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ABSTRACT  

In optical filter based compressive sensing (CS) spectrometers, an input spectrum is multiplexed and modulated by a small 
number of optical filters which have different sensing patterns. Then, detectors read out the modulated signals called 
measurements. By exploiting the CS reconstruction algorithms that utilize the measurements and the sensing patterns of 
optical filters, the spectrum is recovered. However, there exists a drawback on CS reconstruction algorithms. The input 
spectrum should be a sparse signal or be sparsely represented by a pre-determined sparsifying basis. In practice, however, 
the input spectrum could not be sparse or be sparsely represented by the pre-determined sparsifying basis. Therefore, the 
performance of spectral recovery using the CS reconstruction algorithms is varying according to the sparsity of the input 
spectrum and the sparsifying basis. In this paper, we implement a convolutional neural networks (CNNs) structure to 
reconstruct the input spectrum from the measurements of the CS spectrometers. The CNNs structure learns the way of 
solving the inverse problem of the underdetermined linear system. As an input of the CNNs structure, a spectrum calculated 
by multiplying a fixed transform matrix and the measurements is used. We investigate the reconstruction performance of 
the CNNs structure comparing with the CS reconstruction algorithm with different sparsifying basis. The experiment 
results indicate the reconstruction performance of the CNNs structure is compatible with the CS reconstruction algorithm. 
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1. INTRODUCTION  
Spectrometers with high resolution, wide operating range, small size, and single exposure acquisition have attracted much 
interest in research and development. Such spectrometers can provide on-site detection and quantification of various fields 
such as mobile applications1, and medical services2. Optical filter based compressive sensing spectrometers can be one 
candidate for this kind of spectrometers. Thanks to the structural advantage that fewer filters are required and filters are 
attached to detectors, the size of the spectrometers can be reduced. In addition, exploiting compressive sensing technique, 
the measurements from fewer filters can reconstruct the input spectrum, which means that the resolution improvement is 
achieved. 
Compressive sensing (CS)3 is the framework for sampling and reconstruction of an input signal. In CS spectrometers, the 
different sensing patterns of filters spectrally modulate the input spectrum. Detectors read out these modulated inputs 
called measurements. Reconstruction algorithms recover the input spectrum using the sensing patterns and the 
measurements. Because the length of the input spectrum set to be far larger than the number of the measurements, the 
reconstruction algorithms deal with the underdetermined linear system. Numerous studies have proposed reconstruction 
algorithms such as orthogonal matching pursuit4, and basis pursuit algorithm5. The sparsity of the input spectrum affects 
the reconstruction algorithms that solving the problem of recovering the input spectrum from the measurements (inverse 
problem). The input spectrum should be a sparse signal or could be sparsely represented by sparsifying basis such as 
wavelet transform matrix, Fourier transform matrix, and discrete cosine transform (DCT) matrix. In practice, however, not 
all kinds of spectra are sparse in a fixed sparsifying basis. Therefore, the reconstruction performance changes according 
to the sparsifying basis and spectra.  
Previously, the deep learning based approach to solve inverse problems in CS have been proposed in various studies6–8. In 
this paper, we propose a simple framework based on convolutional neural networks (CNNs) to solve inverse problems in 
CS spectrometers. As a deep learning structure, we have trained the CNNs structure so that the output of the networks 
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becomes the input spectrum of CS spectrometers. The input of the CNNs structure is the vector calculated by multiplying 
a fixed transformation matrix and the measurements. We investigate the reconstruction performance of the proposed 
framework comparing with the CS reconstruction algorithm with different sparsifying basis. The experiment results 
indicate the reconstruction performance of the proposed framework is compatible with the CS reconstruction algorithm. 

2. COMPRESSIVE SENSING SPECTROMETER 
2.1 System Description 

For CS spectrometers, numerous optical structures have been proposed such as multilayer thin-film filters9 and Fabry-
peort filters10,11. In this paper, we use the multilayer thin-film filters for CS spectrometers. Let 𝐱𝐱 ∈ ℝ𝑁𝑁×1 denote the input 
spectrum of light source and 𝐲𝐲 ∈ ℝ𝑀𝑀×1 denote the measurements, The relation between 𝐱𝐱 and 𝐲𝐲 can be expressed by:  

 ,=y Tx  (1) 

where 𝐓𝐓 ∈ ℝ𝑀𝑀×𝑁𝑁 is the sensing matrix. Each sensing patterns of the filters represents the row of the sensing matrix. To 
take advantage of the CS framework, the number of measurements is set to be smaller than the number of spectral 
component of light source, i.e., M < N. If the input spectrum 𝐱𝐱 is a sparse signal or sparsely represented in some basis, 
reconstruction algorithms can recover the 𝐱𝐱 in the underdetermined system of Eq. (1). An input spectrum 𝐱𝐱 can be 
sparsely represented by the sparsifying basis 𝚽𝚽 ∈ ℝ𝑁𝑁×𝑁𝑁: 

 ,=x Φs  (2) 

where 𝐬𝐬 ∈ ℝ𝑁𝑁×1 is the sparse vector. Then, Eq. (1) becomes: 

 .=y TΦs  (3) 

In order to recover the 𝐬𝐬 in Eq. (3), numerous algorithms have been proposed which are based on greedy iterative 
algorithms and convex optimization algorithms. From the recovered 𝐬𝐬�, the reconstructed input spectrum of light source 𝐱𝐱� 
is 𝚽𝚽𝐬𝐬�.  

In this paper, unlike the aforementioned algorithms, we use a simple framework based on CNNs to reconstruct the input 
spectrum of light. 

 
Figure 1. The schematic of the proposed framework to solve inverse problems in CS spectrometers. 
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2.2 CNN framework: Solving inverse problems in CS spectrometers 

Convolutional neural networks (CNNs)12 are one of the most popular deep learning structures in various imaging research 
areas such as image classification13, image super-resolution14, and image segmentation15. Typically, the CNNs consist of 
an input layer, multiple hidden layers, and an output layer. The hidden layers are consist of convolutional layers with 
activation functions, pooling layers, and fully connected layers. 

We propose a simple framework based on CNNs that the output of the framework becomes the input spectrum of CS 
spectrometer. Figure 1 shows the schematic of the proposed framework. By the sensing matrix 𝐓𝐓 of CS spectrometer, the 
input spectrum 𝐱𝐱 is modulated as the measurements 𝐲𝐲. As the input of the CNNs structure, we generate an N-dimensional 
vector from the measurements 𝐲𝐲 by multiplying the transform matrix 𝚯𝚯 ∈ ℝ𝑁𝑁×𝑀𝑀, i.e., 𝚯𝚯𝐲𝐲. We use the pseudo-inverse 
matrix of the sensing matrix 𝐓𝐓 as the transform matrix. For the convolutional layers, 1D CNN is used to cover one-
dimensional input signals (spectra). After the convolutional layer, input signal passes through an activation function. We 
utilize the rectified linear unit (ReLU) as the activation function, i.e., f(𝑥𝑥) = max(0, x). Then, the output of the ReLU is 
fed into a pooling layer. We use a max pooling that takes a maximum value within a specific pooling window size of the 
output of the previous layer. We stack the convolutional layer and the pooling layer multiple times, alternatively. Finally, 
the output of the last layer is flattened and go through fully connected layers. The output layer is the vector 𝐱𝐱� ∈ ℝ𝑁𝑁×1. 
We train the framework so that the vector 𝐱𝐱� becomes the input spectrum 𝐱𝐱. 

The specific information about the CNNs structure is as follows: it has five convolutional layers and two fully connected 
layers. The first and second convolutional layers have 128 filters with the stride of three. The third layer has 256 filters 
with the stride of three. The fourth and fifth layers have 128 filters with the stride of three. In each convolutional layers, 
the ReLU work as the activation function. We use max pooling with the pool size of two and the stride of two. In addition, 
the first fully connected layer gives an output of the vector size of 512. We use the ReLU for the first fully connected layer. 
The second layer gives a vector with the size of 500. As the activation function of the second layer, we use the linear 
function. 

3. EXPERIMENT AND RESULTS 
A multilayer thin-film CS spectrometer with 36 filters is considered (M = 36). We set the wavelength range from 500 to 
1000 nm as the range of interest (N = 500). The input light is assumed to be in normal incidence. We numerically generate 
the multilayer thin-film filters by using multiple layers of high and low refractive index materials with different thicknesses. 
Each sensing patterns of filters are calculated based on thin-film theory16.  

 

 
Figure 2. An example of the input spectrum composed of three Gaussian kernels. 
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3.1 Data set  

We numerically generate spectra using Gaussian kernels. As shown in Fig. 2, three Gaussian kernels with the different full 
width at half maximums (FWHMs), peak locations, and peak heights can make an input spectrum. We make a data set 
composed of a training set, a validation set, and a test set. For generating spectra, we define the spectral types according 
to the number of Gaussian kernels used to make the spectrum. From one to 18 kernels, pairs of 18 types-spectra and their 
corresponding inputs of the CNNs structure are used as the data set. For the given number of Gaussian kernels, we can 
randomly generate spectra by changing FWHMs, peak locations, and heights. We use 800, 200, and 200 spectra for each 
type in the training set, validation set, and test set, respectively. Therefore, the number of spectra for the training set, the 
validation set, and the test set are 14400, 3600, and 3600, respectively.  

3.2 Experiment and results 

Let 𝑫𝑫train = {(𝚯𝚯𝐲𝐲1, 𝐱𝐱1), (𝚯𝚯𝐲𝐲2, 𝐱𝐱2),⋯ , (𝚯𝚯𝐲𝐲𝑙𝑙 , 𝐱𝐱𝑙𝑙)} denotes the training set where l is the number of pairs of input spectra 
and their corresponding inputs of the CNNs structure for the training. 𝑫𝑫validation = {(𝚯𝚯𝐲𝐲1, 𝐱𝐱1), (𝚯𝚯𝐲𝐲2, 𝐱𝐱2),⋯ , (𝚯𝚯𝐲𝐲𝑣𝑣 , 𝐱𝐱𝑣𝑣)} 
is the validation set where v is the number of pairs for the validation. 𝑫𝑫test = {(𝚯𝚯𝐲𝐲1, 𝐱𝐱1), (𝚯𝚯𝐲𝐲2, 𝐱𝐱2),⋯ , (𝚯𝚯𝐲𝐲𝑡𝑡 , 𝐱𝐱𝑡𝑡)} is the 
test set and t is the number of pairs for the test. Using the 14400 pairs of training set, we train the CNNs structure. As a 
loss function, we exploit the mean squared error (MSE) over the training set 𝑫𝑫train. The MSE is defined as: 

 2

2
1

1 ˆ .
l

l l
k

MSE
l =

= −∑ x x  (4) 

Applying the backpropagation, the CNNs structure is trained in the direction of reducing the MSE. To predict the 
performance of the CNNs structure and determine the stopping point of the backpropagation, we exploit the validation set.    
We assess the performance of our fully trained framework using the test set.  

Figure 3 shows the training and validation loss of our CNNs structure compared with the result using CS reconstruction 
algorithm17. We use the DCT matrix and the Haar wavelet matrix as sparsifying basis. As the epoch increases, training 
loss decreases and the validation loss converges to the MSE of 0.00078. We evaluate the MSE of the reconstruction using 
CS reconstruction algorithm over the test set. The MSE of CS reconstruction algorithm using the DCT matrix and the Haar 
wavelet matrix is 0.00276 and 1.30318, respectively. In the case of the Haar wavelet matrix, the reconstructions are failed 
in most of the test spectra. We achieve the optimized structure through the training. The MSE of the trained structure over 
the test set is 0.00078. 

 
Figure 3. The training and validation loss of our CNNs structure. 

Proc. of SPIE Vol. 10937  109370L-4
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 23 Dec 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



 
 

 
 

 
Figure 4. Reconstruction results of the test spectra: (a) The test spectrum generated with one Gaussian kernel, (b) The test 
spectrum generated with seven Gaussian kernels, (c) The test spectrum generated with nine Gaussian kernels, (d) The test 
spectrum generated with 18 Gaussian kernels.  

Figure 4 shows the reconstruction results of four types of the test spectra. To generate the input spectrum, we use one, 
seven, nine, and 18 Gaussian kernels in Figs. 4(a-d), respectively. The reconstructions of spectra using the proposed CNNs 
based framework (red dash) are compared with original input spectra (black solid) and reconstructions using CS 
reconstruction algorithm with DCT sparsifying basis (blue dash-dot). The reconstruction peak signal-to-noise ratio of the 
proposed framework is 36.2 dB, 32.3 dB, 25.9 dB and 35.6 dB for Figs. 4(a-d), respectively. The reconstruction peak 
signal-to-noise ratio of CS reconstruction algorithm using the DCT sparsifying basis is 63.3 dB, 24.4 dB, 17.7 dB and 28.2 
dB for Figs. 4(a-d), respectively. The proposed framework shows compatible performance with CS reconstruction 
algorithm. In addition, the proposed framework shows stable performance over the test data. However, CS reconstruction 
algorithm using the DCT sparsifying basis has significant a performance change over the type of spectrum.  

 

4. CONCLUSIONS 
In this paper, we propose a simple framework based on the CNNs structure that solving inverse problems in CS 
spectrometers. We train the framework to reconstruct the input spectrum of CS spectrometer. We investigate the 
reconstruction performance of the CNNs structure comparing with the CS reconstruction algorithm with different 
sparsifying basis. The MSE of CS reconstruction algorithm using the DCT matrix and the Haar wavelet matrix is 0.00276 
and 1.30318, respectively. The MSE of the proposed framework is 0.00078. The MSE results indicate the reconstruction 
performance of the CNN structure is compatible with the CS reconstruction algorithm. In addition, the proposed 
framework shows stable performance over the various spectra.  
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