

Medical Ultrasound and Compressive Sensing

Pavel Ni, Yaseen Mohamed, Heung-No Lee* SIC, GWANGJU INSTITUTE OF SCIENCE AND TECHNOLOGY

MOTIVATION

Super-resolution is a technique to image objects much smaller than the wavelength of the source. Speckle noise and high attenuation of ultrasound waves is a main challenge towards super-resolution in the ultrasound B-scan imaging.

INTRODUCTION

We propose an ultrasound technique based on plane wave

METHOD

We use compressive sensing theory to find estimate x. To find K-sparse solution we use YALL1 algorithm which solves L1 minimization problem.

$$\hat{s} = \min \|s\|_1$$
 subject to $\|\Phi \Psi s - y\|_2 \le \varepsilon$

imaging. Compressive Sensing (CS) used to reconstruct images of objects significantly smaller than the source wavelength.

Conventional Ultrasound Systems:

- High-frequencies
- High sampling rate
- Beam focusing, scanning

Proposed Plane Wave Method:

- Low-frequencies

RESULT AND FUTURE WORK

We use compressive sensing theory to find estimate x. To find K-sparse solution we use YALL1 algorithm which solves *L*1 minimization problem.

		Lateral distance (mm)
	Fig 1. a) Conventional B-mode imaging b) Plane wave	
im	imaging c) scanline formation d) Ultrasound image of human	
	liver	