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1. Introduction 

In this chapter, we discuss the application of a new compression technique called compressive 

sensing (CS) in wireless sensor networks (WSNs). The objective of a WSN we assume in this 

chapter is to collect information about events occurring in a region of interest. This WSN 

consists of a large number of wireless sensor nodes and a central fusion center (FC). The sensor 

nodes are spatially distributed over the said region to acquire physical signals such as sound, 

temperature, wind speed, pressure, and seismic vibrations. After sensing, they transmit the 

measured signals to the FC. In this chapter, we focus on the role of the FC which is to recover 

the transmitted signals in their original waveforms for further processing. By doing so, the FC 

can produce a global picture that illustrates the event occurring in the sensed region. Each 

sensor uses its onboard battery for sensing activities and makes reports to FC via wireless 

transmissions. Thus, limited power at the sensor nodes is the key problem to be resolved in the 

said WSN.  

 CS is a signal acquisition and compression framework recently developed in the field of 

signal processing and information theory [1],[2]. Donoho [1] says that “The Shannon–Nyquist 

sampling rate may lead to too many samples; probably not all of them are necessary to 

reconstruct the given signal. Therefore, compression may become necessary prior to storage or 

transmission.” According to Baraniuk [3], CS provides a new method of acquiring 

compressible signals at a rate significantly below the Nyquist rate. This method employs 

non-adaptive linear projections that preserve the signal’s structure; the compressed signal is 

then reconstructed from these projections using an optimization process. There are two tutorial 

articles good for further reading on CS [3],[4] published in the IEEE Signal Processing 

Magazine in 2007 and 2008, respectively. 

 Our aim in this chapter is to determine whether the CS can be used as a useful 

framework for the aforementioned WSN to compress and acquire signals and save transmittal 
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and computational power at the sensor node. This CS based signal acquisition and compression 

is done by a simple linear projection at each sensor node. Then, each sensor transmits the 

compressed samples to the FC; the FC which collects the compressed signals from the sensors 

jointly reconstructs the signal in polynomial time using a signal recovery algorithm. Illustrating 

this process in detail throughout this chapter, we check to see if CS can become an effective, 

efficient strategy to be employed in WSNs, especially for those with low-quality, inexpensive 

sensors.  

 In this chapter, as we assume a scenario in which a WSN is used for signal acquisition, 

we intend to pay some effort in modeling correlation between the signals acquired from the 

sensors. We discuss a few signal projection methods suggested in the literature which are 

known to give a good signal recovery performance from the compressed measurements. We 

also investigate a couple of well known signal recovery algorithms such as the orthogonal 

matching pursuit (OMP) (greedy approach) [13], and the primal-dual interior point method 

(PDIP) (gradient-type approach) [15]. Finally, we simulate the considered WSN system and 

examine how the presence of signal correlation can be exploited in the CS recovery routine and 

help reduce the amount of signal samples to be transmitted at the sensor node. 
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2. Compressed sensing: What is it? 

In a conventional communication system, an analog-to-digital converter based on the 

Shannon–Nyquist sampling theorem is used to convert analog signals to digital signals. The 

theorem says that if a signal is sampled at a rate twice, or higher, the maximum frequency of the 

signal, the original signal can be exactly recovered from the samples. Once the sampled signals 

are obtained over a fixed duration of time, a conventional compression scheme can be used to 

compress them. Because the sampled signals often have substantial redundancy, compression 

is possible. Several compression schemes follow this approach, e.g., the MP3 and JPEG 

formats for audio or image data. However, conventional compression in a digital system is 

sometimes inefficient because it requires unnecessary signal processing stages, for example, 

retaining all of the sampled signals in one location before data compression. According to 

Donoho [1], the CS framework, as shown in Figure 1, can bypass these intermediate steps, and 

thus provides a light weight signal acquisition apparatus which is suitable for those sensor 

nodes in our WSN. 

 

 

 . Conventional compression and Compressive sensingFigure 1  

 

 The CS provides a direct method which acquires compressed samples without going 
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through the intermediate stages of conventional compression. Thus, CS provides a much 

simpler signal acquisition solution. In addition, the CS provides several recovery routines 

which the original signal can be regenerated perfectly from the compressed samples.  

 

2.1. Background 

Let a real-valued column vector s  be a signal to be acquired. Let it be represented by 

  

  s x , (1) 

 

where x  and ns R , and x  is also a real-valued column vector. The matrix n nR  is an 

orthonormal basis, i.e., T T
NI     , the identity matrix of size n nR . The signal s  is 

called k -sparse if it can be represented as a linear combination of only k  columns of  , i.e., 

only the k  components of the vector x  are nonzero as represented Eq. (2).  

 

 
1

n

i i
i

x


s , where i  is a column vector of  . (2) 

 

 A signal is called compressible if it has only a few significant (large in magnitude) 

components and a greater number of insignificant (close to zero) components. The 

compressive measurements y (compressed samples) are obtained via linear projections as 

follows: 

 

   
  

 
 


y s
x

Ax ,
 (3) 
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where the measurement vector is ,  with m m n y R , and the measurement matrix m nA R . 

Our goal is to recover x  from the measurement vector y . We note that Eq. (3) is an 

underdetermined system because it has fewer equations than unknowns; thus, it does not have a 

unique solution in general. However, the theory of CS asserts that, if the vector x  is 

sufficiently sparse, an underdetermined system is guaranteed with high probability to have a 

unique solution. 

 In this section, we discuss the basics of CS in more detail. 

 

)i  k -sparse signal x in orthonormal basis 

The k -sparse signal, s  in Eq. (1), has k  nonzero components in x . The matrix   is, again, 

an orthonormal basis, i.e., T T
NI     , the identity matrix of size n nR .  

 

)ii  Measurement vector y and underdetermined system  

 

     y s x Ax  (4) 

 

The sensing matrices are   and A , where m n . When m  is closer to k  than n  is, sufficient 

conditions for good signal recovery are satisfied. Then a compression effect exists. Note that 

Eq. (4) appears to be an ill-conditioned equation. That is, the number of unknowns n is larger 

than m the number of equations, m n . However, if x  is k -sparse and the locations of the k  

nonzero elements are known, the problem can be solved provided m k . We can form a 

simplified equation by deleting all those columns and elements corresponding to the 

zero-elements, as follows: 
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  y A x , (5) 

 

where  1,2, ,n    is the support set, which is the collection of indices corresponding to the 

nonzero elements of x. Note that the support set  can be any size- k subset of the full index set, 

 1, 2,3,..., n . Eq. (5) has the unique solution x  if the columns of A are linearly independent. 

The solution can be found using  

 

   1T T
   


x A A A y . (6) 

 

Thus, if the support set  can be found, the problem is easy to solve provided the columns are 

linearly independent.  

 

)iii  Incoherence condition 

The incoherence condition is that the rows of   should be incoherent to the columns of  . If 

the rows of   are coherent to the columns of  , the matrix A cannot be a good sensing 

matrix. In the extreme case, we can show a matrix A  having m  rows of   that are the first 

m columns of  .  

 

  1: ,:

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

T
m

 
 
      
 
 
 

A






 (7) 

 

 If A  of Eq. (7) is used as sensing matrix, the compressed measurement vector y  

captures only the first m  elements of the vector x , and the rest of the information contained in 
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x is completely lost.   

 

)iv  Designing a sensing matrix   

One choice for designing a sensing matrix   is Gaussian. Under this choice, the sensing 

matrix  is designed as a Gaussian, i.e., matrix elements are independent and identically 

distributed Gaussian samples. This choice is deemed good since a Gaussian sensing matrix 

satisfies the incoherence condition with high probability for any choice of orthonormal basis 

 . This randomly generated matrix acts as a random projection operator on the signal vector 

x . Such a random projection matrix needs not depend on specific knowledge about the source 

signals. Moreover, random projections have the following advantages in the application to 

sensor networks [5]. 

 

1) Universal incoherence: Random matrices   can be combined with all conventional 

sparsity basis  , and with high probability sparse signals can be recovered by an 1L  

minimum algorithms from the measurements y . 

 

2) Data independence: The construction of a random matrix does not depend on any prior 

knowledge of the data. Therefore, given an explicit random number generator, only the 

sensors and the fusion center are required to agree on a single random seed for generating the 

same random matrices of any dimension.  

 

3) Robustness: Transmission of randomly projected coefficients is robust to packet loss in 

the network. Even if part of the elements in measurement y  is lost, the receiver can still 

recover the sparse signal, at the cost of lower accuracy.  
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2.2. The 0L , 1L , and 2L  norms 

In CS, a core problem is to find a unique solution for an underdetermined equation. This 

problem is related to the signal reconstruction algorithm, which takes the measurement vector 

y  as an input and outputs the k -sparse vector x . To solve an underdetermined problem, we 

consider minimization criteria using different norms such as the 2L , 1L , and 0L  norms. The 

pL  norm of a vector x  of length N is defined as 

 

 
1

1
,   0

N pp
ip

i
x p



 
  
 
x . (8) 

 

 Although we can define the 2L and 1L  norms as 
1
22

2
1

N

i
i

x


 
  
 
x  and 1

1

N

i
i

x


x , 

respectively, using the definition of pL  norm, 0L  norm cannot be defined this way. The 0L  

norm is a pseudo-norm that counts the number of nonzero components in a vector as defined by 

Donoho and Elad [6]. Using this definition of norms, we will discuss the minimization 

problem.  

 

)i  2L norm minimization 

 

 
   

 
2 2

1

ˆ arg min   subject to ,  where R ,  

          

m n

T T

L rank m



   



x x y Ax A A

A AA y
 (9) 

 

However, this conventional solution yields a non-sparse solution, so it is not appropriate as a 

solution to the CS problem.   
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)ii  0L norm minimization 

 

    0 0
  Minimize   subject to ,  where R ,  m nL rank m  x y Ax A A  (10) 

 

The 0L  norm of a vector is, by definition, the number of nonzero elements in the vector. In the 

CS literature, it is known that the 0L norm problem can be solved by examining all the possible 

cases. Since this process involves a combinatorial search for all possible 
n
k
 
 
 

 support sets, it is 

an NP-complete problem. Thus, we cannot solve it within polynomial time. Therefore, we 

consider 1L  norm minimization as an alternative. 

 

)iii  1L  norm minimization 

 

    1 1
  Minimize   subject to , where R ,  m nL rank m  x y Ax A A  (11) 

 

This 1L  norm minimization can be considered as a relaxed version of the 0L  problem. 

Fortunately, the 1L  problem is a convex optimization problem and in fact can be recast as a 

linear programming problem. For example, it can be solved by an interior point method. Many 

effective algorithms have been developed to solve the minimum 1L  problem, and it will be 

considered later in this chapter. Here, we aim to study the sufficient conditions under which Eq. 

(10) and (11)  have unique solutions. We provide a theorem related to this issue.  
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0 1/L L  equivalence condition: 

Let m nA R be a matrix with a maximum correlation definition  ,   max , ,i ji j



A a a  

where ia  is the i th column vector of A  with 1, 2,...,i n , and x is a k -sparse signal. Then, if 

1 11
2

k


 
  

 
 is satisfied, then the solution of 1L  coincides with that of 0L  [6]. 

Theorem 1. 0 1/L L  Equivalence condition. 
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3. Wireless sensor networks 

3.1. Network structure 

We consider a WSN consisting of a large number of wireless sensor nodes and one FC (Figure 

2). The wireless sensor nodes are spatially distributed over a region of interest and observe 

physical changes such as those in sound, temperature, pressure, or seismic vibrations. If a 

specific event occurs in a region of distributed sensors, each sensor makes local observations of 

the physical phenomenon as the result of this event taking place. An example of sensor network 

applications is area monitoring to detect forest fires. A network of sensor nodes can be installed 

in a forest to detect when a fire breaks out. The nodes can be equipped with sensors to measure 

temperature, humidity, and the gases produced by fires in trees or vegetation [7]. Other 

examples include military and security applications. Military applications vary from 

monitoring soldiers in the field, to tracking vehicles or enemy movement. Sensors attached to 

soldiers, vehicles and equipment can gather information about their condition and location to 

help planning activities on the battlefield. Seismic, acoustic and video sensors can be deployed 

to monitor critical terrain and approach routes; reconnaissance of enemy terrain and forces can 

be carried out [8].  

 

 

 . Wireless Sensor NetworkFigure 2  
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 After sensors observe an event taking place in a distributed region, they convert the 

sensed information into a digital signal and transmit the digitized signal to the FC. Finally, the 

FC assembles the data transmitted by all the sensors and decodes the original information. The 

decoded information at the FC provides a global picture of events occurring in the region of 

interest. Therefore, we assume that the objective of the sensor network is to determine 

accurately and rapidly reconstruct transmitted information and reconstruct the original signal.  

We discuss the resource limitations of WSNs in the next section. 
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3.2. Resource limitations in WSNs  

In this section, we describe the assumptions made in the sensor network we are interested in. 

We assume that the sensors are distributed and supposed to communicate with the FC through 

a wireless channel. Because each sensor is important components of WSN which observes 

event, they should typically be deployed in a large volume over the region of interest. 

Therefore, they are usually designed to be inexpensive and small. For that reason, each sensor 

operates on an onboard battery which is not rechargeable at all; thus, for simplicity, the 

hardware implementation of sensor nodes can provide only limited computational performance, 

bandwidth, and transmission power. As a result of limitations on the hardware implementation 

in sensor nodes, the FC has powerful computation performance and plentiful energy which 

naturally performs most of the complex computations.  

Under the limited conditions stated above for a WSN, CS can substantially reduce the 

data volume to be transmitted at each sensor node. With the new method, it is possible to 

compress the original signal using only   log /O k n k  samples without going through many 

complex signal processing steps. These signals can be recovered successfully at the FC. All 

these are done under the CS framework. As the result, the consumption of power for 

transmission of signal contents at each sensor can be significantly reduced thanks to decreased 

data volume. Further, it should be noted that, this data reduction comes without utilizing 

onboard signal processing units since all the intermediate signal processing steps, shown 

Figure 1, are not needed. Namely, the sensor nodes can compress the signal while not spending 

any power for running complex compression algorithms onboard.  
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3.3. The usefulness of CS in WSNs 

In this section, we provide a brief comparison of using CS and using the conventional 

compression in a WSN. This comparison illustrates why CS could be a useful solution for 

WSNs.  

 

)i   Sensor network scheme with conventional compression 

For a conventional sensor system, suppose that the system designer has decided to gather all 

the uncompressed samples at a single location, say one of the sensors, in order to exploit 

inter-sensor correlation. See diagram shown in Figure 3. At the collection point, joint 

compression can be made and compressed information can be sent to the FC.  

 This option has a couple drawbacks. First, gathering the samples from all the sensors 

and jointly compressing them cause a transmission delay. Second, a lot of onboard power 

should be spent at the collaboration point. Third, each sensor should be collocated so that the 

transmitted information can be gathered at collaboration location.  

 

 

 . Conventional sensor network schemeFigure 3  
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 Now, we may suppose that the joint compression is not aimed at and each sensor 

compresses the signal on its own. First, the data reduction effect with this approach will be 

limited because inter-sensor correlation is not exploited at all. The total volume of the 

independently compressed data is much larger than that of jointly compressed data. This may 

produce a large traffic volume in the WSN and a large amount of transmission power will be 

wasted from the sensor nodes which transmit essentially the same information to the FC. Thus, 

this is an inefficient strategy as well. 

 

)ii  Sensor network scheme with compressive sensing 

In contrast to the conventional schemes considered in the previous paragraph, the CS method 

aims to acquire compressed samples directly. If a high-dimensional observation vector x  

exhibits sparsity in a certain domain (by exploiting intra-sensor correlation), CS provides the 

direct method for signal compression as discussed in Figure 1. To compress the 

high-dimensional signal x  into a low-dimensional signal y , as Eq. (3), it uses a simple matrix 

multiplication with an m n  projection matrix  ,  1,2,...j j JA , where j  is the sensor index, 

as depicted in Figure 4.  

 

 

 . CS sensor network schemeFigure 4  
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 In the CS-based sensor network scheme, each sensor compresses the observed signals 

using a simple linear projection and transmits the compressed samples to the FC. Then, the FC 

can jointly reconstruct the received signals (by exploiting inter-sensor correlation) using one of 

the CS algorithms. Therefore, each sensor does not need to communicate with its neighboring 

sensors for joint compression. Our method is distributed compression without having the 

sensors to talk to each other; only the joint recovery at the FC is needed. Thus, no intermediate 

stages are required which are to gather all of the samples at a single location and carry out 

compression aiming to exploiting inter-sensor correlation. This free of intermediate stages 

allow us to reduce time delay significantly as well. Therefore, if the original data are 

compressed by CS, each sensor node produces much smaller traffic volume which can be 

transmitted to the FC at a much lower transmission power and with a smaller time delay. 
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4. Wireless sensor network system model  

4.1. Multi-sensor systems and observed signal properties 

Each sensor can observe only the local part of an entire physical phenomenon, and a certain 

event of interest is measured by one or more sensors. Therefore, the sensed signals are often 

partially correlated. These measured signals have two distinct correlations: intra-sensor 

correlation and inter-sensor correlation. Intra-sensor correlation exists in the signals observed 

by each sensor. Once a high-dimensional sensed signal has a sparse representation in a certain 

domain, we can reduce its size by using CS. This process exploits the intra-sensor correlation. 

In contrast, inter-sensor correlation exists between the signals sensed by different sensors. By 

exploiting inter-sensor correlation, further reduction in transmitted signals can be made.   

 These two correlations can be exploited to improve the system performance. As the 

number of sensors in a region becomes dense, each sensor has a strongly correlated signal that 

is similar to that of neighboring sensors. In contrast, if we decrease the density of sensors 

distributed in a given region, the sensed signals will obviously be more weakly correlated with 

each other. In this section, we discuss two strategies for transmitting signals in a multi-sensor 

CS-based system. One strategy uses only intra-sensor correlation, and the other uses both types 

of correlation. We illustrate that CS-based system in WSN exploits the inter-sensor correlation 

more effectively and simply than that of conventional sensor network.  

 

)i  Exploiting only intra-sensor correlation 

In Figure 5, each sensor observes the source signal and independently compresses it to a 

low-dimensional signal. After compression, each sensor transmits the compressed signal to the 

FC. Without exploiting inter-sensor correlation between transmitted signals, the FC recovers 

these signals separately. In this case, even if there exists correlation among the sensed signals, 

because only intra-sensor correlation is exploited, we cannot gain any advantages from joint 

recovery. This method has the following characteristics: 
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1) Independent compression and transmission at each sensor 

2) Signal recovery by exploiting only intra-sensor correlation at the FC 

 

)ii  Exploiting both intra- and inter-sensor correlation 

Figure 6 shows the same process as in situation )i  above, except that the FC exploits the 

inter-sensor correlation among sensed signals at signal reconstruction stage. In conventional 

sensor network system as shown in Figure 3, the sensor nodes communicate with their 

neighboring sensors to take advantage of joint compression by exploiting inter-sensor 

correlation. However, in the CS-based system, a stage for exploiting inter-sensor correlation is 

achieved at FC. It means that if inter-sensor correlation exists within the sensed signals, and the 

FC can exploit it. This is done with sensors communicating with the FC but not among the 

sensors themselves. We refer to this communication strategy as the Distributed Compressive 

Sensing (DCS). Exploitation of inter-sensor correlation should be manifested with the 

reduction of the measurement size m  of matrix m nA R , where y Ax , required for good 

single recovery. The characteristics of our DCS sensor network are: 

1) Independent compression and transmission at each sensor 

2) Exploitation of inter-sensor signal correlation with the joint recovery scheme at the FC 

3) Variation of the per sensor CS measurements to manipulate the level of signal correlation 

       
   . Intra-sensor correlation schemeFigure 5      . Intra/Inter-sensor correlation schemeFigure 6  
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4.2. Correlated signal models and system equations 

In this section, we introduce how signals with different degrees of correlation can be generated 

with sparse signal modes.  Sparse signal is a correlated signal. The degree of sparseness, called 

the sparsity, is proportional to the amount of correlation. More correlated signal means sparser. 

In addition, inter-sensor signal correlation can be modeled )i  by the degree of overlaps in the 

support sets of any two sparse signals, and )ii  by the correlation of non-zero signal values. 

There are a number of papers which use interesting signal correlation models [5],[9],[10],[11]. 

The following table (Table 1) is useful for identifying the two models we take from these 

papers and use in the subsequent sections.  

 

Correlation 
degree 

Correlation characteristics 

Model name Support set Element value 

Common Innovation Same Different Both 

Weak  
 
  
 

Strong 

O O X O X (Empty) 

O O X X O JSM-1 

O X X O X JSM-2 

O X O X X (Empty) 

Table 1. Synthetic signal models according to correlation degree. 
 

 Table 1 lists the signal models introduced in [9],[10]. In those references, the 

correlation signal is referred to as JSM-1 (joint signal model) or JSM-2 depending on the 

correlation type. In JSM-1, all of the signals share exactly the same common nonzero 

components that have the same values, whereas each signal also independently has different 

nonzero components, which is called innovation. Such a signal is expressed as  

 

  , 1,2, ,j c j j J  x z z  , j is the index of the sensors, (12) 



21 

  

where 
0c Kz , and 

0j jKz . Obviously, cz  appears in all the signals. It can be 

recognized as the inter-sensor correlation. We note that the intra-sensor correlation is that all of 

the signals are sparse. The j th sensor transmits j j jy A x  to the FC. After all the sensed 

signals are transmitted to the FC, the FC aims to recover all the signals. Because inter- sensor 

correlation exists in the sensed signals, we can obtain several benefits by using the correlated 

information in the transmitted signals. For ease of explanation, suppose that the WSN contains 

J  sensors, and its sensed signal follows JSM-1. Then, the FC can exploit both intra- and inter- 

sensor correlation by solving Eq. (13) as described below. 

 

)i  Joint recovery scheme for JSM-1 

The sensed signals from J sensors can be expressed as follows. 

 

1 1

2 2

n
c

n
c

n
J c J

  

  

  

x z z R

x z z R

x z z R


, 

where the sparsities of vectors cz  and jz  are K and jK , respectively. 

 

The transmitted signal jy  can be divided into two parts as follows.  

 

( )j j c j j c j j   y A z z A z A z  

 

 If the FC received all the signals transmitted from J  sensors, it then concatenates the 

used sensing matrix and received signal using Eq. (13). Because the common sparsity cz  
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appears only once in the equation, the total sparsity is reduced from  jJ K K   to 

 jK J K  . In the underdetermined problem, low sparsity yields exact reconstruction. We 

will show the relationship between exact reconstruction and sparsity from simulation results in 

later section. By solving this equation, the FC can take advantage of exploiting inter-sensor 

correlation. 

 

 

1 1 1
1

2 2 2
2

3 3 3
3

c

J JJ
J

 
     
     
     
     
     
     
          

z
y A A 0 0 0

z
y A 0 A 0 0

z
y A 0 0 A 0

z
0

A 0 0 0 0 Ay
z





    



 (13) 

 

 However, if the FC recovers the received signals independently without using any 

correlation information, separate recovery is done. Even if the sensed signals are correlated, 

separate recovery offers no advantages for signal reconstruction because it does not exploit 

inter- sensor correlation.  

 

)ii Separate recovery scheme for JSM-1 

Even if a common correlated element exists in the sensed signals, separate recovery does not 

use that correlation information. Therefore, the received signals are recovered as follows. 

 

 

1 11

2 2 2

JJ J

    
    
    
    
    

    

y xA 0 0 0
y 0 A 0 x

0
0 0 0 Ay x


   

 (14) 
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To solve Eq. (13) and (14), we use the primal-dual interior point method (PDIP), which is an 

1L  minimization algorithm, and compare the results of the two types of recovery. Using the 

comparison results in a later section, we can confirm that the measurement size required for 

perfect reconstruction is smaller for joint recovery than for separate recovery. 

 Now, we introduce JSM-2, which is simpler than JSM-1. All the signal coefficients are 

different, but their indices for nonzero components are the same. Suppose that there exist two 

signals, 1x  and 2x . The i th coefficient for 1x  is nonzero if and only if the i th coefficient for 

2x  is nonzero. This property represents inter-sensor correlation, because if we know the 

support set for 1x , then we automatically know the support set for 2x .  

 

)iii  Recovery scheme for JSM-2 

The inter-correlation prior becomes relevant when the number of sensors is more than two. To 

reconstruct the transmitted signals about JSM-2, we can solve the equation below jointly. 

 

  ,  1, 2,...,j j j j J y A x  (15) 

 

 Like the FC in JSM-1, the FC in JSM-2 can exploit the fact that the support set is 

shared. By solving the Eq. (15) jointly in JSM-2, we obtain several benefits when the FC 

exploits inter-sensor correlation. If we solve this equation separately, but not jointly, it is 

separate recovery. As an algorithm for solving the equation of the JSM-2 signal, we use a 

simultaneous OMP modified from an OMP algorithm in order to demonstrate the benefits 

when the FC exploits inter- sensor correlation. These algorithms are discussed in Section 5.  
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5. Recovery algorithms 

In this section, we discuss the recovery algorithms used to solve the underdetermined equation. 

The recovery algorithms used in CS can be classified as the greedy type and the gradient type.  

We introduce representative algorithms from these two types, the orthogonal matching pursuit 

(OMP) and the primal-dual interior point method (PDIP) respectively. 

 

5.1. Orthogonal matching pursuit (OMP) (greedy-type algorithm) 

The orthogonal matching pursuit (OMP) is a famous greedy-type algorithm [12]. OMP 

produces a solution within k  steps because it adds one index to the sparse set   at each 

iteration. The strategy of OMP is outlined in Tables 2 and 3. 

 

Input Output 

A  measurement matrix 
A dimensional data vector 
The sparsity level  of the ideal signal

m n
m

k




A
y   

ˆAn estimate  in  for the ideal signal.
A set  containing  elements from 1,...,

ˆAn dimensional approximation  of the data 
ˆAn dimensional residual 

n

k

k

k k

R
k n

m
m





  

x

y y
r y y

 

Table 2. Inputs and outputs of OMP algorithm. 

 

The OMP algorithm: 

1. Initialize: 

 Let the residual vector be 0 r y , the sparse set 0 {}  , and iteration number 1t  . 

2. Find the index t : 1
1,...,

arg max ,t t i
i n

 


 r a . The ia  is the  i th column vector of matrix A .  

3. Update set:  1t t t    . 

4. Signal estimate:   †
tt t  x A y  and  C

t t x 0 , where  t tx  is the set of elements 

whose indices are corresponding to the sparse set. 
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5. Get new residual: ˆ ˆ,  t t t t t  y A x r y y . 

6. Increment t : Increase iteration number 1t t  , and return to Step 2 if t k . 

Table 3. OMP algorithm. 

 

 Let us examine the above OMP algorithm. In step 2, OMP selects one index that has a 

dominant impact on the residual vector r . Then, in step 3, the selected index is added to the 

sparse set, and the sub matrix 
t

A  is constructed by collecting the column vectors of A  

corresponding to the indices of the sparse set t . OMP estimates the signal components 

corresponding to the indices of the sparse set and updates the residual vector by removing the 

estimated signal components in steps 4 and 5, respectively. Finally, OMP finishes its 

procedures when the cardinality of the sparse set is k .  

 OMP is a greedy-type algorithm because it selects the one index regarded as the 

optimal decision at each iteration. Thus, its performance is dominated by its ability to find the 

sparse set exactly. If the sparse set is not correctly reconstructed, OMP’s solution could be 

wrong. Because OMP is very easy to understand, a couple of modified algorithms based on 

OMP have been designed and developed. For further information on the OMP algorithm and its 

modifications, interested readers are referred to two papers [13],[14].  

 We introduce another greedy-type algorithm based on OMP as an example: 

simultaneous orthogonal matching pursuit (SOMP) [13]. This greedy algorithm has been 

proposed for treating multiple measurement vectors for JSM-2 when the sparse locations of all 

sensed signals are the same. Namely, SOMP algorithm handles with multiple measurements 

jy  as an input, when j  is the index of distributed sensors,  1, 2,...,j J . In a later section, 

we use this algorithm to recover JSM-2. The pseudo code for SOMP is shown in Table 4 and 

5.  
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Input Output 

A  measurement matrix 

A dimensional data vector 
The sparsity level  of the ideal signal

j

j

m n

m
k





A

y  
 
,

, ,

ˆAn estimate  in  for the ideal signal.

A set  containing  elements from 1,...,
ˆAn dimensional approximation  of the data 

ˆAn dimensional residual 

n
j

k

j k j

j k j j k

R

k n
m
m





  

x

y y
r y y

 

Table 4. Inputs and outputs of SOMP algorithm. 

 

The SOMP algorithm: 

1. Initialize:  

Let the residual matrix be ,0 ,0j jr y . The sparse set 0 {}  , and iteration number 1t  . 

2. Find the index t : , 1 ,
1,..., 1

arg max ,
J

t j t j i
i n j

 
 

  r a . 

 The ,j ia  is the i th column vector of matrix jA . 

3. Update set:  1t t t    .  

4. Signal estimate:   †
, , tj t t j j x A y  and  ,

C
j t t x 0 , where  ,j t tx  is the set of 

elements whose indices are corresponding to the sparse set. 

5. Get new residual: , , , , ,ˆ ˆ,  j t j t j t j t j j t  y A x r y y . 

6. Increment t : Increase iteration number 1t t  , and return to Step 2 if t k . 

Table 5. SOMP algorithm. 
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5.2. Primal-Dual interior point method (PDIP) (gradient-type algorithm) 

The 1L  minimization in Eq. (11) can be recast as linear programming. Here we examine this 

relationship. Clearly, the 1L minimization problem in Eq. (11) is not linear programming 

because its cost function is not linear. However, by using a new variable, we can transform it to 

linear programming. Thus, the problem that we want to solve is  

 

  

 

 

,
min

subject to 

ix u i

i i

u

x i u 





Ax b .

 (16) 

 

 The solution of the above equation is equal to the solution of the 1L  minimization 

problem. Many approaches to solving Eq. (16) have been studied and developed. Here, we 

discuss the primal-dual interior point (PDIP) method, which is an example of gradient-type 

algorithms. First, we have the Lagrangian function of Eq. (16), as follows: 

 

     T T T T
1 2, ,L

               

e e
t λ v 0 1 t v A 0 t b λ t

e e
, (17) 

 

where e  is the n n  identity matrix, 10  is the zero vector, 20  is the m n  zero vector, and 1  

is the 1n  vector whose elements are all one, 2 1: n 
  
 

x
t R

u
, 1mv R , and 2 1 0n λ R . 

From the Lagrangian function, we have several KKT conditions,  
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30,

    
           

 

 
   
 

    

0 e eA v λ 0
1 e e0

A 0 t b 0

e e
t 0

e e

e e
λ t λ 0

e e

, (18) 

 

where 30  is the 2 1n  zero vector, and 40  is the 1m  zero vector. The main point of the PDIP 

is to seek the point  * * *, ,t λ v  that satisfies the above KKT conditions. This is achieved by 

defining a mapping function      2 1 2 1F , , : n m n m   t λ v R R , which is  

 

    
 

 

T

T

T 2 1* * * *
4 1 3

2

F , , , ,n m 

     
            

                    
 

 
 
 

0 e eA v λ
1 e e0

e e e e
t λ v λ t 0 R t 0 λ 0

e e e e
A 0 t b

, (19) 

 

where 40  is the  2 1 1n   zero vector. Now, we would like to find the point  * * *, ,t λ v  

satisfying  * * *
4F , , t λ v 0 . Here, we use a linear approximation method. From the Taylor 

expansions of the function  F , ,t λ v , we have  

 

        , ,F , , F , , F , ,
 
         
  

t λ v

t
t t λ λ v v t λ v t λ v v

λ
. (20) 
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Thus, solving the above equations yields the direction  , ,  t v λ . Next, we seek the proper 

step length along the direction that does not violate *
1

 
   

e e
t 0

e e
 and *

3λ 0 . The pseudo 

code for the PDIP algorithm is shown in Table 6. 

 

The primal-dual interior point method algorithm: 

1. Initialize:  

Choose 0 1mv R , 0
3λ 0 , and 

T0 0 0   t x u , where †x A b , and 0 0 0 u x x  and 

iteration number 1k  . (The   1† T T
A A A A  is the Moore-Penrose pseudo-inverse of A  

and TA  denotes the transpose of A .) 

2. Find the direction vectors  , ,  t v λ : 

      
1

, ,
F , , F , ,k k k

k k k k k k


 
          
  

t λ v

t
v t λ v t λ v
λ

. 

3. Find the proper step length:  

Choose the largest   satisfying    2 2

2 2
F , , F , ,k k k k k k     t λ v t λ v . 

4. Update parameters:  

1 1 1,  ,  k k k k k k            t t t v v v λ λ λ . 

5. Update the signal:  

 1 1:k k n  x x t . 

6. Increment the iteration number k :  

Increase iteration number 1k k  , and return to Step 2 if 
2

2

k eps y Ax . 

Table 6. Primal-dual interior point method algorithm. 
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6. Performance evaluation 

In this section, we investigate the performance of a WSN system that applies CS by using the 

PDIP or the SOMP. We divide this section into four sections that analyze the relationship 

between the number of measurements M , sparsity k  depending on the number of sensors J , 

the degree of correlation, and the signal-to-noise ratio (SNR), respectively. To avoid confusion 

regarding the graphs, we define the notations and metrics used in the experiments in Tables 7 

and 8, respectively.  

 

Notation: 

N : The length of the signal x  at each sensor, M : the length of measurement y . 

j : Index of the sensors,  1, 2,...,j J . 

y : Signal transmitted from each sensor. 

A : Sensing matrix, M NR , which has a Gaussian distribution 

x : Sparse signal on the sensor; its elements also have a Gaussian distribution.  

n : Additive white Gaussian noise (AWGN). 

K : Common sparsity number. 

jK : Innovation sparsity number. 

Table 7. Notation used in experiments. 

 

Metric: 

)i SNR (dB) : Signal-to-noise ratio, 

2

2
10 210 log

Mn

Ax
,  

where 2 : The variance of noisen . 



31 

  

)ii MSE : Mean square error, 

2

2
2

2

ˆ x x

x
,  

where ˆ : Recovered signalx , and : Original signalx . 

Table 8. Metrics used in experiments. 

 

 The proposed correlation signals, JSM-1 and JSM-2, as described in Table 1, will also 

be investigated in terms of various parameters, such as signal length, matrix size, and sparsity 

number. To recover the JSM-1 signal (which includes both common and innovation 

components, and the common component has the same values for every sensor) from received 

signal y , we use the PDIP algorithm. However, to recover the JSM-2 signal (which includes 

only a common component that has different values for every sensor), we use SOMP. It is 

inappropriate to apply SOMP to the JSM-1 signals because there exists the innovation 

component at every sensed signal jx . Although SOMP can identify the common part exactly, 

confusion may arise regarding the optimal selection for the innovation component. Because 

SOMP selects only one index that has the optimal value among the vector elements of length 

N  in every iteration, if the selected index is included in the innovation component of only one 

sensor node, the solution cannot be correct.  

 For this reason, we use the SOMP algorithm to recover only the JSM-2 signal. If we 

use SOMP to recover the JSM-1 signal, we should improve the algorithm for finding the 

innovation component. From the results of simulations using those two recovery algorithms, 

we determined the relationship among the sensors, measurement, and amount of correlation in 

the unknown sensor signals.  
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6.1. Reconstruction performance as a function of sparsity 

Figure 7 shows the results when the PDIP algorithm was used to reconstruct signals for JSM-1. 

We increased the common sparsity K  of each sensor and number of sensors J  while fixing 

the signal length, the number of measurements, and the innovation sparsity of each sensor at 

50N  , 20M  , and 3jK  , respectively. The FC concatenates the received signals jy , 

 1, 2,...,j J  to  1 2, ,..., T
Jy y y ,and puts the sensing matrices to the integrated one as PDIPA  

of Eq. (21). Thus, the equation is :PDIP PDIP PDIPy A z , and the number of measurements in this 

equation is PDIPM M J  ; it then uses PDIP algorithm to get  PDIPz  from PDIPy . The 

recovered signal  1 2ˆ ˆ ˆ ˆ, , ,..., T
c Jz z z z  from  1 2, ,..., T

Jy y y was compared with the original 

 1 2, , ,..., T
c Jz z z z in order to calculate the probability of exact reconstruction. 

 

 



1 1 1
1

2 2 2
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     A
z

z
y A A 0 0

z
y A 0 A

y z
0

A 0 0 0 Ay
z


 

   




 (21) 

 

 In this case, even if the original signal n
j c j  x z z R ,  1, 2,...,j J  is not sparse, 

the signals jy  transmitted from sensors can be recovered perfectly at the FC if all the sensors 

have a small number of innovation component jK  that corresponds to jz . However, as the 

number of sensors increases, the integrated matrix also becomes large. Consequently, the 

computation is complex, and much time is required to obtain the solution.  

 Figure 8 illustrates the use of the SOMP algorithm to recover JSM-2. The fixed 

parameters are the signal length N  and measurement size M of each sensor. To determine the 
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effect of the number of sensors and sparsity in the WSN, we increased the sparsity K  and 

number of sensors J . Because the JSM-2 signal has the same sparse location for every sensor, 

the sparse location can be found by using SOMP easily. As the number of sensors increases, the 

probability of making the optimal decision at each iteration is greater. As a result, exact 

reconstruction is achieved, as shown in Figure 8. 
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Figure 7. Signal reconstructed using PDIP algorithm for JSM-1. System parameters 
are 50N  , 20M  , and innovation sparsity 3jK  . 

 

 In both cases, we notice that the probability of successful reconstruction increases as 

the number of sensors increases, because both algorithms use the prior information that the 

signals are correlated. For example, when we increase only the common sparsity K , we can 

reconstruct all of the signals by only increasing the number of sensors. Interestingly, the curve 

of Figure 7 in JSM-1 experiment does not show convergence as the number of sensors 

increases. On the other hand, that of Figure 8 in JSM-2 experiment converges to 1M   as the 

number of sensors increases. These results are determined from the ratio of the number of 

measurement to sparsity  /M K  in compressive equation. In the case of Figure 7, as the 
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number of sensors increases, the number of measurement PDIPM  also increases. Thus, as the 

number of sensors increases, the ratio is also changed. (In our experiment, we choose 3jK  , 

where jK M . Therefore, the ratio increases as the number of sensors increases.) In the case 

of Figure 8, there is no change for the ratio regardless of increasing the number of sensors. The 

varying ratio  /M K  of JSM-1 experiment makes the result about no convergence in contrast 

with that of JSM-2 experiment. 

0 5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sparsity, K

P
ro

ba
bi

lit
y 

of
 e

xa
ct

 re
co

ns
tru

ct
io

n

 

 

J = 32
J = 16
J = 8
J = 4
J = 2
J = 1

 
Figure 8. Signal reconstructed signal using SOMP for JSM-2 for increasing common 
sparsity K and number of sensors J. System parameters are 256N   and 32M  . 

 

Summary 6.1 Reconstruction performance as a function of sparsity 

We aim at investigating how the increase in sparsity K  for signal at each sensor affects 

reconstruction performance of the joint recovery algorithms, while the signal length N  and 

the number of measurements M  are fixed at each sensor. As the common sparsity K  of each 

sensor increases, the probability of exact reconstruction decreases. This is obvious. Eq. (21) is 

the result of JSM-1 model which can be used to represent both common and innovative 
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elements in each sensor and allows exploitation of inter-sensor correlation. Thus, as the 

number of sensors increases, the total sparsity and the number of measurements PDIPM  also 

increases as shown in Eq. (21). In JSM-2, the sparsity K and the number of measurements 

M per sensor are fixed by the formulation in (15), regardless of the number of sensors. The 

varying ratio between the number of measurement and sparsity makes the results of Figure 7 

and 8, respectively. 
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6.2. Relationship between the number of sensors and the number of measurements required for 

exact reconstruction 

In Figure 9, we show the results when we increased the number of measurements and the 

number of sensors while fixing the signal length ( 50N  ), common component ( 9K  ), and 

innovation component ( 3jK  ). As the number of sensors increased, the number of 

measurements required for the probability of exact reconstruction to converge to one decreased. 

Therefore, if we use many sensors to reconstruct the correlated signal, we can reduce the 

number of measurements, which in turn reduces the transmission power at each sensor. 

However, as Figures 9 and 10 show, the decrease in measurement size is limited by the 

sparsity number  1K   in one sensor.  
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Figure 9. Signal reconstructed using PDIP algorithm for JSM-1. System 
parameters: 50N  , 9K  , 3jK  . 

 

 For JSM-2 signals, reconstruction is similar to that of JSM-1 signals in terms of the 

effect of increasing the number of sensors when the correlated signal is jointly recovered 

(Figure 10, solid line). However, if signal reconstruction is performed separately, more 
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measurements per sensor are needed as the number of sensors J  increases (Figure 10, dotted 

line). Because the transmitted signals from each sensor are reconstructed independently, if the 

probability p  of successful reconstruction is less than or equal to 1, and then the total 

probability of successful reconstruction for all transmitted signals is Jp .  
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Figure 10. Reconstruction using SOMP for JSM-2. System parameters: 50N  , 

5K  . Solid line: joint recovery, dotted line: separate recovery. 
 

Summary 6.2 Relationship between the number of sensors and the number of 
measurements required for exact reconstruction 

We aim at investigating how the probability of exact reconstruction changes with the number 

of sensors increased. As the number of sensors is increased, the signals FC collects are more 

inter-sensor correlated and the number of measurements per sensor required for exact 

reconstruction decrease. Figure 9 and Figure 10 show that the original signals can be 

recovered with high probability at the fixed measurement as J   and the per-sensor 

measurements required for perfect signal recovery converges to 1K  .  
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6.3. Performance as a function of SNR 

In this section, we present the system performance of a WSN that uses CS in an additive white 

Gaussian noise (AWGN) channel. As in the other experiment, we used a Gaussian distribution 

to create the sensing matrix jA ,  1, 2,...,j J and sparse signal jx  and then added AWGN 

n to the measurement j j jy A x . At the FC, the received signal j j y y n  was recovered 

jointly. We increased the number of sensors while fixing the signal length, number of 

measurements, common sparsity, and innovation sparsity at 50N  , 20M  , 3K  , and 

2jK  , respectively. In this experiment, the SNR is set as shown below. 

 

 
2

10 2SNR Signal to Noise Ratio 10 log j j

M


n

A x
 

 

 The 
2

j jA x is the transmitted signal power at sensor j , M is the number of 

measurements, and 2
n  is the noise variance. To estimate the reconstruction error between the 

original signal jx  and the reconstruction signal ˆ jx , we used the mean square error (MSE) as 

follows.  

 

2

2

ˆ
Mean square error j j

j




x x

x
 

 

 We applied the PDIP algorithm to solve Eq. (21) for JSM-1 and obtained the solution, 

 1 2ˆ ˆ ˆ ˆ, , ,..., T
c Jz z z z . Because of the effect of noise, the solution  1 2ˆ ˆ ˆ ˆ, , ,..., T

c Jz z z z  does not have 

a sparse solution. Therefore, we chose the largest  jK J K   values from among the 
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elements of the solution. To compare the recovered signal ˆ jx to the original sensed signal jx , 

we divided the concatenated solution  1 2ˆ ˆ ˆ ˆ, , ,..., T
c Jz z z z  by each recovered signal ˆ jx . The 

results are shown in Figure 11.  
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Figure 11. Signal reconstructed using primal-dual interior point method for JSM-1. 
System parameters: 50N  , 20M  , 3K  , and 2jK  . 

 

 To obtain the results in Figure 12, we used the SOMP algorithm for JSM-2 with the 

same processing. In contrast to the PDIP algorithm, the SOMP algorithm first searches the 

support set; therefore, it does not require a step in which the largest K  values are chosen from 

among the elements of the solution. However, if the selected support set is wrong, the 

reconstruction is also wrong. Both results, Figures 11 and 12, show that if we increase the 

number of sensors, the MSE is improved and finally converges to zero as the SNR increases. 

Even if the transmitted signals contain much noise, having a large number of sensors to observe 

the correlated signal in the sensed region facilitates the search for the exact solution. In Figure 

12, when the number of sensors is two or three, the MSE does not converge to zero even if the 
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SNR is high. Because the SOMP algorithm uses cross correlation to find the support set (step 2 

of Table 5), if the rank of sensing matrix A is smaller than the number of columns in A , then 

each column will exhibit significant correlation among themselves. Consequently, the SOMP 

algorithm selects the wrong support location. However, this problem can be solved by using a 

large number of sensors.  
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Figure 12. Signal reconstructed using SOMP for JSM-2. System parameters: 

50N  , 20M  , 5K  . 
 

Summary 6.3 Performance as a function of SNR 

We aim to investigate the effect of noise in CS based WSN. In particular, we experiment how 

mean square error decreases as SNR increases. Figure 11 and 12 show similar results. As the 

number of sensors increases, signals are more correlated. This helps signal recovery.  
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6.4. Joint vs. separate recovery performance as a function of correlation degree 

Now, we compare the results of joint recovery and separate recovery (Figure 13). In joint 

recovery, if a correlation exists between the signals observed from the distributed sensors, the 

FC can use the correlated information to recover the transmitted signals. In separate recovery, 

correlated information is not used regardless of whether a correlation pattern exists between the 

observed signals. In Figure 13, solid lines were obtained from joint reconstructions, whereas 

dotted lines are the results of separate reconstructions.  
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Figure 13. Joint (solid line) and separate (dotted line) reconstruction using PDIP 
algorithm for JSM-1. System parameters: 50N  , 2J  . The benefits of joint 
reconstruction depend on the sparsity number K . 

 

 When we use separate reconstruction, we cannot obtain any benefits from correlated 

information. However, when we use joint reconstruction, we can reduce the measurement size. 

For example, in Figure 14, the required number of measurements is almost 40 (dashed line and 

circles, 6K  ) for perfect reconstruction when we use separate reconstruction. On the other 

hand, when we use joint reconstruction, it decreases to around 30 (solid line and circles, 

6K  ). Furthermore, as the common sparsity increases, the performance gap increases. For 
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example, when the common sparsity is 9, joint reconstruction has a 90% probability of 

recovering all the signals at 30M  . However, the probability that separate reconstruction can 

recover all the signals is only 70%. Figure 13 also shows that joint reconstruction is superior to 

separate reconstruction. For example, we need at least 30 measurements for reliable recovery 

using separate reconstruction. However, we merely need at least 25 measurements for reliable 

recovery using joint reconstruction.  
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Figure 14. Joint (solid line) and separate (dotted line) reconstruction using SOMP for 
JSM-2. System parameters: 50N  , 2J  . Joint reconstruction has a higher 
probability of success than separate reconstruction.  

 

Summary 6.4 Joint vs. separate recovery performance as a function of correlation degree 

If a correlation exists between the signals observed from the distributed sensors, and if the FC 

uses the joint recovery, then it can reduce the measurement size required for exact 

reconstruction in comparison that with the separate recovery. As the degree of correlation 

increases, the gap in the results of two methods (Joint recovery and Separate recovery) widens 

as shown Figure 13 and 14. 
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7. Summary of Chapter 

In this chapter, we discussed the application of compressive sensing (CS) for wireless sensor 

networks (WSNs). We assumed a WSN consisting of spatially distributed sensors and one 

fusion center (FC). The sensor nodes take signal samples and pass their acquired signal 

samples to the FC. When the FC receives the transmitted data from the sensor nodes, it aims to 

recover the original signal waveforms, for later identification of the events possibly occurring 

in the sensed region. (Section 3.1)  

 We discussed that CS is the possible solution which provides simpler signal acquisition 

and compression. CS is suitable for the wireless sensor networks since it allows removal of 

intermediate stages such as sampling the signal and gathering the sampled signals at one 

collaboration point which would usually be the case in a conventional compression scheme. 

Using CS, the amount of signal samples that need to be transferred to the FC from the sensors 

can be significantly reduced. This may lead to reduction of power consumption at the sensor 

nodes, which was discussed in Section 3.3. In summary, each sensor with CS can save power 

by not needing to run complex compression operations on board and by cutting down signal 

transmissions.  

 Distributed sensors usually observe a single globally occurring event and thus the 

observed signals are often correlated with each other. We considered two types of correlations: 

intra- and inter-sensor signal correlation. We provided the sparse signal models which 

encompass both types of correlation in Sections 4.1 and 4.2.  

 The FC receives the compressed signals from the sensors. The FC then recovers the 

original signal waveforms from the compressed signals using a CS recovery algorithm. We 

considered two types of algorithms. One is a greedy algorithm type, which includes the 

orthogonal matching pursuit (OMP) and the simultaneous orthogonal matching pursuit 

(SOMP) algorithms, discussed in Section 5.1. The other is a gradient type for which we used 
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the primal-dual interior point (PDIP) method, in Section 5.2. 

 Finally, we presented simulations results in which the CS based WSN system 

parameters such as the number of measurements, the sparsity, and the signal length were varied. 

We discussed the use of a joint recovery scheme at the FC. A CS recovery algorithm is referred 

to as the joint recovery scheme when it utilizes inter-sensor signal correlation as well. In 

contrast, when the inter-sensor signal correlation is not utilized, it is referred to as the separate 

recovery scheme.  In the joint recovery scheme, inter-sensor signal correlation information is 

incorporated in the formation of recovery equation as shown Eq. (13) and (15). In the separate 

recovery scheme, a sensor signal recovery is done individually and independently from the 

recovery of other sensor signals. We compared the results of the joint recovery with those of 

the separate recovery scheme. We have shown that correlation information can be exploited 

and the number of measurements needed for exact reconstruction can be significantly reduced 

as shown in Figure 14. It means that the traffic volume transmitted from the sensors to the FC 

can decrease significantly without degrading the quality of the recovery performance. (Section 

6)  

 We have shown that the CS is an efficient and effective signal acquisition and sampling 

framework for WSN which can be used to save transmittal and computational power 

significantly at the sensor node. This CS based signal acquisition and compression scheme is 

very simple, so it is suitable for inexpensive sensors. The number of compressed samples 

required for transmission from each sensor to the FC is significantly small, which makes it 

perfect for sensors whose operational power is drawn from onboard battery. Finally, the joint 

CS recovery at the FC exploits signal correlation and enables Distributed Compressive 

Sensing.  
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 . Summary of CS application in WSNFigure 16  
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