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 

Abstract— Due to the inherent non-stationarity of 

electroencephalogram (EEG) signals, online brain-computer 

interface (BCI) classification is difficult task. In this work, we 

first evaluate sparse representation based classification (SRC) 

method for online motor imagery based BCI experimental 

datasets.   

I. INTRODUCTION 

EEG based BCI systems are very helpful communication 
means to people who have severe motor disabilities. Due to 
the inherent non-stationary characteristics of EEG, signal 
features vary from the training to test sessions in the BCI 
experiment. This is one of the major obstacles in EEG signal 
classification. Therefore, classifier should be powerful for the 
online BCI scenario.  

The SRC framework has shown robust classification 
performance in the EEG based BCI applications [1]. However, 
in [1], motor imagery signals collected in training session are 
only classified. In this study, we evaluate classification 
accuracy of the SRC for the online motor imagery based BCI 
datasets in which non-stationarity occurs from training to 
testing sessions. 

II. METHODS 

The SRC scheme can be summarized in the following two 
steps. The first step is sparse coding step. In this step, each test 
trial y is sparsely represented using dictionary A via following 
L1 norm minimization: 

 
1

min subject to 
x

x y Ax  (1) 

where x is a scalar coefficient vector and 

1 2
[ : ]

m n
 A A A is the over complete dictionary which 

consists of the training trials of class 1 and 2 as column 
vectors. The second step is to identify the test class via 
minimum residual. This step is the identification step: 

 class ( ) min ( )
i

i

ry y  (2) 
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where 
2

( ) :
i i i

r  y y A x , 
i

x is the scalar coefficient vector 

corresponding to the class i=1 and 2. The detailed SRC 
algorithm for EEG classification can be found in [1]. 

 

Figure 1. Procedure of online motor imagery experiment 

In this study, we evaluate classification accuracy of the 
SRC using 12 online motor imagery experimental datasets. In 
the experiment, the training session and online test session 
were independently performed. Right (R) and Left (L) hand 
motor imagery were performed for each dataset. The sampling 
rate of these datasets was 512, and the number of EEG 
channels was 64. We collected 60 training trials and 75 online 
test trials for each class. In the training session, after cue onset, 
the subject was instructed to perform the motor imagery task 
and no feedback was provided. However, in the online testing 
session, the online feedback was provided in each trial as 
shown in Fig. 1. We use a common spatial pattern (CSP) 
filtering as a feature extraction method.  

III. RESULTS 

 

Figure 2. Average classification accuracy of LDA, SVM and SRC method 

Fig. 2 shows the average classification accuracy (%) over 
12 online datasets. We compare classification accuracy of the 
SRC with conventional linear discriminant analysis (LDA) 
and support vector machine (SVM) methods which are most 
widely used classifier in BCI field. From the results, the SRC 
shows superior classification accuracy for the online datasets. 
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