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Abstract: In this study, the authors investigate the expected complexity of increasing radii algorithm (IRA) in an independent and
identified distributed Rayleigh fading multiple-input–multiple-output channel with additive Gaussian noise and then present its
upper bound result. IRA employs several radii to yield significant complexity reduction over sphere decoding, whereas
performing a near-maximum-likelihood detection. In contrast to the previous expected complexity presented by Gowaikar and
Hassibi (2007), where the radius schedule was hypothetically fixed for analytic convenience, a new analytical result is
obtained by considering the usage of multiple radius schedules. The authors analysis reflects the effect of the random
variation in the radius schedule and thus provides a more reliable complexity estimation. The numerical results support their
arguments, and the analytical results show good agreement with the simulation results.

1 Introduction

In general, the maximum-likelihood (ML) detection of
symbols over the underlying lattice structure is interpreted
as an integer least-squares (ILS) problem [1, 2]. The ILS
problem frequently arises in communication applications
such as ML detection for multiple-input–multiple-output
(MIMO) systems [3–5], ML multiuser detection for
code-division multiple access (CDMA) systems [6], and
ML sequence estimation [7]. For arbitrary channels, the
exhaustively solving of the ILS problem is known to be
NP-hard [8, 9].
During the last decade, sphere decoding (SD) has attracted

significant interest as a detection scheme for solving the ILS
problem. This is because SD provides the optimal ML
performance with moderate average complexity, especially
for MIMO channels [3–5]. In essence, SD limits the search
space to within a single radius and then performs a
depth-first tree search over a tree with as many depths as
the system dimension (i.e. the number of transmit antennas
in MIMO context) [3]. However, as the system dimension
or the constellation size increases, SD tends to be
impractical because the SD complexity grows exponentially
in both the worst and average senses. To alleviate this
problem, increasing radii algorithm (IRA) [10] and its
extensions [11, 12] have been proposed. Instead of a single
radius, IRA adopts several radii during a depth-first tree
search. Subsequently, it has lower complexity than SD as
well as maintains a near-ML performance.
The complexity of depth-first tree search-based algorithms

such as SD and IRA is a random variable that depends on
distributions of the channel, noise and transmitted symbol.

Thus, several works in the literature have focused on
quantifying the expected complexity of the algorithm in
order to characterise complexity behaviour; for example, the
authors in [1, 13] analysed the expected complexity of SD
and a SD variant based on the l∞-norm, respectively.
Especially, in [10], the expected complexity of IRA given
for one fixed radius schedule (which indicates a set of radii)
has been defined, and its upper bound has been analysed in
order to support the complexity reduction of IRA over SD.
However, in fact, this upper bound is obtained only for a
single fixed radius schedule.
In practice, IRA utilises multiple radius schedules to

guarantee a non-vanishing probability of detecting a
symbol. It makes gear shifts from one radius schedule to
the next whenever it encounters a random search failure.
Accordingly, the IRA complexity changes depending on the
variation in the radius schedule. Although fixing the radius
schedule simplifies the analysis procedure, the complexity
analysis for one fixed radius schedule does not completely
reflect the practical complexity of IRA. In order to address
this issue, we present a new IRA complexity expression that
considers the effect of the realistic variation in the radius
schedule. Subsequently, instead of using the exact analysis,
which seems to be intractable in this case, we investigate
the upper bound on the expected IRA complexity using the
proposed complexity expression and our analytic findings.
Numerical results support the idea that the new complexity
analysis allows us to predict the IRA complexity without
ambiguity with respect to the radius schedule. Therefore in
practice, the obtained analytical results can be used to
reliably estimate complexity under any setting of radius
schedule.
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The remainder of this paper is organised as follows:
In Section 2, the system model and IRA are briefly
described. Section 3 presents the new expected complexity
expression for IRA and its upper bound analysis. In Section
4, numerical results that support our arguments are
discussed. Finally, we conclude this paper in Section 5.

2 System model and increasing radii
algorithm

The ILS problem, which amounts to the ML detection in a
MIMO system with M transmit antennas and N receive
antennas (N≥M ), is formulated as

x̂ML = argmin
x[SM

Q∗y− Rx
∥∥ ∥∥2 (1)

subject to y = Hx̄+ z (2)

where y [ CN is the received vector, CN is the set of all
complex N × 1 vectors, z [ CN denotes an independent and
identically distributed (i.i.d.) zero-mean additive complex
Gaussian noise vector, that is zi� CN 0, s2

z

( )
, H [ CN×M is

the i.i.d. Rayleigh fading MIMO channel matrix of column
full rank, CN×M is the set of all complex N ×M matrices,
the entries of H∼ i.i.d. CN 0, s2

h

( )
, H =QR by the

QR-decomposition of H, Q is an N ×M unitary matrix, and
R is an M ×M upper triangular matrix with non-negative
diagonal entries. The transmitted vector �x [ SM is
independently and equally likely drawn from an
M-dimensional L2-QAM constellation SM with an even
number L such that

SM = s1 + js2|s1, s2 [ − L− 1

2
, − L− 3

2
,

{{

. . . ,
L− 3

2
,
L− 1

2

}}M

and x [ SM is the candidate vector. The received
signal-to-noise ratio (SNR) γ in (2) is given by

g = E Hx̄‖ ‖2( )
E ||z||2( ) = M (L2 − 1)s2

h

6s2
z

where E(·) is the expectation operation.
As the upper triangularity of R in (1), one can construct a

tree of depth M, where branches at depth k (k = 1, 2, …, M )
correspond to the possible values of xM−k+1, paths from
depth 1 to k refer to points x (k) in the lattice Sk of
dimension k, and x (k) stands for the subvector having the
last k entries of x, that is, x (k) = [xM−k+1, xM−k+2, …, xM]

T.
By denoting w =Q*y− Rx, a path metric from depth 1 to k
in the tree is given by

Pk x(k)
( ) = ∑k

i=1

Bi x
(i)( )

(3)

where Bi(x
(i)) = |wM−i+1|

2 is a branch metric at depth i.
IRA performs a depth-first tree search using a sequence of

increasing radii such that r1,r , r2,r , · · · , rM ,r, whereas
SD employs only one large radius d over the entire depths

in the tree (refer to Fig. 1). Accordingly, IRA explores only
the x (k) that satisfy the following condition at each depth k

Pk x(k)
( ) ≤ r2k,r, for k = 1, 2, . . . , M (4)

where rk,ρ is the predefined radius of the radius schedule
index ρ, ρ = 1, 2, …, Ns, and Ns denotes the total number of
radius schedules. The radius schedule with index ρ indicates
a set of M radii, that is {rk,ρ|k = 1, 2, …, M}. In practical
applications, IRA employs multiple radius schedules to
ensure symbol detection with high probability. Essentially,
rk,ρ s are determined such that

rk,r , rk+1,r for each r and rk,r , rk,r+1 for each k (5)

We refer to Dk,r as the search space including all the points
x (k) that comply with condition (4) from depth 1 to k in the
radius schedule with index ρ. According to the radii
selection rule in (5), it holds that Dk,r # Dk+1,r for each ρ
and that Dk,r # Dk,r+1 for each k.
IRA finds all the candidates x [ DM ,r by consecutively

examining (4) from k = 1 to M; then, among those survived,
the x having the smallest full path metric PM(x

(M )) is
declared as the final output. When IRA succeeds in search
with a radius schedule having index ρ, the corresponding
search space is not empty, that is DM ,r = ∅. Otherwise, it
is empty, that is DM ,r = ∅. When IRA fails in finding a
feasible solution with the radius schedule index ρ, it restarts
using the next radius schedule with index ρ + 1, which
includes larger radii than the previous radius schedule. This
procedure continues until the final solution is found.
In addition, the original IRA employs

r2k,r = (d(1r) logM + k)s2
z for each k and ρ, where ερ is the

user-selected probability and δ(ερ) is the scaling factor [10].
Note that ερ should be assigned in a decreasing fashion,
that is ερ > ερ+1, in order for the radii to follow the
condition rk,ρ < rk,ρ+ 1. In order to maintain coherence with
the original IRA, we also perform the following analysis for
the ερ and rk,ρ that satisfy the aforementioned conditions.

3 Expected complexity analysis

In this section, we present a new complexity expression for
IRA that takes account of multiple radius schedules and
their random variations. Thereafter, we establish the upper
bound on the expected IRA complexity using our
theoretical findings.

Fig. 1 Employment strategy of a radius or radii for a depth-first
tree search in SD and IRA
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3.1 Previous expected complexity analysis

In [10], the expected complexity of IRA was defined in ([10],
17) and is rewritten as

∑M
k=1

Ep(k)f (k) (6)

where Ep(k) denotes the expected number of points x (k) in
Dk,r corresponding to depth k, and f (k) is the number of
floating point operations (FLOPs) needed to search for each
point at depth k ( f (k) = 8k + 32 for IRA). Note that, instead
of Dk as used in ([10], 17), we use the notation Dk,r to
clarify the different size of the search space in each radius
schedule with index ρ. The authors of [10] presented the
upper bound on (6), which is expressed as

∑M
k=1

∑
x(k)

Pr Pk x(k)
( ) ≤ r2k,r

( )
f (k) (7)

where
∑

x(k) denotes the sum over all possible x(k), indicating
the realisation of x (k).
In (6) and (7), the complexity given for a certain ρ is

considered. This implies that in [10], the radius schedule
was fixed as one certain set, even though factually, the
radius schedule randomly changes during the search
procedure. This was done for analytical convenience. Thus,
when evaluating the upper bound in (7), ρ should be
determined as a specific value between 1 and Ns, even
though a strategy to select a proper value of ρ for
computing (7) was not clearly specified in [10].
In fact, the value of ρ that provided the analysis result

closest to the simulated one was selected after computer
simulations in order to evaluate the upper bound in [10].
Subsequently, the numerical trend of the expected
complexity was presented as a function of SNR. Fig. 2
shows the analysis results of (7) with several values of ρ for
system configurations identical to those for Fig. 7a in [10].
The analysis result for ρ = 1 in Fig. 2 indicates the upper
bound, just as shown in Fig. 7a in [10]. In Fig. 2, even
though the analysis result for ρ = 1 appears tight as the
upper bound with respect to the simulation result by
chance, this complexity evaluation does not support a
reliable complexity estimation without empirical
experiments. Therefore this issue needs to be resolved in
order to serve the original purpose of the complexity analysis.

3.2 Expected complexity considering multiple
radius schedules

We restate that IRA employs multiple radius schedules and
shifts the radius schedule to the next one whenever a random
search failure occurs. As the size of the search space Dk,r is
different for each radius schedule, the IRA complexity
changes according to the radius schedule variation.
Motivated by this, we aim to demonstrate (i) the use of
multiple radius schedules and (ii) the realistic variation in the
radius schedule, in the complexity analysis procedure.
Instead of the previously used complexity definition (6), we

present a new expression of the expected IRA complexity C
as follows

CW
∑Ns

r=1

w(r)
∑M
k=1

E(N (k, r))f (k) (8)

where the expectation is with respect to the channelH, noise z
as well as transmitted vector �x; N(k, ρ) is the number of points
x (k) included in Dk,r; and w(ρ) is the computational weight in
the radius schedule with index ρ. The computational weight is
discussed in detail in Section 3.3. Note that in (8), the radius
schedule is not fixed artificially, and thus, the new complexity
expression (8) can reflect the computational impact from the
usage of multiple radius schedules.
Let us consider the expectation term E(N (k, r)) in (8). First,

we introduce the indicator function, 1{A}, to count all the
points contained in the search space Dk,r, where 1{A} equals 1
if the event A occurs and is 0 otherwise. By using this
indicator function and taking a summation over all the possible
points, N(k, ρ) is given by N (k, r) = ∑

x(k) 1{x(k)[Dk,r}; thus,
we obtain the following expression:

E(N (k, r)) =
∑
x(k)

E 1{x(k)[Dk,r}

( )

=
∑
x(k)

Pr x(k) [ Dk,r

( ) (9)

where the last equality comes from E(1{A}) = Pr (A). From the
definition of Dk,r, Pr(x(k) [ Dk,r) in (9) is equivalent to
Pr(P1(x(1)) ≤ r21,r, P2(x(2)) ≤ r22,r, . . . , Pk(x(k)) ≤ r2k,r) whose
computation includes a very involved integral, making the
exact evaluation of Pr(x(k) [ Dk,r) seems extremely
intractable. Therefore instead of the exact analysis, we aim to
pursue an upper bound on the expected IRA complexity C (8).
Subsequently, by using the upper bound
Pr(x(k) [ Dk,r) ≤ Pr(Pk(x(k)) ≤ r2k,r) together with (9), we
obtain the upper bound on E(N (k, r)), which is as follows

E N (k, r)
( ) ≤ ∑

x(k)

Pr Pk x(k)
( ) ≤ r2k,r

( )
(10)

Then, by incorporating (10) into (8), the expected
complexity C (8) is found to be upper bounded by

C ≤
∑Ns

r=1

w(r)
∑M
k=1

∑
x(k)

Pr Pk x(k)
( ) ≤ r2k,r

( )
f (k) (11)

In the above equation, we directly established the upper
bound on the new complexity expression (8), instead of theFig. 2 Expected complexity in a system with M = N= 20 and L = 2
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complexity given for one fixed ρ (6). Thus, although the new
upper bound is given as a weighted sum of (7), it is
intrinsically different from the previous upper bound. The
numerical results presented in Section 4 also show this
difference between the new and previous upper bounds.

3.3 Computational weight in radius schedule

Now, we investigate the computational weight in the radius
schedule having index ρ, that is w(ρ) in (11). The weight w
(ρ) needs to be designed to reflect the radius schedule
variation caused by search failure events. To achieve this
and also trace the upper complexity bound, we determine
the weight w(ρ) as the upper bound on the search success
probability in the radius schedule having index ρ as follows
(see Appendix 1)

w(r) = PUB,r−1 − PLB,r (12)

where

PLB,r = Pr P1 x(1)
( )

. r21,r

( )
(13)

and

PUB,r−1 = Pr P1 x(1)
( )

. r21,r−1

( )

+
∑M
k=2

Pr Pk x(k)
( )

. r2k,r−1

( )

Pr Pk−1 x(k−1)( ) ≤ r2k−1,r−1

( )
(14)

with PUB,0 = 1 by definition. PLB,ρ and PUB,ρ− 1 can be
computed for 4-QAM and 16-QAM constellations,
respectively, using (13) and (14) together with (15) and
(16) in the following theorem (Theorem 1); note that
Pr(Pk(x(k)) . r2k,r) = 1− Pr(Pk(x(k)) ≤ r2k,r).

Theorem 1: Pr(Pk(x(k)) ≤ r2k,r) for the 4-QAM constellation is
given by

Pr Pk x(k)
( ) ≤ r2k,r

( )
=

∑2k
q=0

2 k
q

( )
4k

g
r2k,r

s2
z + s2

hq
, k

( )
(15)

and for the 16-QAM constellation, it is given by

Pr Pk x(k)
( ) ≤ r2k,r

( )
=

∑18k
q=0

∑2k
l=0

2 k

l

( )
4k

F2k,l(q)∑
j F2k,l(j)

g
r2k,r

s2
z + s2

hq
, k

( ) (16)

where Φ2k,l(q) is the coefficient of xq in the polynomial
(φ1(x))

l(φ2(x))
2k− l, φ1(x) = 1 + x + x4 + x9, φ2(x) = 1 + 2x + x4

and g(x, k) = �x
0 lk−1/G(k)
( )

e−l dl.

Proof: See Appendix 2. □

3.4 Construction of upper bound on expected
complexity

We are ready to construct the final form of the upper bound on
the expected IRA complexity by assembling our analytical
results. Let us consider the summation term∑

x(k) Pr(Pk(x(k)) ≤ r2k,r) in (11). First, by specifying the
transmitted vector �x together with (2), w can be rewritten as
w =Q*y − Rx =Rd + v, where d = �x− x and v =Q*z;
thus, it follows from the definition of path metric that
Pk(d

(k)) = ||R(k)d
(k) + v (k)||2, where R(k) is a k × k lower right

submatrix of R. Subsequently, we consider the conditioning
of the transmitted subvector �x(k), whereby
Pr(Pk(x(k)) ≤ r2k,r|�x(k)) = Pr(Pk(d(k)) ≤ r2k,r). As a result,∑

x(k) Pr(Pk(x(k)) ≤ r2k,r) is rewritten as

∑
x
(k)

Pr Pk x(k)
( ) ≤ r2k,r

( )
=

∑
x
(k)

1

L2k
Pr Pk x(k)

( ) ≤ r2k,r|�x(k)
( )

=
∑
d
(k)

1

L2k
Pr Pk d(k)

( ) ≤ r2k,r

( )

where �x(k) is assumed to be equally likely transmitted with a
probability 1/L2k. We denote the average number of pairs
�x(k), x(k)
( )

such that ‖�x(k) − x(k)‖2 = q as nk(q). Then,
without any loss of generality, we obtain

∑
x(k)

Pr Pk x(k)
( ) ≤ r2k,r

( )
=

∑
q

nk(q)g
r2k,r

s2
z + s2

hq
, k

( )
(17)

In (17), nk(q) is given by
2 k
q

( )
for the 4-QAM

constellation, as mentioned in the proof of Theorem 1.
In addition, we obtain

nk(q) =
∑2k
l=0

2 k
l

( )
1

4k
F2k,l(q)

for the 16-QAM constellation by using (27) and the fact that
the number of �x(k), x(k)

( )
satisfying ‖�x(k) − x(k)‖2 = q, given

the occurrence of event A2k,l, is Φ2k, l(q).
Finally, by incorporating (12) and (17) into (11), the

expected complexity C in the 4-QAM constellation is found
to be upper bounded by

C ≤
∑Ns

r=1

PUB,r−1 − PLB,r

( )

×
∑M
k=1

∑2k
q=0

2k
q

( )
g

r2k,r
s2
z + s2

hq
, k

( )
f (k) (18)

Subsequently, similar to the 4-QAM constellation case, we
obtain the following upper bound for the 16-QAM
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constellation

C ≤
∑Ns

r=1

PUB,r−1 − PLB,r

( )∑M
k=1

∑18k
q=0

∑2k
l=0

2k

l

( )
4k

F2k,l(q)g
r2k,r

s2
z + s2

hq
, k

( )
f (k)

(19)

We remind that in (18) and (19), w(ρ) = PUB,ρ− 1− PLB,ρ can
be computed using the results given by Theorem 1.

4 Numerical results

In this section, we present numerical results and identify the
difference between our IRA complexity analysis and that
presented in [10]. Further, the analytical results are
compared with the results obtained by Monte Carlo
simulations. Here, the expected complexity C is presented
through the complexity exponent log(C )/log(L2) for the
L2-QAM constellations. For presenting the analysis and
simulation results, the probability ερ is determined as 0.1,
0.01, 0.001, 0.0, and thus, Ns = 4. This exponentially
decreasing schedule of ερ was also used to present
numerical results in [10–12]. In all the simulations, we
generated at least 50 000 channel realisations for each SNR
point or number of transmit antennas.
Fig. 3 illustrates the new upper bound on the expected

complexity [i.e. (18)] and the simulated average complexity,
obtained by varying the SNR in a 10 × 10 MIMO system
with a 4-QAM constellation. As seen in Fig. 3, the analysis
and simulation results show a decreasing trend for high
SNRs. Note that our analysis result consistently presents a
valid upper bound with respect to the simulation result.
This consistency is maintained over all SNRs.
In Fig. 4, we compare the new upper complexity bound

[i.e. (19)] with the result of the complexity analysis given
for one fixed ρ [10] in an 8 × 8 MIMO system with a
16-QAM constellation. The analysis result in [10] shows
different values according to the selected radius schedule
(or the specific value of ρ), as seen in Fig. 4. The analytical
results for ρ = 3, 4 maintain an upper bound with respect to
the simulated complexity over all SNRs. For the analysis
results with ρ = 3, 4, even though the result for ρ = 3
appears close to the simulation result shown in Fig. 4, it is
noteworthy that this specific value of ρ, which provides a
corresponding upper bound, can be known after performing
extensive simulation experiments and subsequent
comparisons between the analysis and simulation results.
On the other hand, the new upper bound is not ambiguous

with respect to the radius schedule because we considered
the randomness of the radius schedule during our analysis.
Therefore our upper bound is more practical for evaluating
an actual system that includes radius schedule variation.

Figs. 5 and 6 plot the new upper bounds of (18) and (19)
and the simulated complexity at a fixed SNR by increasing the
number of transmit antennas, M, for 4-QAM and 16-QAM
constellations, respectively. We again observe that our
upper bounds provide a good prediction over different M.
In Figs. 5 and 6, both the analytical and simulated result
curves show a similar tendency that the complexity is
exponentially increased with M at a fixed SNR. From the
numerical results and discussions presented above, we
believe that our analysis results are useful as analytical tools
for understanding complexity behaviour in a more realistic
manner.

5 Conclusion

In this paper, we presented a new analysis for evaluating the
expected IRA complexity that considers the usage of multiple

Fig. 3 Expected complexity against SNR in a 10 × 10 MIMO
system with 4-QAM

Fig. 4 Expected complexity against SNR in an 8 × 8 MIMO system
with 16-QAM

Fig. 5 Expected complexity against M in a MIMO system with
4-QAM at SNR = 16 dB

Fig. 6 Expected complexity against M in a MIMO system with
16-QAM at SNR = 18 dB
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radius schedules. In contrast to the previous analysis, where
the radius schedule was hypothetically fixed for analytic
convenience, our analytical method reflects the effect of the
random variation in the radius schedule, which is one of
the IRAs operational characteristics. The derived results on
the expected complexity were validated for various system
configurations and agreed well with the simulated results.
Hence, our analysis can be used to provide reliable
complexity estimation without any ambiguity related to the
radius schedule and offer a better understanding of
algorithmic complexity.
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8 Appendix

8.1 Appendix 1 Determination of the weight w(ρ):
A search success event in the radius schedule having index
ρ implies that IRA fails to find a solution for the previous
schedule indexes from 1 to ρ− 1. However, it eventually
succeeds in searching for a solution in the radius schedule
with index ρ. Recall that Dk,r−1 # Dk,r for all k; thus,
Pr(DM ,r−1 = ∅|DM ,r = ∅) = 1. From this fact, the search
success probability in the radius schedule with index ρ is

given by

Pr DM ,1 = ∅, DM ,2 = ∅, . . . , DM ,r−1 = ∅, DM ,r = ∅
( )
= Pr DM ,r−1 = ∅, DM ,r = ∅

( )
(20)

where ρ = 1, 2, …, Ns, Pr DM ,0 = ∅, DM ,1 = ∅( ) =
Pr DM ,1 = ∅( )

by definition. From the total probability
theorem together with Pr (DM ,r = ∅|DM ,r−1 = ∅) = 1, we
know that

Pr(DM ,r = ∅) = Pr (DM ,r = ∅|DM ,r−1 = ∅)
Pr(DM ,r−1 = ∅) + Pr(DM ,r−1 = ∅)

which leads to

Pr DM ,r = ∅|DM ,r−1 = ∅
( )

=
Pr DM ,r = ∅
( )

− Pr DM ,r−1 = ∅
( )

Pr DM ,r−1 = ∅
( ) (21)

Subsequently, multiplying (21) by Pr(DM ,r−1 = ∅) together
with Pr(DM ,r = ∅) = 1− Pr(DM ,r = ∅) yields

Pr DM ,r−1 = ∅, DM ,r = ∅
( )

= Pr DM ,r−1 = ∅
( )

− Pr DM ,r = ∅
( ) (22)

where Pr DM ,0 = ∅( ) = 1 by definition.
Let us evaluate the upper bound on

Pr(DM ,r−1 = ∅, DM ,r = ∅t) in (22), which is obtained by
PUB,ρ− 1− PLB,ρ, where PUB,ρ− 1 and PLB,ρ denote an upper
bound on Pr(DM ,r−1 = ∅) and a lower bound on
Pr(DM ,r = ∅), respectively. First, Pr (DM ,r = ∅) is expanded
as

Pr DM ,r = ∅
( )

= Pr (D1,r = ∅)

+
∑M
k=2

Pr Dk,r = ∅|Dk−1,r = ∅
( )

Pr Dk−1,r = ∅
( ) (23)

where from the definition of the search space
Dk,r, Pr(D1,r = ∅), Pr(Dk,r = ∅|Dk−1,r = ∅), and

Pr (Dk−1,r = ∅) are equivalent to Pr(P1(x(1)) . r21,r),
Pr(Pk(x(k)) . r2k,r), and Pr(⋂k−1

j=1{Pj(x(j)) ≤ r2j,r}),
respectively, and x(k) [ Sk is the uniformly distributed
random variable of realisation x(k). Then, the lower bound
on Pr(DM ,r = ∅) in (23) is given by (13). From (23)

together with the inequality Pr(⋂k−1
j=1 {Pj(x(j)) ≤ r2j,r−1}) ≤

Pr(Pk−1 (x(k−1)) ≤ r2k−1,r−1), the upper bound on
Pr(DM ,r−1 = ∅) results in (14). Subsequently, subtracting
(13) from (14) yields the upper bound on
Pr(DM ,r−1 = ∅, DM ,r = ∅), which is labelled as the
computational weight w(ρ), as in (12).

8.2 Appendix 2: Proof of Theorem 1: The random
variable 2Pk(x(k))/(s2

z + s2
h‖�x(k) − x(k)‖2) follows the χ2

www.ietdl.org

234 IET Commun., 2013, Vol. 7, Iss. 3, pp. 229–235
& The Institution of Engineering and Technology 2013 doi: 10.1049/iet-com.2012.0232



distribution with 2k degrees of freedom, that is
2Pk(x(k))/(s2

z + s2
h‖�x(k) − x(k)‖2)�x22k , where �x(k) =

[�xM−k+1, �xM−k+2, . . . , �xM ]
T [1, 10]. Hence, the following

equation is obtained

Pr Pk x(k)
( ) ≤ r2k,r

( )
= g

r2k,r
s2
z + s2

h‖�x(k) − x(k)‖2 , k
( )

(24)

Then, using the total probability theorem, (24) is rewritten as

Pr Pk x(k)
( ) ≤ r2k,r

( )
=

∑
q

Pr ‖�x(k) − x(k)‖2 = q
( )

g
r2k,r

s2
z + s2

hq
, k

( )
(25)

where
∑

q denotes the sum over all possible q, and
Pr ‖�x(k) − x(k)‖2 = q
( )

is the probability of a pair �x(k), x(k)
( )

satisfying ‖�x(k) − x(k)‖2 = q, which is derived below in
detail for each constellation.

† 4-QAM constellation: Consider 4-QAM constellation
points xk = xk,1 + jxk,2 and �xk = �xk,1 + j�xk,2, where
xk,1, xk,2, �xk,1, �xk,2 [ {− 1/2, 1/2}. The real and imaginary

parts of each entry of the term �x(k) − x(k) in (25) have only
two possible values {0,1} with equal probability,
respectively. Thus, the number of pairs �x(k), x(k)

( )
complying with ‖�x(k) − x(k)‖2 = q is

2 k
q

( )
. Then, since

the total number of �x(k), x(k)
( )

for all possible values of

‖�x(k) − x(k)‖2 is given by
∑2k

j=0
2 k
j

( )
= 4k , we obtain

Pr ‖�x(k) − x(k)‖2 = q
( ) =

2 k
q

( )
4k

(26)

By substituting (26) into (25), Pr(Pk(x(k)) ≤ r2k,r) for the
4-QAM constellation is derived as (15).

† 16-QAM constellation: Recall 16-QAM constellation
points xk = xk,1 + jxk,2 and �xk = �xk,1 + j�xk,2, where
xk,1, xk,2, �xk,1, �xk,2 [ {− 3/2, − 1/2, 1/2, 3/2}. For each
�xk,1 and �xk,2 (or xk,1 and xk,2), the pairs − 3/2, 3/2 and −1/
2, 1/2 are referred to as the corner and centre points,

respectively. We subsequently define an event A2k,l as
‘select a corner point l times from among the 2k entries of
the real and imaginary parts of �x(k)’. The probability of
event A2k,l is given by

Pr (A2k,l) =
2 k
l

( )
4k

(27)

Let us evaluate the number of pairs �x(k), x(k)
( )

satisfying
‖�x(k) − x(k)‖2 = q, given the occurrence of the event A2k,l.
To do this, we take advantage of the generating polynomial
expansion, which was named as the modified Euler’s
generating function technique in [1]. When �xk,1 (or �xk,2) is
selected as a corner point, it follows that |�xk,1 − xk,1|2 (or
|�xk,2 − xk,2|2) [ {0, 1, 4, 9}. Conversely, if �xk,1 (or �xk,2) is
chosen as a centre point, then |�xk,1 − xk,1|2
(or|�xk,2 − xk,2|2) [ {0, 1, 1, 4}. Thus, the generating
polynomials for the corner and centre points are given by
φ1(x) = 1 + x + x4 + x9 and φ2(x) = 1 + 2x + x4, respectively,
where the exponents in these functions indicate information
on the possible values of |�xk,1 − xk,1|2 (or |�xk,2 − xk,2|2), and
the coefficients in these functions represent the number of
pairs �xk,1, xk,1

( )
(or �xk,2, xk,2

( )
) that have specific values of

|�xk,1 − xk,1|2 (or |�xk,2 − xk,2|2). Let us consider the
generating polynomial expansion of (φ1(x))

l(φ2(x))
2k− l for

the general case of �x(k), x(k)
( )

, and denote as Φ2k,l(q), the
coefficient of xq in (φ1(x))

l(φ2(x))
2k − l. Then, Φ2k,l(q)

corresponds to the number of pairs �x(k), x(k)
( )

satisfying
‖�x(k) − x(k)‖2 = q, given the occurrence of event A2k,l.
Further, assuming the occurrence of event A2k,l, the total
number of combinations for all possible values of
‖�x(k) − x(k)‖2 is ΣjΦ2k,l( j), where Σj denotes the sum over
all possible j. Thus, it follows from the above discussion that

Pr ‖�x(k) − x(k)‖2 = q|A2k,l

( ) = F2k,l(q)∑
j F2k,l(j)

(28)

Using (27), (28), and the total probability theorem, we have

Pr ‖�x(k) − x(k)‖2 = q
( ) = ∑2k

l=0

2 k
l

( )
4k

F2k,l(q)∑
j F2k,l(j)

(29)

Finally, by incorporating (29) into (25), Pr(Pk(x(k)) ≤ r2k,r) for
the 16-QAM constellation is given by (16).
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