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a b s t r a c t 

We demonstrate 2D filter-array compressive sensing spectroscopy based on thin-film technology and a compres- 

sive sensing reconstruction algorithm. To obtain different spectral modulations, we fabricate a set of multilayer 

filters using alternating low- and high-index materials and reconstruct the input spectrum using a small number of 

measurements. Experimental results show that the fabricated filter-array provides compatible spectral resolution 

performance with a conventional spectrometer in monochromatic lights and LEDs. In addition, the fabricated 

filter-array covers a wide range of wavelengths with a single exposure. 
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. Introduction 

The demand for spectrum information is increasing not only in re-

earch and development but also in the private sector. In response to

his demand, researchers are trying to make spectrometers that are both

mall and inexpensive. These spectrometers could be used in various

elds, such as medical systems, mobile applications, and remote sens-

ng [1–3] . In particular, optical filter-based spectrometers do not need

otorized or dispersive elements, and their filter-array can be directly

ttached to the detectors so that they can be easily miniaturized. How-

ver, there is a trade-off between size (for integrating filters) and spec-

ral resolution with miniaturized spectrometers. 

Over the years, numerous approaches to applying compressive sens-

ng (CS) techniques have been proposed to reduce the size of spectro-

copes without reducing spectral resolution, or potentially even improv-

ng it. These approaches [4–7] include the following: band pass filters

4] , random transmittance filters [5] , photonic crystal slabs [6] , and

iquid crystal phase retarders [7] . Recently, Fabry–Perot (FP)-based CS

pectroscopy methods have been presented [8,9] . To acquire differently

odulated spectral measurements, a 2D array of FP resonators with dif-

erent cavity depths has been tried [8] as well as a piezo-actuated de-

ice that changes the distance between two FP mirrors has been tried

9] . A hundred FP resonators are used to recover the input spectrum in

8] , and the operational range of the piezo-actuator imposes mechanical

imitations in [9] . 

The CS framework [10–12] is an efficient sampling and reconstruc-

ion scheme that requires fewer samples to reconstruct the signal than

hat required by conventional sampling. The CS framework can be ap-

lied to filter-based spectroscopy, offering the advantage of reducing
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he number of filters and detectors required and allowing the system to

e miniaturized. 

In spectroscopy, the relation between the spectral components of the

nput light source 𝐱 ∈ ℝ 

𝑁× 1 and the modulated signal 𝐲 ∈ ℝ 

𝑀× 1 can be

xpressed as follows: 

 = 𝐓𝐱 , (1) 

here 𝐓 ∈ ℝ 

𝑀×𝑁 is the sensing matrix. Each row of the sensing matrix

s to represent the transmission function (TF) of i -th filter, 𝑻 𝑚 ∈ ℝ 

1 ×𝑁 

or 𝑚 = 1 , 2 , … , 𝑀 . In order to achieve miniaturization of spectroscope

ithout degradation of spectral resolution, the CS framework is utilized

n spectroscopy, where the number of filters is set to be smaller than the

umber of spectral components ( M < N ). Then, Eq. (1) becomes an un-

erdetermined linear system. A sparse signal reconstruction algorithm

ith L 1 norm minimization can be used to solve Eq. (1) , if the input

pectrum is either naturally sparse or can be sparsely represented in

ome basis 𝚽 ∈ ℝ 

𝑁×𝑁 , i.e., 𝐱 = 𝚽𝐬 , where 𝐬 ∈ ℝ 

𝑁× 1 is a sparse vector.

hen, Eq. (1) becomes 

 = 𝐓𝚽𝐬 (2) 

The sparse signal s can be estimated by solving the following L 1 norm

inimization problem: 

̂
 = arg min 

𝐬 
‖𝐬 ‖1 subject to ‖𝐲 − 𝐓𝚽𝐬 ‖2 ≤ 𝜀 (3)

here 𝜀 is a small non-negative constant. The reconstructed input spec-

rum �̂� is then 𝚽�̂� . 
In this paper, we demonstrate 2D filter-array CS spectroscopy. This

ses a multilayer thin-film filter-array for spectral modulation, where

ach filter modulates the input spectrum using different sensing pat-

erns. A CMOS image camera reads out the modulated signals with a
ctober 2018 
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Table 1 

Recursion for calculating reflection coefficients. 

Input: 𝜆, 𝜃1 = 0 , 𝒏 = { 𝑛 1 , 𝑛 2 , ⋯ , 𝑛 𝑙−1 , 𝑛 𝑙 } , 𝒅 = { 𝑑 2 , 𝑑 3 , ⋯ , 𝑑 𝑙−1 , 𝑑 𝑙 } . 

Step 1: Obtain 𝜃k , 𝛽k , and N k 
𝜃𝑘 = sin 

−1 ( 𝑛 𝑘 −1 
𝑛 𝑘 

sin 𝜃𝑘 −1 ) , 𝑓𝑜𝑟 𝑘 = 2 , 3 , ⋯ , 𝑙. 

𝛽𝑘 = 2 𝜋 cos ( 𝜃𝑘 ) 𝑛 𝑘 𝑑 𝑘 ∕ 𝜆, 𝑓𝑜𝑟 𝑘 = 2 , 3 , ⋯ , 𝑙. 

𝑁 𝑘 = { 
𝑛 𝑘 ∕ cos 𝜃𝑘 𝑓𝑜𝑟 𝑇 𝐸 
𝑛 𝑘 cos 𝜃𝑘 𝑓𝑜𝑟 𝑇 𝑀 

, 𝑓𝑜𝑟 𝑘 = 1 , 2 , ⋯ , 𝑙. 

Step 2: Set 𝜂𝑙 = 𝑁 𝑙 

Step 3: Obtain 𝜂2 

Decrement k by 1 from l – 1 to 2 

𝜂𝑘 = 𝑁 𝑘 

𝜂𝑘 +1 cos 𝛽𝑘 + 𝑗 𝑁 𝑘 sin 𝛽𝑘 
𝑁 𝑘 cos 𝛽𝑘 + 𝑗 𝜂𝑘 +1 sin 𝛽𝑘 

return 𝜂2 

Step 4: Compute 𝜌 = ( 𝑁 1 − 𝜂2 )∕( 𝑁 1 + 𝜂2 ) . 

Output: 𝜌

s  

p  

i

 

t  

t  

a  

t  

t  

fi  

o

2

2

 

o  

c  

[

𝑇  

w

a  

s

 

i  

(  

a  

l  

f

i  

n  

r

t  

t

 

d  

k  

k  

l  

o  

1  

a

2

 

t  

c  

Fig. 1. (a) Schematic of the thin-film filter-array. (b) Example of two transmis- 

sion functions for thin-film filters. 
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ingle exposure, and then a reconstruction algorithm is applied that de-

ends on the modulated signals and the sensing matrix, allowing the

nput spectrum to be recovered. 

The research focus has been given to fabrication of the multilayer

hin-film filters for actual CS spectroscopy implementation and verifica-

ion experiments. For fabricating as a 2D filter-array, we use commonly

vailable materials SiNx and SiO2 for high and low refractive index ma-

erials which are deposited alternately on the substrate with varying

hicknesses. Furthermore, we come up with a practical way that set of

lters can be deposited on a single substrate with different thicknesses

f layers. 

. 2D filter-array 

.1. Multilayer thin-film filter 

Thin films are a basic component that have been applied in a variety

f areas, including semiconductor devices, optical coatings, and solar

ells [13] . The theoretical TF of a multilayer thin-film filter is given by

14] 

 

(
𝜆, 𝜃1 

)
= 1 − 

1 ∕ 2 
(||𝜌𝑇𝐸 ||2 + 

||𝜌𝑇𝑀 

||2 
)
, (4)

here 𝜌TE and 𝜌TM 

are the reflection coefficients. Given a wavelength 𝜆

nd the incident angle 𝜃1 , TF can be calculated using recursive routines

hown in Table 1 . 

In Table 1 , given the input of a wavelength 𝜆, a vector of l refractive

ndices 𝒏 = ( 𝑛 1 , 𝑛 2 , ⋯ , 𝑛 𝑙−1 , 𝑛 𝑙 ) and a vector of 𝑙 − 1 layer thicknesses 𝒅 =
 𝑑 2 , 𝑑 3 , ⋯ , 𝑑 𝑙−1 , 𝑑 𝑙 ) , a reflection coefficient 𝜌 is generated. Note that there

re l layers considered in total. The first one is the layer of the air and the

ast one is the layer of the substrate. The light is assumed to be arriving

rom the air to the second layer in normal incidence. The first index n 1 
n the vector n represents the refractive index of the air. The last one

 l in the vector n represents the refractive index of the substrate. The

efractive indices of the intermediate thin-film layers are denoted by n 2 
o 𝑛 𝑙−1 . The thickness of the air does not need to be considered. The

hickness of the substrate is denoted by d l . 

The thicknesses of the intermediate thin-film layers are denoted by

 2 to 𝑑 𝑙−1 . The incidence angle of the light passing from the k th to the

 + 1th layer is 𝜃k , and 𝜂k is the effective complex-valued index of the

 th layer. A TF for a single filter is obtained by considering all wave-

engths in the range of interest. An array of TFs for the M filters can be

btained by repeating this process where each filter 𝑻 𝑚 ∈ ℝ 

1 ×𝑁 for 𝑚 =
 , 2 , ⋯ , 𝑀 in Eq. (1) is generated from a unique set of refractive index

nd thickness vectors. 

.2. Numerical design of 2D filter-array 

To implement the proposed 2D filter-array, we numerically modeled

he proposed spectroscopy method with reference to [14–16] , and ac-

ording to the following steps. (i) Generate the reference vector of layer
54 
hicknesses, i.e. 𝒅 = ( 𝑑 2 , 𝑑 3 , ⋯ , 𝑑 𝑙−1 , 𝑑 𝑙 ) , for the reference filter. (ii) Gen-

rate a vector of thicknesses for the other filter by randomly removing

ne to five layer thicknesses from the reference vector. (iii) Repeat the

tep (ii) 35 times to create a total of 36 vectors of thicknesses. (iv) Use

he recursion Table 1 and Eq. (4) to calculate the TFs for a new filter-

rray (sensing matrix). (v) Use the mutual coherence 𝜇 to quantify the

oodness of the sensing matrix of the designed filter-array. Mutual co-

erence 𝜇 is defined as 𝜇
Δ
= max 

𝑖,𝑗 
|𝑜 𝑖𝑗 |, where o ij is the ( i, j )th off-diagonal

lement of the Gram matrix, 𝐓 

∗ 𝐓 ∈ ℝ 

𝑁×𝑁 . T 

∗ denotes the conjugate

ranspose of T . With these steps, we can generate a single set of 36 fil-

ers. By repeating these steps, multiple sets of 36 filters can be obtained.

mong these sets of filter-arrays, the set of filters with a smallest mutual

oherence is selected. 

In CS framework, a sensing matrix with a smaller mutual coherence

s better than the one with a higher mutual coherence to capture the

nformation of input signal to be reconstructed [5,17] . A schematic of

he proposed filter-array is shown in Fig. 1 (a). Each time a layer is re-

oved, the layers above and those below come together to form a single

ayer with two thicknesses added up. We consider two materials, SiN x 

nd SiO 2 for the high- and low-refractive index materials with refractive

ndices of 2.02 for SiN x and 1.45 for SiO 2 . The thickness range of each

ayer is from 50 to 150 nm. Through the numerical design, we empiri-

ally found that removal of up to five layers from the 24-layer reference

lter was possible to create a 6 ×6 filter-array with a low coherence. 

Fig. 1 (b) shows the TFs for two designed filters as examples. In con-

entional spectroscopy, the TFs with a large spectral depth and a narrow

pectral peak are preferred in order to prevent interference among mea-

urements. In compressive sensing spectroscopy, Each TF of the filter

hould be wide enough so that the set of the small number of filters

ully senses the spectral information in the given wavelength range [9] .

Each filter shows several spectral peaks and rapid changes of trans-

ission value with respect to wavelength. Therefore, each filter has a

igh optical throughput that the energy (intensity) which passes through

he filter is higher than that with the conventional bandpass filter ap-

roach. In addition, fewer filters can be used to cover the entire wave-

ength range with the proposed method. For example, suppose 250

andpass filters are used to cover the wavelength range from 500 to
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Fig. 2. (a) Schematic of the thin-film filter-array fabrication process. (b) Photo- 

graph of a fabricated thin-film filter-array. (c) Monochrome image of the thin- 

film filter-array taken at a wavelength of 700 nm. 
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Fig. 3. (a) Schematic of the optical setup for measuring the sensing matrix. 

(b) Schematic of the optical setup for testing the performance of the proposed 

spectroscopy system. (c) Photographs of the optical setup and the CMOS image 

camera with the thin-film filter-array. 
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000 nm. Then, the bandwidth of TF is 2 nm, according to the conven-

ional bandpass filter design. In the proposed approach, the same range

f wavelength can be covered with only 36 proposed filters, subject to

he use of a recovery algorithm present at the reconstruction end. 

.3. Filter-array fabrication 

Fig. 2 (a) shows the process in which a thin-film filter-array is fabri-

ated. This comprises two main parts; one is SiO 2 film deposition and

he other is SiN x film deposition according to the specified thicknesses.

rior to depositing an SiO 2 film, a 6 ×6 germanium (Ge) grid with ele-

ents of size 300 𝜇m and spacing 100 𝜇m was formed on the glass using

n e-beam evaporator to separate the filters. In this grid, SiO 2 and SiN x 

ayers were deposited with the width of 300 𝜇m in each filter. Then, se-

ective deposition was done as follow: An intentionally thick SiO 2 film

as deposited on the glass patterned with the Ge grid using plasma- en-

anced chemical vapor deposition. The regions where the film should

ot be deposited were then removed by conventional photolithography,

amely CF 4 /O 2 reactive ion etching. The process pressure and radio- fre-

uency power were maintained at 50 mTorr and 50 W, respectively. The

iN x film deposition process was performed in the same manner as for

iO 2 . Finally, these two main steps, SiO 2 and SiN x film deposition, were

epeated 12 times each to lay down 24 layers. Fig. 2 (b) and (c) show

 photograph of a fabricated thin-film filter-array and a monochrome

mage of the filter-array, respectively. Each filter is composed of a dif-

erent number of layers each with different thicknesses; therefore, each

ne has unique color due to its different TF, as shown in Fig. 1 (b). 

. Experiments 

.1. Experimental setup 

Optical setups for experimental verification of the proposed spec-

roscopy system are shown in Fig. 3 . Fig. 3 (a) depicts the optical setup

or measuring TFs of a filter-array. The setup for testing the performance

f the proposed system is shown in Fig. 3 (b). The photographs of the op-

ical setup and the CMOS image camera with the thin-film filter-array
55 
re shown in Fig. 3 (c). During the optical experiments, we set the in-

ident angle to filter-array as normal incidence. Using a linear stage, a

otational stage and optical mounting posts, we aligned the optical fiber

ith the CMOS image camera (E0-1312, Edmund Optics) for the normal

ncidence. 

In Fig. 3 (a), a halogen lamp (KLS-150H-LS-150D, Kwangwoo) was

sed to provide a continuous light spectrum. It was put into a monochro-

ator (MMAC-200, Mi Optics) to produce a specific narrow wavelength

and. Then, a fiber-optic collimator was used to form a beam of parallel

ight. The beam was fed into the CMOS image camera through the fabri-

ated thin-film filter-array. With a single exposure, each filter modulated

he light in a different pattern. The modulated light was read out by pix-

ls of CMOS image camera, yielding M = 36 distinct output signals y in

q. (1) . Each output signal was taken by summing up the modulated

alues of the pixels underneath the pertinent filter. 

To apply CS reconstruction algorithms to the proposed system, the

ensing matrix T must be pre-determined. Let us denote the intensity

hich passes through the filter-array as IF ( m, 𝜆) and the intensity with-

ut the filter-array as IWF ( m, 𝜆), where m is the filter index and 𝜆 is the

avelength. The sensing matrix is then given by 

 ( 𝑚, 𝜆) = 

𝐼𝐹 ( 𝑚, 𝜆) − 𝐵𝐼( 𝑚, 𝜆) 
𝐼𝑊 𝐹 ( 𝑚, 𝜆) − 𝐵𝐼( 𝑚, 𝜆) 

, (5)

here BI ( m, 𝜆) is the background intensity. We took 500 wavelength

amples, spaced 1 nm apart, in the range from 500 to 1000 nm. The mea-

ured sensing matrix 𝐓 ∈ ℝ 

36 × 500 obtained from the fabricated thin-

lm filter-array is shown in Fig. 4 . Each TF of the filters, a row of the

olor map, is shown as a combination of colors, i.e., red (high trans-

ission value) and blue (low transmission value). Different TFs show

ifferent places of high and low transmission values indicating mutual

ncorrelation. As a set of 36 filters, the filter-array covers the entire

avelength range with high optical throughput. 
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Fig. 4. Color map of the measured sensing matrix for the thin-film filter-array. 

Each row represents the TF of a filter with respect to wavelength. 

3

 

o  

T  

w  

s  

t  

t  

i  

a  

t  

s  

t  

fi

 

c  

o  

a  

t  

fi  

n

 

a  

t  

t  

l  

t  

t  

t

 

f  

p  

s  

f  

t  

v

 

c  

r  

p  

f

3

 

m  

m  

Fig. 5. (a) Computational reconstruction performance of the fabricated thin- 

film filter-array with respect to the FWHM. (b) Computational spectral recon- 

struction performance of the fabricated thin-film filter-array with respect to the 

SNR. 
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.2. Computational experiments 

To quantify the performance and explore the two-point resolution

f the fabricated filter-array, we conducted computational experiments.

he two-point resolution is the ability to distinguish the spectral peaks

hich are closely spaced. For the experiments, we generated mono-peak

pectra and two-peak spectra as input spectra using the Gaussian func-

ion. A generated input spectrum x was numerically modulated by mul-

iplying the measured sensing matrix T as shown in Eq. (1) . Then, us-

ng the M -modulated signals (measurements) and the sensing matrix T ,

 reconstruction algorithm is used to recover the input spectrum. In

he experiments, we considered that the input spectrum was a directly

parse signal. The mean-squared error (MSE) between the input spec-

rum x and the reconstructed spectrum ̂𝐱 was calculated. The MSE is de-

ned as ‖𝐱 − ̂𝐱 ‖2 2 ∕ 𝑁 . 

We firstly tested the spectral reconstruction performance of the fabri-

ated filter-array with changing the full width at half maximum (FWHM)

f the generated input signals. We made three noisy environments by

dding the additive noise n to Eq. (1) as 𝐲 = 𝐓𝐱 + 𝐧 whose the signal

o noise ratios (SNRs) were 20, 25, 30 dB. The SNR in decibels is de-

ned as 10 ⋅ log 10 ( ‖𝐱‖2 2 ∕ 𝑁 𝜎2 ) , where 𝜎 is the standard deviation of the

oise. 

The spectral reconstruction performances with respect to the FWHMs

re shown in Fig. 5 (a). For the two-peak spectrum, the distance between

wo peaks was determined as [1.5 · FWHM], where [ · ] is the nearest in-

eger function. We averaged all the MSEs of the spectrum over the peak-

ocations from 500 to 999 nm in a given FWHM. As shown in Fig. 5 (a),

he mono-peak spectrum is reconstructed better than two-peak spec-

rum. As the FWHM increased, the performance of spectral reconstruc-

ion is degraded. This is due to the increased sparsity of the spectrum. 

Second, we verified the stability of noise along the SNR conditions

or the fabricated filter-array. As shown in Fig. 5 (b), the reconstruction

erformance on mono-peak spectrum is better than that of the two-peak

pectrum. In addition, when the FWHM is 1 nm, the reconstruction per-

ormance is better than the FWHM with 2 nm. Despite the additive noise,

he results show that the fabricated filter-array is robust to the noisy en-

ironments. 

As depicted in Fig. 5 , the reconstruction performance of the fabri-

ated filter-array depends on the FWHM and the SNR. For the two-point

esolution, the MSE has the smallest value when the FWHM of the two-

eak spectrum is 1 nm. The overall MSEs are small enough to use the

abricated filter-array to conduct the optical experiments. 

.3. Optical experiments 

Optical experiments were then conducted to evaluate the perfor-

ance of the proposed system, as shown in Fig. 3 (b). Narrow-band

onochromatic lights and LEDs were used as input light sources. To gen-
56 
rate narrow-band light, a supercontinuum white light source (SuperK

OMPACT, NKT Photonics) was placed in the monochromator, making

 narrow band of light with a full width at half maximum (FWHM) of

pproximately 1 nm. These light sources were fed into the CMOS image

amera through the filter-array, simultaneously capturing the M differ-

ntly modulated signals. The M -modulated signals and the measured

ensing matrix T were then used to solve Eq. (3) . We used a Gaussian

ernel matrix as the sparsifying basis 𝚽. The spectral waveform can be

epresented as a linear combination of Gaussian kernels, and a Gaussian

ernel can be easily generated with two parameters, namely the peak

ocation and the FWHM value [4,18] . The l1_ls_noneg algorithm [19] was

sed as a reconstruction algorithm to solve Eq. (3) with non-negativity

onstraints. 

Fig. 6 shows the reconstruction results for monochromatic lights and

EDs. For comparison, the reference spectrum and the reconstructed

pectrum were normalized to the range between zero and one. 

The optical experimental results for monochromatic lights are shown

n Fig. 6 (a). In our optical experiment, depicted in Fig. 3 (c), we use four

ifferent monochromatic spectra, with spectral peaks located at 600,

00, 800, and 900 nm, respectively. The reference spectra are measured

sing an optical spectrum analyzer (AQ-6315B, Ando) which indicate

ctual spectral peak locations at 598.7, 700.4, 800.5, and 900.4 nm, re-

pectively. Using the fabricated filter-array CS spectroscopy with the

econstruction algorithm, the spectral peak locations are reconstructed

t 599, 699, 799, and 901 nm, respectively. The mean FWHM of the

eference spectra is approximately 1 nm, and the mean FWHM for the

econstructed spectra is approximately 1.4 nm. 

Fig. 6 (b) shows the spectral reconstructions of green (527 nm) and

ed (635 nm) LEDs. For the reference spectra, we measure the LEDs us-

ng a grating spectrometer (QE65000, Ocean Optics). The spectral peak

ocations for the reference LEDs are 527.6 nm (green LED) and 634.9 nm
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Fig. 6. Spectral reconstructions of several different input light sources. (a) Spec- 

tral reconstructions of monochromatic lights (dots) compared with reference 

spectra (solid lines): 600 nm (green), 700 nm (yellow), 800 nm (red), and 900 nm 

(purple). (b) Spectral reconstructions of LEDs (dots) compared with reference 

spectra (solid lines): green LED (527 nm), and red LED (635 nm). 
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Fig. 7. Computational spectral reconstruction of a halogen lamp (red dash line) 

compared with the reference spectrum (black solid line) measured by a conven- 

tional spectrometer. 
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red LED), and the reconstructed spectral peak locations are 531 nm

green LED) and 633 nm (red LED). The peak signal-to-noise ratios are

8.3 dB (green LED) and 31.7 dB (red LED). 

Discussing Fig. 6 , the spectra of reconstructed monochromatic lights

how several negligible spikes. This is probably due to background noise

n the optical experiments. But overall, the reconstruction results of the

roposed CS spectroscopy system for monochromatic lights and LEDs

re similar to those of the grating spectrometer. Furthermore, the num-

er of modulated signals is significantly small ( M = 36) that the mea-

urement to wavelength sample ratio is 36:500 (ratio between M and

 ). 

To further explore the performance of the proposed CS spectroscopy,

e conducted the computational experiment on the fabricated filter-

rray using a continuous light source, halogen lamp. For the experiment,

e used the measured sensing matrix T . The conventionally measured

pectrum of the halogen lamp was used as the input spectrum x . The

odulated signals were generated by numerically multiplying the sens-

ng matrix and the input spectrum. By solving Eq. (3) , we reconstructed

he continuous spectrum of light. In Fig. 7 , we present computational

pectral reconstruction of the halogen lamp. The peak signal-to-noise

atio is 43.8 dB. Due to the limitations of our optical components to re-

ect the spectrum of the halogen lamp except for the wavelength range

rom 500 to 1000 nm, we could not perform the optical experiment on

he continuous source. However, the computational reconstruction re-

ult of the halogen lamp indicates that the fabricated filter-array can be

tilized for recovering the various kinds of spectra in the given wave-

ength range without limitations of the optical components. 

Fabricating the proposed filter-array can be more difficult than fab-

icating Fabry–Perot structure due to the large number of layers for the

roposed filter-array. However, the proposed spectroscope is compact

nd it does not need motorized components which were used with the

abry–Perot structure [9] . In addition, thanks to the 2D array struc-

ure, the proposed spectroscope captures all measurements in a single

xposure. But the Fabry–Perot spectroscope [9] required a number of
57 
xposures as many times as the number of measurements. Compared to

abry–Perot spectroscope [8] , the proposed spectroscope utilizes 36 fil-

ers to cover the wavelength range from 500 to 1000 nm, but 100 filters

ere used in [8] to cover the range from 500 to 750 nm. 

. Conclusion 

We have demonstrated a 2D array CS spectroscope based on thin-

lm technology. A 2D thin-film filter-array is fabricated based on array

rocessing. Using the fabricated filter-array, measurements are obtained

o which the CS reconstruction algorithm is applied. Finally, demon-

tration of input spectrum reconstruction is successfully made. The pro-

osed system is compact, portable, and obtains the necessary measure-

ents in a single exposure thanks to its structural advantages. More-

ver, it works over a wide spectral range, from the visible light region

o the near-infrared region. Compared with conventional spectrometers

non-CS spectrometers), the proposed system has a high optical through-

ut and compatible spectral resolution performance in monochromatic

ights and LEDs with significantly less number of measurements. 
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