DERIVATION OF ADM-MIQP
It is convenient to solve a single minimization problem
rather than a joint minimization problem. To this end, we
define

d =
[
xT uT

]T
∈ Rn

× {0, 1}n ,

which is nonconvex. Then, (3) is reformulated into

min
d

2−1dTQd+ qTd subject to Ad ≤ 02n,

where

Q =
[
FTF On
On On

]
, q =

[
−8Tb
τ1n

]
,

and

A =
[

In −MIn
−In −MIn

]
.

We then define a nonnegative vector z. Then, we obtain

min
d,z

2−1dTQd+ qTd+ IX (z)

subject to Ad+ z = 02n (6)

where IX (z) is an indicator function of X := {z |z ≥ 02n } ,
i.e., IX (z) = 0 for z ∈ X and IX (z) = ∞ for z /∈ X .

We apply ADM into (6) to obtain

dt+1 = argmin
d

2−1dT
[
Q+ ρATA

]
d+ qT1 d,

zt+1 = argmin
z

IX (z)+ ρ2−1zT z+ (ρAdt+1 − λt)T z,

λt+1 = λt − ρ (Adt+1 + zt+1), (7)

where q1,t = q − AT (λt − ρzt), λ is the dual variable, and
ρ > 0 is a penalty value. The sub-problem on d is an MIQP.
Thus, solving this problem is difficult, but we separate it into
a pair of problems in terms of x and u, respectively:

xt+1 = argmin
x

2−1xT
(
FTF+ 2ρIn

)
x+ qT1,t [1 : n] x,

ut+1 = argmin
u

ρM2uTu+ qT1,t [n+ 1 : 2n]u.

Since the sub-problem on x has a quadratic objective function,
we have an analytic closed-form solution:

xt+1 = −
(
FTF+ 2ρIn

)−1
q1,t [1 : n]

=

(
FTDFq1,t [1 : n]− q1,t [1 : n]

)
/(2ρ) (8)

where the second equality is due to the Woodbury for-
mula [23] and D :=

(
FFT + 2ρIm

)−1
. The sub-problem on

u is a binary quadratic programming. Since uTu = 1Tn u, we
have

ut+1 = argmin
u

(
ρM21n + q1,t [n+ 1 : 2n]

)T
u,

which has an analytic closed-form solution as follows:

ut+1 (i) = 0 if ηt ≥ 0

ut+1 (i) = 1 if ηt < 0 (9)

where ηt = ρM2
+ q1,t (n+ i). The sub-problem on z is

solved to yield a solution:

zt+1 = max
(
02n,λt/ρ +

[
M ut+1 − xt+1
M ut+1 + xt+1

])
, (10)

where ‘‘max’’ operation is performed element-wise.
In summary, we have formulated (6) from (3) by adding the

non-negative vector and the indicator function. We then have
applied ADM into (6) to produce the iterations given in (7).
We next provided analytic solutions to these sub-problems.
Then, we summarized ADM-MIQP in Table 2.
In [18] and [19], it has been proved that for any positive

penalty value ρ, ADM can find the global solution to a
convex problem. The penalty value only affects the conver-
gence speed, not the quality of the solution. Researchers have
discussed how this penalty value can be chosen to improve
the speed [18], [19]. However, our problem (3) is non-convex
due to the non-convex variable d. In the literature, there
are no convergence studies for non-convex problems with
non-convex variables, to the best of our knowledge. It is
difficult to find convergence conditions for the penalty value
in the problem (3) that is being solved using ADM-MIQP.
Afonso et al. [32] have solved (1) using their own algorithm
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TABLE 2. The pseudo code of ADM-MIQP.

derived based on ADM. They have set their penalty value
as ρ = τ/10 in their simulations. Ghadimi et al. [18]
have made a tool for setting the penalty value for a strictly
convex problem with an inequality constraint. This tool takes
a matrix given in the constraint as its input. By inspired by
these works, we have relied upon extensive simulations with
various penalty values given by a combination of τ and M ,
i.e.

ρ ∈
{
τ/M , τ/M2, . . . , τM2

}
,

where M is the element of our matrix A. Based on results
of these simulations, we set the penalty value as ρ = τ/M
and use this value in our simulations. In our simulations,
we empirically observe that ADM-MIQP with this penalty
value can be used to solve (3) for estimating a sparse signal

with the accuracy of ‖
x−x̃‖22
‖x‖22

≤ ε where x is an original sparse

signal, x̃ is the estimate sparse signal and ε is sufficiently
small.

Any warm-start techqniues can be applied into
ADM-MIQP for improving its performance. We run
ADM-MIQP multiple times with different initial variables
randomly generated. Then, we have different sotluions, i.e.,{

d1,d2, · · · ,dL
}

where L is the number of runs of ADM-MIQP.We then select
a solution among these multiple solutions via

dsol := argmin
d∈{d1,d2,··· ,dL}

2−1dTQd+ qTd.

This selected solution is at least guaranteed to be better than
the other unselected solutions in terms of the cost function.

B. COMPUTATION COSTS PER ITERATION
We aim to show that ADM-MIQP is a first-order-type
method. The costs of updating z and u are both O (n). Then,
the cost of updating x is O

(
mn+ m3

)
, due to both the matrix

inversion and the matrix-vector products. If D is stored, then
this cost can be reduced to O (mn).

Next, in applications such as a single pixel camera
[24], [25], a lensless camera [26], [27], for an image com-
pression [28], a sensing matrix is constructed by randomly
taking m rows from an orthogonal matrix. Then, D becomes
a constant value 1

1+2ρ . As a result, the update on x is given as

xt+1 =
(
(1+ 2ρ)−1 FTFq1,t [1 : n]− q1,t [1 : n]

)
/(2ρ).

(11)

Indeed, if F is a partial discrete cosine transform (DCT)
matrix, all matrix-vector products in (11) can be performed
by the fast Fourier transform operation. That is, the update
cost forx can be significantly reduced to O (n log n).

C. COMPUTATION COSTS PER ITERATION
We now derive the algorithm called TAIC (Takapoui’s
Algorithm with Inequality Constraint) by following the
approach of [22] for solving the MIQP problem (3) which
only has the inequality constraint. As shown in the sub-
section III.A, it is noted that (3) is equal to (7). Then,
we define the symbols as follows:

d̃ :=
[
d
z

]
∈ Rn

× {0, 1}n × R2n
+ ,

Ã :=
[
A I2n

]
∈ R2n×4n,

q̃ =
[

q
02n

]
∈ R4n×1 and Q̃ =

[
Q O2n
O2n O2n

]
∈ R4n×4n,

where z is a slack variable. With these symbols, we can
reformulate (7) into an MIQP problem with an equality

min
d̃

2−1d̃T Q̃d̃+ q̃T d̃ subject to Ãd̃ = 02n, d̃ ∈ X̃ (12)

where X̃ := Rn
× {0, 1}n ×R2n

+ is a non-convex set. Similar
to (6), we also reformulate (12) into a standard form of ADM
as follows:

min
d̃,z̃

2−1d̃T Q̃d̃+ q̃T d̃+ IX̃
(
z̃
)

subject to
[
Ã
I4n

]
d̃−

[
O2n×4n
I4n

]
z̃ = 06n (13)

where IX̃
(
z̃
)
is an indicator function of X̃ and O2n×4n is the

2n× 4n matrix of zeros. TAIC is then implemented via

d̃t+1 = argmin
d̃

2−1d̃T Q̃d̃
T
+ q̃T d̃T

+ 2−1ρ
∥∥∥g (d̃, z̃t , λ̃t)∥∥∥2

2
,

z̃t+1 = argmin
z̃

IX̃
(
z̃
)
+ 2−1ρ

∥∥∥g (d̃t+1, z̃, λ̃t)∥∥∥2
2
,

λ̃t+1 = λ̃t − ρg
(
d̃t+1, z̃t+1, 06n

)
, (14)
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where λ̃ is the dual variable, ρ > 0 is a penalty value, and

g
(
d̃, z̃, λ̃

)
:=

[
Ã
I4n

]
d̃−

[
O2n×4n
I4n

]
z̃+

λ̃

ρ
.

It is noted that (7) is formed by adding one slack variable
to (3). But, (13) is formed by adding two slack variables
into (3). Thus, there is an intuition that TAIC requires more
computational costs per iteration than ADM-MIQP does.

To investigate the validation of our intuition, we restrict
our attentions to the sub-problem on d̃ in (14) that can be
simplified to

d̃t+1 = argmin
d̃

2−1d̃T D̃d̃
T
+ hTt d̃ (15)

where D̃ :=
[
Q̃+ ρ

(
ÃT Ã+ I4n

)]
∈ R4n×4n and

ht := q̃− ρ
[
Ã
I4n

]T ([
O2n×4n
I4n

]
z̃t − λ̃t

)
.

The sub-problem on d in (7) has been decomposed into a
pair of problems on x and u, respectively. But, D̃ is a non-
diagonal matrix that implies that the sub-problem in (15)
cannot be decomposed. We then consider an analytic closed
form solution to (15) as follows:

d̃t+1 = −D̃−1ht . (16)

For saving computational costs, the inverse matrix in (16) can
be stored. Even with this stored matrix, TAIC takes O

(
16n2

)
computational cost per iteration for conducting (16) due to
the matrix-vector product. This cost can be negligible for a
small value of n. For a large value of n, it cannot be ignored.
On the other hands, ADM-MIQP takes O (mn) computational
cost per iteration. It can be seen that TAIC takes more com-
putational costs per iteration for updating the other variables
than ADM-MIQP does. Thus, it can be concluded that the
cost of ADM-MIQP is greatly less than that of TAIC.

IV. SIMULATIONS STUIDES
We conduct simulations to show that ADM-MIQP gives a
solution to (3). We compare ADM-MIQP with MDAL and
YALL1. The reasons for selecting bothMDAL andYALL1 as
comparative approaches are a) these methods are also based
on ADM and b) are known to be computationally tractable.
We define a Gaussian sparse vector ensemble and a Gaussian
noise vector ensemble as follows.
Definition 1: The Gaussian sparse vector ensemble is an

ensemble of n-dimensional k-sparse vectors, where each vec-
tor x is generated as follows: a) the positions of the non-zero
values of x are randomly selected, b) the non-zero values
are taken from the standard normal distribution and c) x is
normalized to produce the l2-norm for x unit.
Definition 2: The Gaussian noise vector ensemble is an

ensemble ofm-dimensional noise vectors whose elements are
independent and identically distributed Gaussian with zero
mean and variance σ 2.

We define the signal-to-noise ratio (SNR) as

SNR [dB] := 10 log10
(
‖Fx‖22/

(
mσ 2

))
.

We set the parameters of ADM-MIQP,MDAL, andYALL1 as
follows. The regularization value is set as τ = σ

√
2 log n if

SNR [dB] is finite and τ = 10−4 if SNR [dB] is infinite.
The M value is set as M = maxi |x (i)|. As we have stated in
the sub-section III.A, our penalty value is set as ρ = τ/M .
The penalty value of YALL1 is set as ρ = ‖b‖1/m, used
in [6]. But, MDAL with the penalty value used in [13] failed
to yield an accurate solution in our simulation. We conducted
extensive simulations to find the penalty value for MDAL.
Thus, in our simulations, it was set as ρ = 10τ . We ter-
minated these methods either when the number of iterations

exceeded 2000 or when ‖
xt+1−xt‖2
‖xt+1‖2

≤ 10−4, as was done

in [6], for YALL1, and when ‖
xt+1−xt‖2
‖b‖2

≤ 10−4, as in [13]

for MDAL and when ‖
dt+1−dt‖2
‖dt+1‖2

≤ 10−4 for ADM–MIQP.

We kept in mind that a solution for x in (3) must satisfy a
convex constraint

x ∈ {x |−M ≤ x (i) ≤ M },

where i = 1, 2, . . . , n. However, both YALL1 andMDAL are
not designed to use this constraint. Therefore, we extended
these methods to use the constraint for a fair comparison.
Since the constraint is convex, this extension was easily
carried out by adding the following:

xt (i) = min (max (xt (i) ,M) ,−M),

where xt (i) is the ith element of an intermediate solution at
the t th iteration. All simulations are conducted on a com-
puter with Intel (R) Core (TM) i7-3820 processor clocked at
3.6 GHz. The MATLAB codes are in [29].

A. CONVERGENCE BEHAVIORS OF ADM-MQIP
We remind that both SSE defined in (4) and MSE defined
in (5) can be used to evaluate the quality of a solution given
by ADM-MIQP. We use both of the metrics to study how this
solution behaves. Since the elements of u are either 0 or 1,
we have

kd1 (u,ut)+ nd2 (x, xt) = ‖u− ut‖22 + ‖x− xt‖22

=

∥∥∥∥[ xu
]
−

[
xt
ut

]∥∥∥∥2
2

= ‖d− dt‖22 (17)

where dt is the t th solution of the ADM-MIQP and d is
a feasible solution to (3). Thus, if both the metrics are
small, the l2-norm between the t th solution and the d is also
small. Based on this relation, we define the convergence of
ADM-MIQP.
Definition 3: A solution dt =

[
xTt uTt

]T of by ADM-
MIQP is convergent to a point d =

[
xT uT

]T to (3) if
there exists a positive integer T such that for every positive

VOLUME 6, 2018 58443



S. Park, H.-N. Lee: Fast MIQP for Sparse Signal Estimation

ε1 and ε2, we then have d1 (u,ut) < ε1 and d2 (x, xt) < ε2
for all T ≤ t ≤ maxIter, where maxIter is the maximum
number of iteration.

To show that ADM-MIQP can find a converged solution to
the MIQP problem (3), the problem dimension n, the number
of measurements m and the sparsity level k were set as
1024, 307 and 30, respectively. Two values for SNR [dB]
were considered: 35 and 45, respectively. We generated
1000 independent realizations of the set (F, x, n) where F
was made by randomly taking 307 rows of the 1024 × 1024
DCT matrix, x was taken from the Gaussian sparse vector
ensemble, and n was taken from the Gaussian noise vector
ensemble. We determined average values for both MSE
defined in (5) and SSE defined in (4). We then plotted the
results in Figs. 1 and 2, respectively.

FIGURE 1. It plots the average MSE of ADM-MIQP depending on the
number of iterations. The problem dimension n, the number of
measurements m and the sparsity level k are set to be 1024, 307 and 30,
respectively.

For all the SNRs investigated, both MSE and SSE
gradually decreased and were eventually saturated. For
SNR [dB] = 45, at the 250th and 500th iterations, MSEs
were 3.5× 1E−5 and 2.4× 1E−5, respectively. Finally, MSE
converged to 2 × 1E−5 after O

(
103

)
iterations. This means

that an estimate of x can converge to an original sparse signal.
Next, we considered SSE at SNR [dB] = 45. At the 250th

and 500th iterations, SSEswere 0.041 and 0.031, respectively.
Eventually, SSE converged to 0.029 after O

(
103

)
iterations.

This suggests that the detected support set converges to an
original support set. Due to (17), after O

(
103

)
iterations, we

observed

‖d− dt‖22 < O
(
10−c

)
where c ≈ 1. This observation shows the convergence of
ADM-MIQP under the definition 3.

B. COMPARISON STUIDES AND DISCUSSION
Let α := m/n be an under-sampling ratio and β := k/m be an
over-sampling ratio. The phase transition for a given method

FIGURE 2. It plots the average SSE of ADM-MIQP depending on the
number of iterations. The problem dimension n, the number of
measurements m and the sparsity level k are set to be 1024, 307 and 30,
respectively.

shows how accurately this method can estimate sparse signals
in the (α, β) plane with n. We conducted simulations to
study the phase transitions in computations obtained by
ADM-MIQP, MDAL and YALL1. Then, the aims of this
phase transition study include being aware of the overall
performance of ADM-MIQP and understanding which of
these ADM-based methods, each of which solves different
problems to estimate sparse signals, achieves the best perfor-
mance for this sparse signal estimation.

The problem dimension n was set as 1024. Then,
a 15 × 15 uniformly spaced grid on the (α, β) plane was
constructed for α, β ∈ {0.15, 0.175, · · · , 0.5}. We gener-
ated 1000 independent realizations of the set (F, x), where F
was derived by randomly taking m rows of the 1024 × 1024
DCT matrix and xwas taken from the Gaussian sparse vector
ensemble. The estimate x̃ was considered to be successful if∥∥x− x̃

∥∥2
2/‖x‖

2
2 ≤ 10−4. In Fig. 3, we illustrated the phase

transitions for all these methods. The solid line represents
a 99% probability of success. That is, for points lying in
the graphical area below this line, there was at least 99%
probability of success in problem solving. The area beneath
the dashed-line then represents a 50% probability of success.

First, we fixed the over-sampling ratio. We then con-
sidered the under-sampling ratio to attain a 99% probabil-
ity of success. The under-sampling ratio for ADM-MIQP
was found to be the smallest. As an example, for a fixed
β = 0.25, we observed that the under-sampling ratios of
ADM-MIQP, MDAL, and YALL1 were 0.25, 0.275, and
0.325, respectively. The under-sampling ratio was propor-
tional to m because n was fixed. This implies that ADM-
MIQP requires the smallest value of m for sparse signal
estimation, when compared with the other methods.

Second, we fixed the under-sampling ratio and considered
the over-sampling ratio to achieve a 99% probability of suc-
cess. We observed that for ADM-MIQP, the over-sampling
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FIGURE 3. It plots the empirical phase transitions of the ADM-based methods such as ADM-MIQP, MDAL and YALL1, respectively.

ratio was the largest. For a fixed α = 0.3, the over-sampling
ratios of ADM-MIQP, MDAL and YALL1 were 0.325, 0.25,
and 0.225, respectively. The over-sampling ratio was propor-
tional to k for a fixed under-sampling ratio. This shows that
ADM-MIQP can estimate x with the higher value of k in
which the other methods cannot.

Next, we conducted simulations to study the performance
of all these methods by varying k for a fixed n and m under
noisy cases. To this end, SNR [dB], n and m were set as
35, 1024, and 307, respectively and k was varied between
30 and 100. Then, we generated 1000 independent realiza-
tions of the set (F, x, n) where F, x, and n were obtained
through the manner discussed in the sub-section III.A. Then,
we obtained the average MSE for each method and plotted
these values in Fig. 4.

For any k , ADM-MIQP can achieve the lowest MSE
when compared with MDAL and YALL1. This means that
ADM-MIQP can more accurately estimate x than the other
methods can. The MSE gap between ADM-MIQP and

ORACLE is small. At k = 40, as an example, MSEs of
ADM-MIQP and ORACLE are 7 × 1E−6 and 4 × 1E−6,
respectively. This suggests that ADM-MIQP can achieve a
performance close to that achieved by ORACLE.

Since both MDAL and YALL1 are originally designed
to find an estimate of x, not the support set, we needed to
construct the support set based on the estimate x̃ in order to
measure SSEs for these methods. For this purpose, we set a
threshold value

ζ = 0.8min
i
|x (i)|

and constructed the support set û by

û (i) = 0 if
∣∣x̃ (i)∣∣ < ζ,

û (i) = 1 if
∣∣x̃ (i)∣∣ ≥ ζ.

where i = 1, 2, . . . , n. Under the same conditions used in
the experiment depicted in Fig. 4, we independently made
1000 realizations of the set (F, x, n). We then determined the
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FIGURE 4. It plots the average MSEs of ADM-MIQP, MDAL, YALL1 and
ORACLE depending on the sparsity level k. The problem dimension n,
the number of measurements m and SNR [dB] are set to be 1024, 307 and
35, respectively.

FIGURE 5. It plots the average SSEs of ADM-MIQP, MDAL and
YALL1 depending on the sparsity level k. The problem dimension n,
the number of measurements m and SNR [dB] are set to be 1024,
307 and 35, respectively.

average SSE for each of the methods and plotted the results
in Fig. 5. As with MSE, for any k , ADM-MIQP was found to
achieve the lowest SSE. As an example, at k = 80, SSEs
of ADM-MIQP, MDAL, and YALL1 were 0.04, 0.14, and
0.26, respectively. This means that ADM-MIQP can more
accurately detect the support set than the other methods can.
Next, at k = 60, we counted the number of events for
which

∑n
i=1

∥∥u (i)− û (i)
∥∥
1 ≤ 6, i.e., for which the support

set error could occur within 10%. The results for ADM-
MIQP, MDAL, and YALL1 were 962, 227, and 349 events
respectively. This suggests that ADM-MIQP surpasses the
other methods.

Thus far, we have shown that ADM-MIQP is superior to
other ADM-based methods in terms of MSE and SSE. There
are multiple reasons for why this is the case.

FIGURE 6. It plots the average running times of ADM-MIQP, MDAL,
YALL1 and CPLEX depending on the problem dimension n with
m = b0.3nc, k = b0.3mc and SNR [dB] = 45. ADM-MIQP, MDAL and
YALL1 have the polynomial computational order.

FIGURE 7. It plots the average running times of ADM-MIQP and CPLEX
depending on the problem dimension n with m =

⌊
0.3n

⌋
,k =

⌊
0.2m

⌋
and SNR [dB] = 45. This figure shows that ADM-MIQP is significantly
faster than CPLEX.

First, ADM-MIQP is designed to solve (3). The binary
vector u in (3) indicates the support set and 1Tn u counts the
number of ones in u. This means that ADM-MIQP aims to
find a solution that both the cardinality of the support set
and the data-fidelity are jointly minimized. Minimizing the
cardinality of the support set is a characteristic of l0-norm
based methods. This is the reason for the superiority of our
method over YALL1.

Second, Dong and Zhang [13] have empirically reported
that MDAL finds a local solution to the l0-norm problem.
By contrast, methods based on ADM tend to find the global
solution to a MIQP problem, as reported in [20]–[22]. Then,
as reported in [14], CPLEX is capable of finding the global
solution to (3). To understand whether ADM-MIQP finds
the global solution or not, we compared the solution of
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FIGURE 8. The original grayscale images of size 512 × 512 are shown in the first row. The
images recovered by ADM-MIQP are shown in the second row. The images recovered by
MDAL are shown in the third row. The PSNR value of each recovered image is averaged
10 trials at m =

⌊
0.15n

⌋
and k =

⌊
0.05n

⌋
. (a) Lena. (b) Airplane. (c) Cameraman.

(d) 33.83 dB. (e) 31.19 dB. (f) 33.71 dB. (g) 26.91 dB. (h) 22.27 dB. (i) 27.31 dB.

ADM-MIQP and that of CPLEX. We independently gener-
ated 100 realizations of the set (F, x) by assuming that n,
m, and k were 200, 80, and 10 respectively, where F was a
partial orthogonal sensing matrix and x was taken from the
Gaussian sparse vector ensemble. We determined the average
of the objective function

τ1Tn u+ 2−1 ‖b− Fx‖22

for each method, as well as the average for normalizedMSE,

‖xC − xA‖22/‖xC‖
2
2

where xA is an estimate of x obtained by ADM-MIQP and
xC is an estimate of x obtained by CPLEX. The value of the
objective function of CPLEX, and that of ADM-MIQP, were
0.0099 and 0.0094, respectively, and the normalized MSE
was 0.0033. The gap between these values and the normalized
MSEwere both small. This indicates that ADM-MIQP indeed
finds the global solution to (3). This makes ADM-MIQP a
superior approach to MDAL.

We observed that ADM-MIQP is computationally tractable
for solving (3) up to the problem dimension n of the order
of one million. To this end, SNR [dB] was set as 45 and n
was varied from 1024 to 1048576. For a fixed n, we altered
m and k to m = b0.3nc and k = b0.3mc. The number of
iterations was set as 1000. At each point (n, m, k , SNR [dB]),

we generated 500 independent realizations of the set (F, x, n),
where F, x, and n are obtained by the approach given in the
sub-section IV.A. We determined the average running time
for each method and plotted the results in Fig. 6.

In Fig. 6, the average running times for each method
grow linearly with n. We calculated the order of the average
running times for ADM-MIQP, MDAL and YALL1 with
respect to n. The orders are roughly O

(
n1.3

)
,O

(
n1.3

)
, and

O
(
n1.13

)
respectively. These orders show that ADM-MIQP

has polynomial computation costs, leading to that ADM-
MIQP is still computationally tractable for solving (3) with
the large problem dimension. Finally, YALL1 was found to
be a faster method than ADM-MIQP. This is because the
l1-norm problem (2), solved by YALL1, is easier to solve
than (3). Despite this, if the running time for ADM-MIQP is
acceptable, ADM-MIQP gains significant improvements on
sparse signal estimation.

We conducted simulations to compare ADM-MIQP with
CPLEX in terms of the running time. MaxIter was set
as 1000. SNR [dB] was set as 45 and n was varied from
128 to 224. Then, both m and k were altered to m = b0.3nc
and k = b0.2mc. At each point (n, m, k , SNR [dB]),
we made 50 independent realizations of the set (F, x, n),
where x and n are obtained by the approach given in the
sub-section IV.A and F is a partial orthogonal matrix.
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FIGURE 9. The images are corresponding to the part of the original and each recovered airplane
images. (a) The original image. (b) The image recovered by ADM-MIQP. (c) The image recovered
by MDAL.

In Fig. 7, the average running time of CPLEX rapidly
grows with n. Even n was roughly doubled, the time rapidly
increased. At n = 128 and n = 224, the times are
6.7 secs and 2113 secs, respectively. This observation can
be in accordance with the statement in Section I that CPLEX
has the computational intractability in solving (3) with large
variables. On the other hands, the average running time of
ADM-MIQP does not rapidly grow with n. This observation
shows that ADM-MIQP is faster than CPLEX.

C. AN IMAGE RECOVERY EXAMPLE
We conducted an image recovery experiment to demon-
strate the successful application of ADM-MIQP. For this
study, the discrete wavelet transform was applied onto each
image. The k largest magnitude values of the transformed
image were retained. For each image, k non-zero values were
stacked to form a sparse vector, to be compressed to get
an m-dimensional measurement vector using a partial DCT
matrix. Both MDAL and ADM-MIQP were used to recover
the image. To evaluate the qualities of the recovered images,
we used the following peak-signal-to-noise ratio (PSNR):

PSNR [dB] := 10 log10
(
n× 2552/

∥∥x− x̃
∥∥2
2

)
, (18)

where x̃ is an original image and is the recovered image.
In Fig. 8, we illustrate the original greyscale images of size

512 × 512 with a problem dimension n = 262144. We have
also showed the images recovered by each method and their
PSNRs. These PSNR values were the averages of results from
10 trials where m = b0.15nc and k = b0.05nc.

It is immediately observed that ADM-MIQP recovers
images with higher quality than MDAL in terms of PSNR.
ADM-MIQP then preserves the detailed information in the
original images. For example, let us consider the text part
‘‘US AIR Force’’ of the recovered airplane image. As shown
in Fig. 9, we clearly see this text in (b), recovered by ADM-
MIQP, we cannot make out it in (c), recovered by MDAL.
This result shows that ADM-MIQP surpasses MDAL in this
image recovery example.

V. CONCLUSION
We proposed a fast method referred to as ADM-MIQP to
solve the mixed integer quadratic programming problem (3)

formulated in [14] from the l0-norm problem (1). We derived
ADM-MIQP using the alternating direction method, which
has been recently used to solve integer programming prob-
lems in [20]–[22].We then showed that ADM-MIQP is a first-
order-type method. That is, matrix-vector products are only
used to implement ADM-MIQP. We selected MDAL [13]
and YALL1 [6] as competitors to ADM-MIQP because these
methods are based on ADM to solve the l0-norm and the
l1-norm problems, respectively. We also compared
ADM-MIQP with ORACLE, an approach which involved
a priori knowledge of the support set. We used both support
set error (SSE) (4) andmean square error (MSE) (5) to assess
the quality of a solution obtained by each method.

We empirically demonstrated that ADM-MIQP could
achieve a significantly better performance than MDAL and
YALL1 in terms of both SSE and MSE. We also showed that
ADM-MIQP eventually achieved a performance close to that
of ORACLE in terms of MSE. We showed that ADM-MIQP
is computationally tractable for solving (3) up to the order of
one million in the problem dimension. We confirmed that the
computational cost of ADM-MIQP is O

(
n1.3

)
in our simula-

tions. We concluded that ADM-MIQP is efficient in finding
an accurate solution to (3) when the problem dimension n is
large.

The next step is to conduct convergence analysis for
ADM-MIQP. Specifically, it will be interesting to prove that
a solution of ADM-MIQP is convergent. Also, this work can
be extended to determine the appropriate penalty value that
would guarantee the convergence of ADM-MIQP.
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