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Abstract—This paper presents a new efficient method for
implementing the Hilbert transform using an all-pass filter,
based on fractional derivatives (FDs) and swarm optimization.
In the proposed method, the squared error difference between
the desired and designed responses of a filter is minimized.
FDs are introduced to achieve higher accuracy at the reference
frequency (ω0), which helps to reduce the overall phase error.
In this paper, two approaches are used for finding the appro-
priate values of the FDs and reference frequencies. In the first
approach, these values are estimated from a series of experiments,
which require more computation time but produce less accurate
results. These experiments, however, justify the behavior of the
error function, with respect to the FD and ω0, as a multimodal
and nonconvex problem. In the second approach, a variant of
the swarm-intelligence-based multimodal search space technique,
known as the constraint-factor particle swarm optimization, is
exploited for finding the suitable values for the FD and ω0.
The performance of the proposed FD-based method is mea-
sured in terms of fidelity aspects, such as the maximum phase
error, total squared phase error, maximum group delay error,
and total squared group delay error. The FD-based approach is
found to reduce the total phase error by 57% by exploiting only
two FDs.

Index Terms—Evolutionary technique (ET), fractional
derivative (FD), Hilbert transform (HT), particle swarm
optimization (PSO).

I. INTRODUCTION

H ILBERT transform (HT) is a very important trans-
form in signal processing. It can be used to repre-

sent a narrow-band signal in terms of its frequency-domain
amplitude at a frequency-modulation point. HT is useful in
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many applications such as latency analysis in neurophysio-
logical signals [1], fault classification in electrical systems,
data compression in communication, and as an data anal-
ysis tool [2], [3]. Research on efficient HT design methods
has been progressing over the last three decades. In the
early stages of research, several works used infinite impulse
response (IIR) filters, which satisfied the magnitude and phase
specifications simultaneously [4]–[8]. In these techniques, the
design problem was formulated as a minimization of the mean
squared error between the desired and designed responses, and
the solution was obtained by solving a set of linear equa-
tions [5]–[8]. Squared error-based methods usually produced
a matrix, which was symmetric and positive definite, and the
solutions of such problems were computed by either evalu-
ating the eigen vector (EV) corresponding to the least value
of the eigen value or multiplying the matrix inverse with the
multiplicand. The EV approach was computationally complex,
whereas the second approach had o(n3) complexity. However,
this complexity could be reduced to o(n2) using the Cholesky
decomposition or split Levinson algorithms [9]. Liu [1] and
Kidambi [7] used a Toeplitz-plus-Hankel matrix to solve a set
of linear equations. For reducing the computational complex-
ity further, Su et al. [9] proposed a closed-form method for
the design of the HT. Literature review on the implementation
of HT using all-pass filters (APFs) has corroborated that sev-
eral methods have been proposed [4]–[8]. However, an APF
with smaller number of filter taps and higher accuracy in terms
of the degree of approximation, which can produce a desired
response at a certain reference frequency point, has not been
considered yet for the efficient design of an HT.

Recently, fractional derivatives (FDs) have been used
in several engineering problems, such as fractional system
identification, edge detection in image processing, electro-
cardiogram signal R-peak detection, and numerous other
engineering applications, owing to their ease of real-
ization and higher efficiency compared to integral-order
derivatives [10]–[15]. Several researchers have used FDs for
digital filter design [13]–[15]. In these techniques, the deter-
mination of optimal orders of FDs was computationally
expensive, and the work involved increases with the increase
in the order of FD. A possible solution for this problem is
to use evolutionary techniques (ETs) for filter-bank design,
which is explained in [15]. However, a mechanism to tune
the suitable values of the reference frequency in the region of
interest, where these FDs are being evaluated, has not been
established yet.
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This paper explores a new design technique for the HT,
which uses APFs with a high approximation of the desired
phase response, based on optimal values of FDs and suit-
able values of reference points in the region of interests.
The Lagrange multiplier method is used to solve the for-
mulated constrained design problem. A variant of particle
swarm optimization (PSO), known as constraint-factor PSO
(CF-PSO) is used for determining the suitable values of the
FDs and reference frequency points.

The remainder of this paper is organized as follows.
Section II provides the brief description on PSO variant and
its topology. Section III provides the details of HT design
using an IIR-APF. Sections IV and V describe the proposed
approach using FD for HT design. Section VI demonstrates the
performance of the proposed method and improvement with
earlier state-of-art techniques. Finally, the conclusive remarks
are mentioned in Section VII.

II. OVERVIEW OF PSO

PSO is a swarm-intelligence-based algorithm, inspired by
the communication behaviors of birds and insects, schooling of
fish, etc. [16]. In the past few decades, exhaustive research has
been conducted on the application of PSO for solving nondif-
ferentiable, multiobjective, and nonlinear problems [16]–[18].
The search space in PSO is a matrix that consists of a solution
vector, which is updated as [16]

[U]k+1 = [U]k + [V]k+1 (1)

where [V]k+1 is the current velocity matrix and U is the search
space matrix. The sizes of both matrixes are R × T, where R is
the number of solution vectors, T is the dimension of solution
vector, and k+1 is the current iteration. [V]k+1 is computed
as [16]

[V]k+1 = χ

{
w · [V]k + ck

1 · φ1 · ([PB]k − [U]k)
+ck

2 · φ2 · ([GB]k − [U]k)
}
. (2)

In (2), PB is the local best solution matrix, GB is the cur-
rent global best solution vector, ϕ1 and ϕ2 are uniformly
distributed random numbers in the interval (0, 1], cognitive
(c1) and social (c2) are the acceleration coefficients, w is the
inertia of weight, and χ is a constraint factor. Modification
in the values of control parameters, such as w or c1 and c2
results in several variants of PSO, as described in [16].

Many researchers have attempted to discover new aspects in
PSO, to avoid phenomena, such as trapping in local minima
and premature convergence and to accomplish the efficient
exploitation with deeper exploration, which has resulted in
several variants of PSO [16]. The principle mechanism of all
variants of PSO is the same and is summarized as follows.

1) Form the initial search space (possible solutions).
2) Evaluate the fitness function for each individual solution

vector of the search space.
3) Sort out the solution vector with the best fitness, termed

as Global best.
4) Update the initially formed search space and find solu-

tions, which have improved their fitness, and consider
them instead of old solutions with less fitness.

5) Find the best fitness formed from recently updated solu-
tions, and check if it is better than the current best
solution; then, update Global best.

Among the variants of PSO, CF-PSO is more stable, owing
to χ , which aids in keeping a bound on the exploration and
exploitation [16]. Various neighborhood topologies have also
been proposed for PSO, such as the global PSO (Gbest) and
local PSO (Lbest). Lbest is further classified as von Neumann,
star, ring, and pyramid [19]. In this paper, the Gbest struc-
ture has been exploited because of its fastest convergence
speed [19]. The search mechanism in PSO is simpler than
that of other techniques, such as differential evolution, genetic
algorithm, improved JADE, LSHADE, etc. [20], [21].

III. ALL-PASS FILTER DESIGN

Several design methodologies have been proposed for
designing the HTs using all-pass IIR filters, based on either
the least-squares (LSs) approximation or minimax approxima-
tion criteria [7]. The frequency response of an all-pass transfer
function is expressed as [4]

Ho(z) = z−N

∑N
n=0 b(n)zn∑N

n=0 b(n)z−n
= e−jNω

∑N
n=0 b(n)ejnω∑N

n=0 b(n)e−jnω
(3)

Ho
(
ejω) = e−jNω 1 +∑N

n=1 b(n) cos(nω) + j
∑N

n=1 b(n) sin(nω)

1 +∑N
n=1 b(n) cos(nω) − j

∑N
n=1 b(n) sin(nω)

(4)

and

Ho
(
ejω) = ejϕ(ω). (5)

In (3) and (4), b(n) is a real-valued integer and N is the total
number of filter taps. The phase response of the denominator
polynomial (

∑N
n=0 b(n)e−jnω) is

ϕ(ω) = −Nω + 2 × tan−1

( ∑N
n=1 b(n) sin(nω)

1 +∑N
n=1 b(n) cos(nω)

)
. (6)

The error difference between the desired {ϕd(ω)} and designed
phase is computed as

eo(ω) = ϕd(ω) + Nω − 2 × tan−1

( ∑N
n=1 b(n) sin(nω)

1 +∑N
n=1 b(n) cos(nω)

)
.

(7)

For designing a Hilbert transformer, ϕd(ω) of an APF is given
as [4], [7]

ϕd(ω) = −Nω − π

2
. (8)

It is evident from (7) that the minimization of phase error is
a multimodal complex problem because of the trigonometric
function, and can be simplified by setting eo(ω) = 0, as

tan

(
ϕd(ω) + Nω

2

)
=

∑N
n=1 b(n) sin(nω)

1 +∑N
n=1 b(n) cos(nω)

(9)

and further refined to a more compact form as

sin
[−π

/
4
]

cos
[−π

/
4
] = bT · s(ω)

1 + bT · c(ω)
. (10)
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In the above equation, b, s(ω), and c(ω) are the vectors, defined
as

b = [b(1)b(2) . . . b(N)]T (11)

s(ω) = [sin(ω) sin(2ω) . . . sin(Nω)]T (12)

and

c(ω) = [cos(ω) cos(2ω) . . . cos(Nω)]T. (13)

On rearranging (10), the required design constraint for obtain-
ing a desired phase response is given as

bT{sin
[−π

/
4
]
c(ω) − cos

[−π
/
4
]
s(ω)

} = − sin
[−π

/
4
]

(14)

or

bTSo(ω) = B(ω) = − sin
[−π

/
4
]

(15)

where

So(ω) = sin
[−π

/
4
]
c(ω) − cos

[−π
/
4
]
s(ω)

= sin
[−π

/
4 − nω

]
, 1 ≤ n ≤ N. (16)

A possible solution for the above problem is obtained by
solving a set of equations formed by constructing an LS error
function, defined as

Eo(b) =
∫ ω2

ω1

{
bTSo(ω) + sin

[−π
/
4
]}2

dω (17)

where ω1 is the lower and ω2 is the upper frequency limit
for the region of interest. Now, by expanding and partially
differentiating (17) with respect to b, we obtain

∂Eo(b)

∂b
=

∂

⎧⎪⎪⎨
⎪⎪⎩

bT
(∫ ω2

ω1

[
So(ω)ST

o (ω)
]
dω
)

b

+ 2bT
(∫ ω2

ω1

[
sin
[−π

/
4
]
So(ω)

]
dω
)

+ ∫ ω2
ω1

(
sin2[−π

/
4
])

dω

⎫⎪⎪⎬
⎪⎪⎭

∂b
. (18)

By setting ∂Eo(b)/∂b = 0, the required filter coefficient is
obtained by solving bopt = Q−1 · P, where

Q =
∫ ω2

ω1

[
So(ω)ST

o (ω)
]
dω (19)

and

P =
∫ ω2

ω1

[
sin
[−π

/
4
]
So(ω)

]
dω. (20)

In (19), Q is a real, positive-definite, and symmetric matrix;
thus, a unique solution is guaranteed. In [7], Q is simplified
and represented by the sum of a Toeplitz matrix and a Hankel
matrix. However, in this paper, it is further reduced to a sin-
gle term, obtained by the multiplication of vector So(ω) with
its transpose. In order to achieve a high degree of similarity
between the desired phase response and the designed phase
response at the prescribed frequency point ω0, the following
constraints are imposed:

B(ωo) = sin
(
π
/
4
)

(21)

and

Dv B(ω)|ω=ωo
= 0 (22)

where B(ω) = bTSo(ω).

IV. PROBLEM FORMULATION USING FDS

FDs have been found to function as performance
boosters in several signal-processing applications [11]–[15].
Three of the most prominent definitions of FDs are the
Riemann–Liouville, Grünwald–Letnikov (GL), and Caputo
definitions [13]. Among these definitions, the GL deriva-
tive method is the most commonly used method in signal-
processing applications, owing to its simplicity and low
complexity [15]. In this paper, the GL derivative method is
used to design a Hilbert transformer using an APF.

Using the GL definition [13], (22) can be reduced to

DvB(ω) =
dv
(∑N

n=1 b(n) · sin
(−π

/
4 − nω

))
dωv

=
N∑

n=1

b(n) · (n)v − sin
(
π
/
4 + nω + πv

2

)

= bTC(ω, v). (23)

C(ω, v) is given by

C(ω, v) =

⎡
⎢⎢⎢⎣

−(1)v · sin
(
ω + π

4 + πv
2

)
−(2)v · sin

(
2ω + π

4 + πv
2

)
...

−(N)v · sin
(
Nω + π

4 + πv
2

)

⎤
⎥⎥⎥⎦. (24)

From (15) and (23), the constraint is redefined as

bTC(ω0, vk) = 0, k = 1, 2, . . . , L. (25)

If v is a vector of order L, C would be a matrix of order
N × (L + 1), where k = 1 corresponds to the zeroth-order
derivative and equals B(ω0).

Equation (25) can be expressed in terms of a matrix as

Cxb = f (26)

where

Cx = [
So(ω0) C(ω0, v1) C(ω0, v2) . . . C(ω0, vL+1)

]T (27)

and

f = [B(ω0) 0 0 . . . 0]T. (28)

The optimal solution of the objective function defined by (17),
with the constraint given by (26), is evaluated using the
Lagrange multiplier method [13], and is given as

bopt = Q−1P − Q−1CT
x

(
CxQ−1CT

x

)−1(
CxQ−1P − f

)
(29)

which is a closed-form solution, computed very efficiently.
The only requirement is to find a suitable order for the FDs
and the reference frequency, which can satisfy the constraint.
CF-PSO can be used to determine these values.

V. PROPOSED METHOD BASED ON FD AND ET

In this section, a new method based on FD and CF-PSO
is proposed for the design of a Hilbert transformer using an
APF. For analysis, a benchmark design example is considered



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON CYBERNETICS

with the design specifications being: order (N) = 30, ω1 =
0.04, and ω2 = 0.94, using the following attributes:

Approximation error: er(ω) = |ϕ(ω) − ϕd(ω)| (30)

and

Total phase error: E =
∫ ω2

ω1

er(ω)dω. (31)

A. Proposed Method Based on FD Without ET

For designing a Hilbert transformer using the proposed
method, without CF-PSO, initially, the optimal filter
coefficients are determined using (29), which requires the
optimal value of order (v3) of FD and the reference frequency
point. For this purpose, different values of the reference
frequency (ω0), from ω1 to ω2, with a uniform step size of
0.05, are used, while the value of v3 is considered to vary
from 2.01 to 49.99 with a gradual increment of 0.01. Other
values of v (v0, v1, and v2) are kept as 0, 1, and 2, respec-
tively, to maintain the slope and concavity of the function [15].
The generalized steps for designing an HT using the proposed
method without ET are as follows.

1) Specify the filter parameters, such as N, ω1, and ω2, and
the desired phase response ϕd(ω).

2) Choose suitable reference frequency points between ω1
and ω2, while v3 varies from 2.01 to 49.99 with a gradual
increment of 0.01.

3) Compute So(ω), Q, and P using (16), (19), and (20),
respectively.

4) Select the reference frequency point and the value of v3
to compute Cx.

5) Evaluate the coefficients of HT using (29), and then,
compute E. Store E in a stack for further selection of
the optimal values of ω0 and v3.

6) Increment v3 until all the values are utilized. If all the
values of v3 have been used, shift to the next ω0.

During the experiments, it has been observed that the vari-
ation in phase error (E) becomes periodic with a high error
value for all ω0, after a certain value of v3, as illustrated in
Fig. 1(a), because some FDs satisfy the imposed constraints
exactly, while others fail to satisfy the required constraint. It is
also evident from the experimental results that, at ω0 = 0.74π ,
0.85π , and 0.17π , the phase error (E) is less, when v3 is 6.40,
4.79, and 25.48, respectively. The obtained phase response of
a Hilbert transformer is depicted in Fig. 1(b). It can be seen
from Fig. 1(c) that the approximation between the desired and
designed response is high at the exact value of ω0.

If the number of FDs is increased, the computational com-
plexity is also increased. The computational complexity for the
exploration of one FD along with ω0 is o(n4), and it would
increase to o(n5), if two FDs are considered. Thus, the ET-
based approach is more effective in such complex evaluation
processes through which both the ω0 and FD values can be
adjusted simultaneously with high precision.

B. Proposed Method Based on FD With ET

In this section, the proposed technique for designing an HT
is modified further using CF-PSO, owing to its simple

(a)

(b)

(c)

Fig. 1. (a) Variation of phase error with respect to v3 at three different values
of reference frequency (ω0). (b) Phase response of HT using the first-order
FD (1-FD). (c) Variation of absolute error difference of designed HT. Figures
show the effect of 1-FD and ω0 on the performance of the designed HT.

exploration and exploitation mechanism for finding suitable
values of FD along with ω0. The search space (U) is formed as

[
Ur,t

] = [
ui,1 ui,2 ui,3 . . . ui,D

]
(32)

where 1≤ r ≤ R and 1≤ t ≤ T, ui,1 correspond to the reference
frequency points between ω1 and ω2, while ui,2 to ui,D rep-
resent the FD values from 2.01 to 14.99. D is the number of
FDs employed. During the course of exploration, if these val-
ues have exceeded beyond the imposed limit, they are restored
by reassigning suitable values as

Unew = Ulow � Ux + Uup � Ux + {
Ūlow � U + Ūup � U

}
(33)

where Ulow and Uup are the vectors containing 1s and 0s. In
Ulow, “1s” correspond to the values of U that are below the
lower limit value of 2.01 and “0s” correspond to those that are
above or equal to 2.01. In Uup 1s represent those values of U
that are greater than the upper limit of 14.99 and 0s represent
those less than 14.99. Ūlow and Ūup are the complements of
the respective vectors and Ux has new values within the limits.
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(a)

(b)

Fig. 2. (a) Mean of convergence of phase error (E) with respect to iteration
cycles (k) for FD orders from 1 to 5. (b) Variations in E in each experimental
trial for different FD orders ranging from 1 to 10. These figures suggest
suitable FD orders and cycles for the proposed method.

The Hilbert transformer is designed using the same bench-
mark design specifications as specified in Section V. The
fractional order (v) is varied from 1 to 10, and the dimension
of matrix Cx is varied from 4 to 14. The control parameter
values, such as χ = 0.7213, c1 and c2 = 2.05, and w = 1 are
used to control the exploration and exploitation. The normal-
ized digital frequency band is broken into 30 × N equally
spaced samples, for analysis. The generalized steps for the
proposed method using FD and ET for designing a Hilbert
transformer are as follows.

1) Specify the HT parameters, such as N, ω1, and ω2, and
the desired phase response ϕd(ω).

2) Set the control parameters of CF-PSO, such as χ , c1, and
c2, and w, maximum iteration count (kmax), and upper
and lower limits of V and U.

3) Formulate the initial search space (U[k=0]) and associ-
ated velocity (V[k=0]) by assigning the uniformly dis-
tributed random numbers between the upper and lower
limits. Store the initially formed U as PB.

4) Compute the filter coefficients using FD values from
each vector of U using (29), followed by the fitness
evaluation using (31). Store these fitness values as PB
fitness.

5) The solution with the best value of PB fitness is picked
as GB, and its fitness value is stored in GB fitness.

(a)

(b)

Fig. 3. (a) Hilbert transformer phase response obtained for different filter
coefficients using FD: 1, 2, 3. (b) Approximation error. This figure shows that
the second-order FD is computationally efficient for designing an HT.

6) Update V using (2), and check for those velocity ele-
ments that are not in limit. Then, reassign new values
to those outbound elements.

7) Update U using (1) and confirm that all newly formed
elements of U are within the bounded limits; otherwise,
assign new values for those that are not in the limits.

8) Again, compute the filter coefficients using new FD val-
ues, followed by fitness evaluation using (31). Store
these fitness values as new fitness.

9) Replace the earlier solutions from PB and PB fitness
with the new solutions that have improved fitness values.

10) Compare the current GB fitness with the new PB fitness,
and check if any PB fitness is better than GB fitness. If
so, replace GB and GB fitness with the improved PB
and PB fitness; else, keep them as they are.

11) Repeat steps 6–10 until the iteration cycle is over or the
desired fitness is achieved.

The proposed method is executed 30 times for each FD
order. Fig. 2(a) shows the mean convergence of E with respect
to the iteration cycles (k) for FD orders from 1 to 5. It is
observed that the rate of change of E is almost constant after
30 iterations. Fig. 2(b) indicates that CF-PSO achieves the
best performance for the second-order FD, consistently, as
the median value of E lies close to the best fitness value
achieved during a trial of 30 experiments. The phase responses
obtained using first-, second-, and third-order FDs are shown
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Pseudo Code 1 Pseudo Code of Proposed Approach

01 Set N, ω, ω, ϕd(ω), s(ω), c(ω), P, Q, and Q−1

02 Set χ = 0.707, c1 = 2.05, c2 = 2.05, and kmax
03 Formulate initial search space U
04 For i = 1 to SS
05 Compute Cx for ith FD vector of U
06 Compute bopt using Q−1, P, and Cx
07 Evaluate E and store as PB fitness
08 PBi = Ui
09 End For
10 Sort out smallest value of PB fitness
11 PB Corresponding to smallest PB fitness as GB
12 Start
13 Update V according to variant

Vk+1 = χ{w · Vk + ck
1 · ϕ1 · (PBk − Uk) + ck

2 · ϕ2 · (GBk − Uk)}
14 Restore out of bound elements of V
15 Update U as Uk+1 = Uk + Vk+1

16 Restore out of bound elements of U
17 For i = 1 to SS
18 Compute Cx for ith FD vector of Uk+1

19 Compute bopt using Q−1, P, and Cx
20 Evaluate E and store as Enew
21 If Enew(Uk+1

i ) < E(PB fitnessk
i )

22 PB fitnessk+1
i = Enew(Uk+1

i ) & PBk+1
i = Uk+1

i
23 If PB fitnessk+1

i < E(GB)

24 GB = PBk+1
i

25 End If
26 End If
27 End For
28 End
29 GB holds best fractional values

in Fig. 3(a), while Fig. 3(b) displays the approximation error
(er(ω)) obtained during the design of a Hilbert transformer.
It is evident from the experimental results that the approxi-
mation error is comparatively less for 2-FD, while it is high
for the first- and third-order FD cases. CF-PSO explores the
optimal value of ω0, and restricts E to remain as low as possi-
ble. Therefore, after exhaustive analysis, it is established that
the second-order FD explored by CF-PSO is a computation-
ally efficient methodology for designing a Hilbert transformer
using APF. The complete design procedure is summarized in
Pseudocode 1.

VI. RESULTS AND DISCUSSION

All the experiments were performed using MATLAB
2014 on a Genuine Intel CPU i7 3770 @ 3.40 GHz with 4 GB
RAM. The following fidelity parameters were computed as:

emax
ph = max

ω∈[ω1,ω2]
|ϕd(ω) − ϕ(ω)| (34)

etol
ph =

∑
|ϕd(ω) − ϕ(ω)|2 (35)

emax
τ = max

ω∈[ω1,ω2]

∣∣∣∣dϕd(ω)

dω
− dϕ(ω)

dω

∣∣∣∣ (36)

and

etol
τ =

∑(∣∣∣∣dϕd(ω)

dω
− dϕ(ω)

dω

∣∣∣∣
)2

(37)

TABLE I
CONTROL PARAMETERS FOR VARIANTS OF PSO AND HYBRID PSO

TABLE II
STATISTICAL PERFORMANCE EVALUATION OF PROPOSED

TECHNIQUE FOR AN SS OF 10

where emax
ph is the maximum phase error (MPE), etol

ph is the total
squared phase error (TSPE), emax

τ is the maximum group delay
error (MGDE), and etol

τ is the total group delay error (TGDE),
used for analyzing the proficiency of the proposed
method.

A. Design Examples Using Proposed Methodology

In the proposed method, different variants of PSO, such as
the constant weight inertia PSO (CWI-PSO), linearly decay-
ing inertia PSO (LDI-PSO), NDI-PSO, dynamic inertia PSO
(DI-PSO), and time-varying coefficients PSO (TVC-PSO)
were exploited for finding the appropriate values of FDCs.
After exhaustive experimental analysis, suitable variant of
PSO is selected in the proposed approach of HT using FDC.
PSO is classified based on the updating strategy of the prin-
ciple (2), and more details are presented in [16]. Recently,
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Fig. 4. Statistical performance evaluation of proposed technique for different filter orders, designed by different SS on the basis of global best fitness (GB
fitness), MPE, TSPE, MGDE, and TGDE. The first row of the plot shows the mean of output obtained after 30 trials, second row shows the best, and third
row shows the worst output values for all five parameters. The stability of the proposed method is consolidated in these figures.

(a) (b) (c)

(d) (e) (f)

Fig. 5. Statistical performance evaluation of nonlinearly decaying inertia PSO (NDI-PSO) based on mean, best, and worst values of GB fitness (dB) for
design of HTs of various orders using different values of MI. (a) MI = 0.2, (b) MI = 0.4, (c) MI = 0.6, (d) MI = 0.8, (e) MI = 1.2, and (f) MI = 1.4.
There is a marginal deviation on GB fitness value for different values of MI.

hybrid-PSO based on the combined functionality of PSO
and ABC algorithms was proposed in [22]. It is also used
in this paper. The control parameters of all the variants of
PSO, including hybrid-PSO, are summarized in Table I. For
comparison, a design example from [4] and [7] was consid-
ered, with a normalized frequency band from 0.04 to 0.94
and filter order from 15 to 50, with an increment of 5.

The effect of swarm size (SS) was analyzed by varying
it from 10 to 50 for each design case. It is evident from
Fig. 4 that, for all filter orders considered in this paper, the
SS of 10 is sufficient as the deviations of the best and worst
of the fidelity parameters, from the mean values, are less. The
detailed simulation analysis for an SS of 10 is summarized in
Table II.
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(a) (b) (c)

(d) (e) (f)

Fig. 6. Comparative evaluations of PSO variant based on best, mean, and worst values of GB fitness obtained for the design of HTs with various orders.
(a) CWI-PSO, (b) LDI-PSO, (c) NDI-PSO, (d) DI-PSO, (e) Hybrid-PSO, (f) CF-PSO. It is confirmed that the proposed method works effectively when
CF-PSO is used.

(a) (b)

(c) (d)

Fig. 7. (a) Phase response of Hilbert transformer, (b) approximation error, (c) group delay error, (d) approximation error in dB for LS, ER, EV, and proposed
method (FD with PSO). FD-based design approach resulted in flat group delay response and significant reduction in eT (ω).

On the basis of an exhaustive analysis performed using CF-
PSO, it was confirmed that the SS of 10 was a reasonable
choice that required less computation time. Therefore, an SS
= 10 was used for all variants of PSO and hybrid-PSO, for
further analysis. In NDI-PSO, the modulation index (MI) value

was used to control w and its value had to be determined exper-
imentally. Therefore, exhaustive experiments were conducted
using different values of MI, ranging from 0.2 to 1.4 with
an increment of 0.2, excluding 1.0 because it corresponded
to LDI-PSO. The obtained results are consolidated in Fig. 5,
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TABLE III
COMPARISON WITH OTHER METHODS [4], [7]

which shows the statistical performances of the different val-
ues of MI, in terms of the quality of solution. It was confirmed
that, in the case of the proposed method, NDI-PSO had almost
similar performance and MI = 0.8, which had marginal advan-
tage over the other values. Thus, MI = 0.8 was chosen for
further comparative analysis. HTs with different orders were
designed using different variants of PSO and Hybrid PSO and
their comparative performances, on the basis of GB fitness,
is shown in Fig. 6. It is evident from Fig. 6 that, for lower-
order HTs, the proposed method using CF-PSO yields better
performance when compared to other variants of PSO. It is
also observed that, for each design, the objective function’s
mean and worst values are close to the best value.

B. Comparison With Previous State-of-the-Art Methods

For comparison, a Hilbert transformer was designed using
the proposed method based on FD and ET using N = 30,
ω1 = 0.04, and ω2 = 0.94 [4], [7]. In this case, an SS of 10,
with 50 iterations were used. The experimental results obtained
using the proposed method are illustrated in Fig. 7, along with
the results of methods, such as the LSs, equiripple (ER), and
EV. It was observed that the value of etol

ph was 5.618 × 10−3

when using the proposed method, and it was 6.787 × 10−2

and 1.325 × 10−2 for the LS technique and ER technique,
respectively. However, emax

ph was increased slightly to 4.619 ×
10−2 for the proposed method, while it was 2.927 × 10−2

and 9.550 × 10−3 in the case of LS and ER, respectively.
The value of er(ω) was less, up to ω0, and was increased
slightly afterward, as shown in Fig. 7(b) and (d). Meanwhile,
the values of emax

ph and emax
τ were reduced, when compared to

those of other techniques. Therefore, it was confirmed that
the reference frequency point had been selected appropri-
ately, which resulted in a reduction in the overall phase error.
The performance of the designed APF-based HT, using the
proposed methodology, is summarized in Table III. There is
a reduction of 57% in total phase error (etol

ph) when compared
with LS and ER techniques.

VII. CONCLUSION

This paper presented a new design method for HTs using
an APF, based on FDs and CF-PSO. The optimal values of the
FDs and the reference frequency point, for obtaining improved
performance, were determined using CF-PSO. The experimen-
tal results illustrated the superiority of the proposed algorithm
in terms of phase response and reduction of overall error, in
comparison with the other existing techniques. In the future,
the proposed method can be extended to compute FDs at more

reference frequency points so that the other fidelity parame-
ters may also be reduced with high degrees of approximation.
There is a slight rise in emax

ph and may be controlled by form-
ing multiobjective optimization problem. The presented work
may be extended for efficient realization using canonic signed
digit.

REFERENCES

[1] Y. Liu, Hilbert Transform and Applications, InTech, London, U.K.,
2012.

[2] D. Helbing et al., “Saving human lives: What complexity science and
information systems can contribute,” J. Stat. Phys., vol. 158, no. 3,
pp. 735–781, Feb. 2015.

[3] Q. Wu et al., “Classification of EMG signals by BFA-optimized GSVCM
for diagnosis of fatigue status,” IEEE Trans. Autom. Sci. Eng., vol. 14,
no. 2, pp. 915–930, Apr. 2017.

[4] Y.-D. Jou, Z.-P. Lin, and F.-K. Chen, “Low-complexity design frame-
work of all-pass filters with application in quadrature mirror filter banks
design,” IET Signal Process., vol. 11, no. 3, pp. 239–249, May 2017.

[5] T. Q. Nguyen, T. I. Laakso, and R. D. Koilpillai, “Eigenfilter approach
for the design of allpass filters approximating a given phase response,”
IEEE Trans. Signal Process., vol. 42, no. 9, pp. 2257–2263, Sep. 1994.

[6] A. Djebbari, J. M. Rouvaen, A. Djebbari, M. F. Belbachir, and
S. A. Elahmar, “A new approach to the design of limit cycle-free IIR
digital filters using eigenfilter method,” Signal Process., vol. 72, no. 3,
pp. 193–198, Feb. 1999.

[7] S. S. Kidambi, “Weighted least-squares design of recursive allpass fil-
ters,” IEEE Trans. Signal Process., vol. 44, no. 6, pp. 1553–1557,
Jun. 1996.

[8] G. Stančić and S. Nikolić, “Digital linear phase notch filter design based
on IIR all-pass filter application,” Digital Signal Process., vol. 23, no. 3,
pp. 1065–1069, May 2013.

[9] L.-C. Su, Y.-D. Jou, and F.-K. Chen, “Improved computing-efficiency
least-squares algorithm with application to all-pass filter design,” Math.
Problems Eng., vol. 2013, pp. 1–8, May 2013.

[10] D. Idiou, A. Charef, and A. Djouambi, “Linear fractional order system
identification using adjustable fractional order differentiator,” IET Signal
Process., vol. 8, no. 4, pp. 398–409, Jun. 2014.

[11] J. Bai and X.-C. Feng, “Fractional-order anisotropic diffusion for image
denoising,” IEEE Trans. Image Process., vol. 16, no. 10, pp. 2492–2502,
Oct. 2007.

[12] Y. Ferdi, J. P. Herbeuval, A. Charef, and B. Boucheham, “R wave
detection using fractional digital differentiation,” ITBM-RBM, vol. 24,
nos. 5–6, pp. 273–280, 2003.

[13] C.-C. Tseng and S.-L. Lee, “Design of linear phase FIR filters
using fractional derivative constraints,” Signal Process., vol. 92, no. 5,
pp. 1317–1327, May 2012.

[14] C. C. Tseng and S. L. Lee, “Fractional derivative constrained design of
FIR filter with prescribed magnitude and phase responses,” in Proc. Eur.
Conf. Circuit Theory Design (ECCTD), 2013, pp. 1–4.

[15] K. Baderia, A. Kumar, and G. K. Singh, “Hybrid method for designing
digital FIR filters based on fractional derivative constraints,” ISA Trans.,
vol. 58, pp. 493–508, Sep. 2015.

[16] M. K. Ahirwal, A. Kumar, and G. K. Singh, “EEG/ERP adaptive noise
canceller design with controlled search space (CSS) approach in Cuckoo
and other optimization algorithms,” IEEE/ACM Trans. Comput. Biol.
Bioinf., vol. 10, no. 6, pp. 1491–1504, Nov./Dec. 2013.

[17] J. Zhang, C. Zhang, T. Chu, and M. Perc, “Resolution of the stochas-
tic strategy spatial Prisoner’s dilemma by means of particle swarm
optimization,” PLoS ONE, vol. 6, no. 7, Jul. 2011, Art. no. e21787.

[18] I. Fister et al., “Particle swarm optimization for automatic creation
of complex graphic characters,” Chaos Solitons Fractals, vol. 73,
pp. 29–35, Apr. 2015.

[19] F. Li and J. Guo, “Topology optimization of particle swarm
optimization,” in Advances in Swarm Intelligence. ICSI (Lecture Notes
in Computer Science), Y. Tan, Y. Shi, and C. A. C. Coello, Eds. Cham,
Switzerland: Springer, 2014, pp. 142–149.

[20] M. Yang, Z. Cai, C. Li, and J. Guan, “An improved JADE algorithm
for global optimization,” in Proc. IEEE Congr. Evol. Comput. (CEC),
2014, pp. 806–812.

[21] T. Ni, L. Wang, Q. Jiang, J. Zhao, and Z. Zhao, “LSHADE with semi-
parameter adaptation for chaotic time series prediction,” in Proc. 10th
Int. Conf. Adv. Comput. Intell. (ICACI), 2018, pp. 741–745.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON CYBERNETICS

[22] S. M. Rafi, A. Kumar, and G. K. Singh, “An improved particle swarm
optimization method for multirate filter bank design,” J. Franklin Inst.,
vol. 350, no. 4, pp. 757–769, May 2013.

Anil Kumar (M’16) received the B.E. degree in
electronic and telecommunication engineering from
the Army Institute of Technology, Pune University,
Pune, India, in 2002 and the M.Tech. and Ph.D.
degrees in electronic and telecommunication
engineering from IIT Roorkee, Roorkee, India, in
2006 and 2010, respectively.

He is an Assistant Professor with the Electronic
and Communication Engineering Department,
Indian Institute of Information Technology, Design
and Manufacturing, Jabalpur, India. He is currently

a Visiting Researcher with the Gwangju Institute of Science and Technology,
Gwangju, South Korea. His current research interests include the design of
digital filters and filterbanks, biomedical signal processing, image processing,
and speech processing.

Nikhil Agrawal (S’15) received the bache-
lor’s degree in electronics and communication
engineering from Rajiv Gandhi Proudyogiki
Vishwavidyalaya, Bhopal, India, in 2010. He is
currently pursuing the Ph.D. degree in electronics
and communication engineering, PDPM Indian
Institute of Information Technology, Design and
Manufacturing Jabalpur, Jabalpur, India.

His current research interests include designing
optimal filters, optimization techniques, and
embedded system design for signal processing.

Ila Sharma (S’17) received the Ph.D. degree in
electronic and communication engineering from the
PDPM Indian Institute of Information Technology
Design and Manufacturing Jabalpur, Jabalpur, India.

Her current research interests include multirate
filterbanks, digital signal processing, multiplierless
filters and filterbanks, wireless communication, and
cognitive radio. She has been engaged in active
research work and a novel approach to the above
fields. She has published/presented a number of
research articles in various journals and conferences
in the above areas.

Seungchan Lee received the B.S. degree in
electronic engineering from Chungbuk National
University, Cheongju, South Korea, in 2009 and the
M.S. degree in electrical engineering and computer
science from the Gwangju Institute of Science and
Technology, Gwangju, South Korea, in 2012, where
he is currently pursuing the Ph.D. degree in biomed-
ical signal processing.

His current research interests include machine
learning, biomedical signal processing, adaptive sig-
nal processing, brain computer interface, and the

design of wearable EEG/fNIRS hybrid brain monitoring systems.

Heung-No Lee (SM’93) received the B.S., M.S.,
and Ph.D. degrees in electrical engineering from
the University of California at Los Angeles,
Los Angeles, CA, USA, in 1993, 1994, and
1999, respectively.

He was a Research Staff Member with HRL
Laboratory, Malibu, CA, USA, from 1999 to 2002.
He was then appointed as an Assistant Professor
with the University of Pittsburgh, Pittsburgh, PA,
USA, in 2002. In 2009, he joined the Gwangju
Institute of Science and Technology (GIST),

Gwangju, South Korea, as an Associate Professor, where he was promoted to
a Full Professor in 2013. He was the Director of electrical engineering and
computer science track with GIST in 2014, where he was appointed the Dean
of Research in 2015. He has published over 40 international journal publi-
cations and 100 international conferences and workshop papers. His current
research interests include information theory, signal processing theory, and
communications theory, and the application to wireless communications and
networking systems, compressive sensing and optical engineering, biomedical
systems, and brain computer interfaces.

Dr. Lee was a recipient of the Top 50 Research and Development
Achievements of Fundamental Research in 2013 (National Research
Foundation), the Top 100 National Research and Development Research
Award in 2012 (the Ministry of Science, ICT and Future Planning), and
This Month Scientist/Engineer Award (National Research Foundation) in
2014. He has served as the Lead Guest Editor for the EURASIP Journal
on Wireless Communications and Networking in 2010 and 2011, and has
been an Area Editor for the AEU International Journal of Electronics and
Communications since 2013. He was the Chapter Chair for the IEEE Signal
Processing Society with Pittsburgh, from 2005 to 2008. He has served as
Secretary of the IEEE Gwangju Section in Gwangju, from 2010 to 2011. He
has been the Chair of the IEEE Gwangju Section since 2012. He has served as
a member of technical program committees for IEEE conferences, including
the IEEE International Conference on Communications and IEEE Globecom.


