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Abstract 

 
In this paper, we present a signal processing approach to improve the resolution of a spectrometer with a fixed 

number of low-cost, non-ideal filters. We aim to show that the resolution can be improved beyond the limit set by 

the number of filters by exploiting the sparse nature of a signal spectrum. We obtained 6 times resolution 

improvement by modeling the signal spectrum as an underdetermined system of linear equations and solving it by 

designing a new non-negative 1L norm minimization algorithm.  

 

Ⅰ. Introduction  

Spectrometers are highly demanded in various 

industrial and domestic applications [1]. Modern 

miniature spectrometers are filter array based and are 

fabricated using CMOS or Nano technology to bring 

down the size and cost. In recent years, researchers 

focus on improving the resolution of filter array based 

because the non-ideal filters in the spectrometer 

causes severe distortion of the raw signal spectrum 

obtained from the spectrometer. Therefore, it is 

difficult to resolve the distinct spectral components 

from the raw spectrum.  To alleviate this problem, 

digital signal processing (DSP) techniques which 

process the raw signal spectrum are shown to be 

helpful. The current literature [2] provides a few DSP 

techniques to reconstruct the original spectrum but 

not on improving the resolution of the spectrometer.  

  In this paper, we develop a new framework that 

determines an achievable resolution of a spectrometer. 

We aim to show that the achievable resolution of a 

spectrometer can be improved 6 times beyond the 

limit set by the number of filters, which was originally 

discussed in [3]. We show that an 1L  norm 

minimization based approach is more suitable than a 

classical 2L  norm minimization for solving an 

underdetermined system of linear equations. We 

design a new spectrum estimation algorithm using 1L  

norm minimization that exploits the prior information 

that the signal spectrum is sparse and non-negative.  

Ⅱ. System description  

We model the raw spectrum y obtained from the 

spectrometer as a system of linear equations:  

 

  0D= Ψ ≥y s + w s              (1) 

where D  is an M N×  filter transmittance matrix 

with M N< and Ψ is an N N×  Gaussian Kernel and 

s is a K -sparse signal, i.e., only K  components of s  
are non-zero and the remaining components are zero 

and w is the noise vector. The original signal 

spectrum is s= Ψx . Let Wλ denote the total bandwidth 

of the signal x . Let W
N N

λλ∆ = denote the spacing 

between the samples of x as well as s .We note that 

the dimension of y  is 1M × and of s  is 1N × . Our goal 

is to obtain an estimate ŝ of s from y given by Eq. (1).  

Note that the dimension of y is much smaller than the 

dimension of the sparse signal s  and the noiseless 

system in Eq. (1) is clearly underdetermined. We 

design a new 1L norm minimization algorithm for 

recovering the sparse spectrum s from the raw 

spectrum y . The original signal spectrum can then be 

estimated as ˆ ŝ= Ψx . The spectrum estimation 

accuracy is measured by the mean square error 

(MSE): 
21MSE ˆN x x= − . 

 

Ⅲ. Resolution of a spectrometer  

Traditionally, resolution of a spectrometer is its 

ability to distinguish the peaks of two closely spaced 

spectral components of the input signal spectrum. The 

spectrometers that identify the closely spaced 

spectral components reveal fine details about the input 

signal spectrum. Thus, the quality of the 

spectrometers is usually specified in terms of this 

resolution which perhaps good enough for the 

conventional spectrometers but not appropriate for 

those which utilize a DSP algorithm. In this section, 

therefore, we introduce a new way of measuring the 

resolution of a DSP based filter-array spectrometer.  

At a given spacing
W

N N
λλ∆ = , we define the 

maximum achievable resolution of a spectrometer 

as max
W

N N N N
λλ m λ m∆ = ∆ = , where Nm  is given by 

 

{1,2, , 1}
: min subject to MSE (2)N Nm

m m δ
∈ −

= ≤


where 0δ >  is a user-defined MSE. We say that any 

two spectral components which are N Nm λ∆  apart from 

each other are resolvable if the MSE between the 

recovered and the input signal spectrum is less than 

or equal to δ . Since the spacing between the samples 

is given by
W

N N
λλ∆ = , for a fixed Wλ , increasing 

N decreases the spacing Nλ∆ . We increase N staring 

from M . When we increase N beyond M , the system 

Eq. (1) becomes underdetermined (in the noiseless 

- 62 -

한국통신학회 2013년도 동계종합학술발표회

- 63 -

한국통신학회 2013년도 동계종합학술발표회



case). An underdetermined system which is solved by 

considering classical 2L norm minimization does not 

improve the spectral resolution as shown in [4].  

Alternatively, we aim to solve the 

underdetermined system using 1L norm minimization 

techniques. To aid the 1L norm minimization, we exploit 

the prior information that a natural signal spectrum 

sparse as well the values of the signal spectrum are 

non-negative. We provide a brief sketch of our new 

algorithm in the next section. 

 

Ⅳ. Proposed non-negative 1L algorithm 

We recall that we are given with only ( )M N<  

number of samples of the raw spectrum. We need to 

estimate N number of unknowns from M known 

values. The best, brute-force approach for recovering 

s  is to search for the sparsest vector s which is 

consistent with y . This leads to solving 0L norm 

minimization problem which is known to be 

computationally intractable. Interestingly, 1L norm 

minimization provides a tractable solution to the 

problem in Eq. (1). Our 1L norm minimization for 

sparse signal recovery is given by 

 

         2

1 22min Dτ+ − Ψ
s

s y s               (3)       

                                               
where τ  is a non-negative parameter. We solve Eq. 

(3) as a linear programming problem with nonnegative 

spectrum constraint ≥ 0s   as   

2

2
min s.t ,Dψ ε≤ ≥ 0T

s
1 s s - y s       (4)

  In this paper, we have adopted the modern interior 

point method called primal-dual approach [3] that 

solves the above linear programming problem in order 

to find the optimal signal spectrum estimate ŝ . In the 

next section we show the estimated spectrum using 

our proposed and the conventional methods [2]. 

 

Ⅴ. Results and Conclusions  

 In this section, we aim to demonstrate the 

performance of the proposed algorithm in Section Ⅳ. 

We consider a filter array with 40M =  elements. The 

Wλ  of the spectrometer is 800nm. We first consider 

the filter length 240N = . The value of δ required in Eq. 

(2) is set as 1e-3. The original signal spectrum has a 

sparsity of 2K = . We choose two consecutive spectral 

components, as resolution is an issue to see if two 

close spectral components can be resolved or not. 

Figure (1) shows the estimated signal spectrum in 

the sparse domain using the proposed and the 

conventional algorithm in [2]. The original signal 

spectrum contains two dominant spectral components 

located at 828.46nm and 831.8nm respectively. 

 

 
Fig. 1.    Estimated signal spectrum in sparse domain (a) Using 
proposed algorithm (b) Using conventional technique [2].

 

It is evident from Fig. 1(a) that the dominant 

spectral components are clearly resolved by the 

proposed algorithm. However, two additional spectral 

components appear at 805.02nm and 871.97nm which 

do not affect the resolvability of the dominant spectral 

components. Since the two spectral components that 

are Nλ∆ apart from each other are distinctly resolved 

with the value of 1Nm = , the maximum spectral 

resolution obtained by using 240N = is max 3.33nmλ∆ =  

which is 6 times better than the conventional limit of 

20nm assuming 1Mm = . It is also evident from Fig. 1(b) 

that the conventional technique provides non-sparse 

solutions and cannot resolve the two closely spaced 

spectral components. Based on these results and 

observations, we conclude that the proposed algorithm 

outperforms the conventional algorithm in terms of the 

resolution and our proposed algorithm achieved 6-

times improved resolution. 
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