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a b s t r a c t

One of the main problems related to electroencephalogram (EEG) based brain–computer interface (BCI)
systems is the non-stationarity of the underlying EEG signals. This results in the deterioration of the
classification performance during experimental sessions. Therefore, adaptive classification techniques are
required for EEG based BCI applications. In this paper, we propose simple adaptive sparse representation
based classification (SRC) schemes. Supervised and unsupervised dictionary update techniques for new
test data and a dictionary modification method by using the incoherence measure of the training data are
investigated. The proposed methods are very simple and additional computation for the re-training of
the classifier is not needed. The proposed adaptive SRC schemes are evaluated using two BCI experi-
mental datasets. The proposed methods are assessed by comparing classification results with the con-
ventional SRC and other adaptive classification methods. On the basis of the results, we find that the
proposed adaptive schemes show relatively improved classification accuracy as compared to conven-
tional methods without requiring additional computation.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Brain–computer interface (BCI) systems provide a new com-
munication and control channel between human brain and an
external device without any muscle movements [1]. Due to the
convenient usability and high temporal resolution compared to
other brain imaging equipment such as functional magnetic
resonance imaging (fMRI) and magnetoencephalogram (MEG),
research of noninvasive electroencephalogram (EEG) based brain–
computer interface (BCI) systems is continuously progressed [1–3].

In the beginning of BCI research, BCI systems have been
developed mostly to provide alternative communication means to
people who have severe motor disabilities [2,4,5]. Recently, much
research effort focused on development of portable BCI systems
for normal person by using headset shaped scalp electrodes [6,7]
and also dry electrodes which do not need conductive gel for
preparation of EEG recording [8,9]. In addition, with the progress
of portable BCI systems and EEG sensor technologies, many BCI
applications are developed for general public [9,10]. However, for
the BCI systems going beyond laboratory researches, the most
important issue is stable classification performance.
: þ82 62 715 2204.
Normally, EEG based BCI experiment can be categorized as a
training (calibration) stage and a real time testing (feedback) stage.
In the training stage, translation algorithm such as classification is
designed using collected training signals. Then, an application
device such as neural prosthesis is controlled by using the classi-
fication algorithm in real time testing stage. However, EEG signals
have inherent non-stationary characteristics and there exist sig-
nificant day-to-day and even session-to-session variability
[12,27,29]. Thus, features of experimental EEG signals are changed
from the offline training sessions to online testing sessions [11].
Due to this, classification performance is unavoidably deteriorated
in BCI experiment with time. In addition, the training session (15–
35 min) is conventionally carried out every time before using the
BCI systems even for experienced subjects [12]. These are major
obstacles of real-time online BCI applications.

To overcome the performance decrease caused by the non-
stationarity of EEG signals, many adaptive signal processing
methods are proposed. In [27–29], adaptive feature extraction
methods are proposed for the motor imagery based BCI systems.
For the adaptive classification scheme, in [13], mean and covar-
iance matrix of a statistical classifier are iteratively updated using
each class data. The study [11] proposes a bias adaptation scheme
of linear discriminant analysis (LDA) classification using class
labels of several test trials. They have shown that simple bias

www.sciencedirect.com/science/journal/00104825
www.elsevier.com/locate/cbm
http://dx.doi.org/10.1016/j.compbiomed.2015.08.017
http://dx.doi.org/10.1016/j.compbiomed.2015.08.017
http://dx.doi.org/10.1016/j.compbiomed.2015.08.017
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compbiomed.2015.08.017&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compbiomed.2015.08.017&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compbiomed.2015.08.017&domain=pdf
mailto:heungno@gist.ac.kr
http://dx.doi.org/10.1016/j.compbiomed.2015.08.017


Y. Shin et al. / Computers in Biology and Medicine 66 (2015) 29–3830
adaptation is effective for online test data. In [14], they propose an
expectation-maximization (EM) algorithm based unsupervised
adaptive classification method. Using EM algorithm, common
spatial pattern (CSP) features are re-extracted and parameters of
Bayes classifier are updated in each iteration step. Similarly, [15]
suggest unsupervised bias adaptation of LDA without using class
label information. Previous studies for adaptive classification
method need classifier re-adjustment (training) such as para-
meters and bias adaptation for new test trials. However, for this
re-training, additional computation is needed in each update
(adjustment) step.

Recently, with much progress of L1 minimization technique in
compressive sensing field [21,22], sparse representation has
received a lot of attention in signal processing and pattern
recognition fields. Especially, sparse representation based classi-
fication (SRC) has shown an increased interest [16,23,24]. SRC
framework is first introduced by Huang et al [16]. A test data from
one class is predominantly represented by the same class training
data from dictionary. The dictionary is composed by all class
training data and usually underdetermined. Sparse representation
of the test data using the dictionary can effectively be solved by
the L1 minimization tool, and the classification is performed by
comparing the representation error for each class.

SRC have been also studied for EEG signal classification
[17,18,25]. In [18] and [25], SRC scheme is applied to vigilance
detection and epileptic seizure detection problem respectively. In
addition, SRC scheme is first introduced for motor imagery based
BCI application in [17]. They have shown that the SRC exhibits
better classification performance than the conventional LDA
method using two experimental datasets. Another study [31] also
revealed that the SRC shows better classification accuracy and
noise robustness than the well-known SVM method. However, no
research has been studied for adaptive SRC scheme for online BCI
applications.

Compared to other fixed decision rule based classification
method such as linear discriminant analysis (LDA) and support
vector machine (SVM), in the SRC, the sparse representation is
adaptively performed for each test data by utilizing all training
data in the dictionary. Along with this inherent adaptive char-
acteristic of the SRC, in this study, we propose simple adaptive SRC
schemes for real-time BCI applications. We suggest a dictionary
update rule and an incoherence based dictionary modification
(IDM) method. For the dictionary update rule, supervised and
unsupervised adaptive schemes and also accumulated and fixed
update rules are considered. Proposed dictionary update methods
are very simple and additional computation for adaptation is not
needed. In the part of IDM method, our aim is to create a maxi-
mally incoherent dictionary via an incoherence measure of train-
ing data. This method is applied to the training data before per-
forming the sparse representation. Using online motor imagery
based BCI experimental datasets, we evaluate classification per-
formance of the proposed adaptive method by comparing with the
conventional SRC and other adaptive classification methods.

This paper is organized as follows. In Section 2, our experiment
and dataset are explained. In Section 3, technical methods such as
feature extraction, sparse representation based classification (SRC)
method and proposed adaptive SRC schemes are introduced. We
explain experimental evaluation strategy and results in Section 4.
In Section 5, we discuss some experimental results. Finally, we
conclude the paper in Section 6.
Fig. 1. One trial experimental paradigm for motor imagery experiment.
2. Experiment

For evaluation of adaptive classification scheme, we performed
online motor imagery based BCI experiment. The experiment was
approved by the Institutional Review Board of Gwangju Institute of
Science and Technology. Ten subjects who signed a written
informed consent letter participated in our online experiment. The
experiment was performed on multiple days (two or three days).
In each day, just one session experiment was executed. The
number of sessions for each subject was determined by classifi-
cation results and condition of each subject. Right hand (R), left
hand (L) and foot (F) motor imagery were performed for each
subject. For this experiment, we used Active Two EEG measure-
ment system made by Biosemi, Inc. The sampling rate of these
datasets was 512 samples per second and the number of EEG
channels was 64. The channel positions were selected from
international 10/20 standard.

The detailed experimental paradigm was illustrated in Fig. 1.
The same paradigm was used for both training (calibration) and
online testing (feedback) phases. In the training phase, one session
consisted of three runs and one run consisted of 20 trials for each
class. Thus, we collected a total of 60 training trials for each class.
All participants were naïve subjects for this motor imagery
experiment. Therefore, it was difficult to achieve satisfactory
classification performance without sufficient training time. In
addition, each subject had a different discrimination potential for a
different pair of motor imagery signals. In this study, to find the
most discriminative motor imagery pair for each subject, we per-
formed the initial classification for all pairs of (R), (L), and (F) by
using the dataset of the first run in the training phase. The best
pair of motor imagery was selected using the CSP feature with the
LDA classifier and used for a further experiment in the training and
testing session. As shown in Fig. 1, in each trial, the target bar was
represented on 0 s at left, right or down side of monitor screen
corresponding to the left, right or foot motor imagery. On 2 s after
cue onset, subject was instructed to perform the motor imagery
task. Then, subject imagined their left, right hand or foot move-
ment such as grasping and releasing hand. In this period, subject
was also instructed to stare a red dot during motor imagery to
avoid eye movement artifacts. In the training session, to design a
classifier that would be used in the testing session, we just col-
lected the training trials for each motor imagery signal. At that
time, the classifier had not been designed. Therefore, the yellow
ball (feedback) was set to move into the target direction
automatically.

In the online testing (feedback) phase, same experimental
paradigm was used. However, the online feedback was provided in
each trial. Thus, the yellow ball was controlled by the classified
result which was analyzed from intention of each subject using the
EEG data collected from 2 to 4 s. We recorded 75 test trials for each
class. One run consisted of 25 trials and we performed total three
runs. Thus, in the one session experiment, total 60 offline and 75
online trials per class were collected for each subject. Both data
were segmented from 2 to 4 s after cue onset for further signal
processing.
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3. Methods

3.1. Preprocessing and feature extraction

For preprocessing of experimental EEG dataset, we apply same
procedures to all datasets and classification methods. First, we
perform band pass filtering to eliminate the frequencies which are
not related to motor imagery signals. In this study, we use fourth
order Butterworth filter with 5 and 30 of cut off frequencies.

EEG signals are very noisy and have poor spatial resolution.
Thus, an electrode placed on the scalp measures the EEG signals
generated not only from the motor cortex area but also from other
cortical regions. Therefore, it is important to find maximally dis-
criminative information from the original high-dimensional data.
For this purpose, we perform common spatial pattern (CSP) fil-
tering. The CSP filtering is a well-known feature extraction method
for two-classes motor imagery dataset [12,17,19]. The CSP filtering
algorithm finds the filters W w w w, , ,C C

C1 2∈ = [ ⋯ ]× which
transforms the EEG data X C S∈ × (C and S denote the number of
EEG channels and time samples) into a spatially filtered space:
X W XCSP

T= · . Generally, W is computed by simultaneous diag-
onalization of the covariance matrices, 1Σ and 2Σ , of the two classes
data. This is equivalent to solving the generalized eigenvalue
problem, i.e., w w1 2Σ λΣ= , where λ is eigenvalue. In practice, first
and last k columns of the W corresponding to the k largest and k
smallest eigenvalues are used for CSP filtering. For fair comparison,
we set the k equal to five for all our datasets in this study. The
obtained CSP filters maximize the variance of the spatially filtered
signal for one class data while minimizing it for the other class
data. Detailed information about the CSP filtering algorithm can be
found in [17,19]. After CSP filtering, we compute the band power
(BP) of sensorimotor rhythm (8–15 Hz). BP is the power of the
signal within specific frequency bands. Because of the physiolo-
gical background of the motor imagery signals, ERD based band
power (BP) of the sensorimotor rhythm is a well-known feature
form in many EEG based BCI studies [12,17,20].

3.2. Sparse representation based classification

In this paper, based on the sparse representation classification
(SRC) scheme we propose adaptive SRC methods. Therefore, in this
section, we simply introduce conventional SRC framework. We
also use the SRC method to provide a baseline classification result
for this study to compare results of the proposed adaptive SRC
methods.

In [17], we propose a SRC scheme for motor imagery based BCI
applications. In the SRC framework, if training samples in a dic-
tionary is sufficiently large, a test sample can be sparsely repre-
sented with same class training samples over the dictionary. The
SRC method can be categorized as sparse coding step and identi-
fication step. The sparse coding step is formulated as y Ax= .
Where, y and A indicate a test feature vector and a collection
of training feature vectors. Also, x is an unknown coefficient vec-
tor. A is called a dictionary formed by class-dictionary
A a a a, , , ,i i i i N,1 ,2 , i= [ … ] where i C1, 2, ... ,= represents class
information and Ni denotes the number of training trials for class
i. In this study, C is equal to 2. aij

m 1∈ × is the j-th training feature
vector of dimension m¼2k from the class i. In this study, each
element of a is the band power feature of the CSP filtered data. The
dictionary A is formed by A A A: ; m N

1 2= [ ] ∈ × , where N denotes
the total number of training trials. Thus, in this study, N N2 i= for
two class problems.

In the SRC algorithm, first, the columns of dictionary A are
normalized to have a unit L2 norm. Then, in the sparse coding step,
unknown coefficient vector x can be recovered by solving fol-
lowing optimization problem via L1 norm minimization tool:
x y Axmin subject to , 1x
1‖ ‖ = ( )

Note that equation (1) is an under-determined system. The
literature of compressive sensing (CS) shows that the L1 norm
minimization algorithm can solve this optimization problem
effectively in polynomial time [21,22]. Using the recovered coef-
ficient vector x by L1 minimization, class identification is per-
formed as follows:

ry yclass min , 2i
i( ) = ( ) ( )

where r y y A x:i i i 2( ) = ‖ − ‖ is representation residual corresponding
to the class i. Thus, we identify the class of the test sample y as i
when residual r yi ( ) is minimal.

3.3. Adaptive SRC schemes

To overcome inherent non-stationarity of EEG signals, we
propose simple adaptive classification schemes based on the SRC
method. In this study, we suggest two schemes, dictionary update
method and incoherence based dictionary modification (IDM)
method. Each scheme works with the conventional SRC method
independently. In addition, both schemes can be incorporated as
one combined adaptive SRC method. In the following subsections,
we introduce each adaptive scheme.

3.3.1. Incoherence based dictionary modification method
Previous SRC studies for motor imagery based EEG classifica-

tion [17] have revealed that when a dictionary is incoherent, a test
signal from one particular class can be predominantly represented
by the columns of the same class in the dictionary. The uncertainty
principle (UP) [30] in the sparse representation theory dictates
that a signal cannot be sparsely represented in both classes
simultaneously. This phenomenon intensifies as the degree of
incoherence of the dictionary increases. An incoherent dictionary
can be explained from the definition of mutual coherence of class-
dictionary. The coherence measures the correlation between the
two class-dictionaries defined as following:

C j k NA A a a, max , : , 1, 2, ... , , 3L R L j R k t, ,{ }( ) ≜ = ( )

The vector aL j, and aR k, are the j-th column of AL and the k-th
column of AR respectively. The notation a a,L j R k, ,⟨ ⟩ denotes the
inner product of the two vectors. We call C the measure of mutual
coherence of two class-dictionaries. In the SRC algorithm, we
normalize the columns of dictionary A. Therefore, C measures the
smallest angle between any pair of columns of two classes. When
the value of C obtained from the two class-dictionaries is small,
i.e., the cosine angle between two columns is large, we consider
the dictionary incoherent. Due to the characteristics of the CSP
filtering, i.e., CSP filters maximize the variance of the spatially
filtered signal for one class data while minimizing it for the other
class data, the CSP features can be used for constructing inco-
herent dictionary [17]. After applying CSP filtering, in the proposed
IDM method, we aim to eliminate some training trials that have a
high average cross coherence value with training trials of a dif-
ferent class. Thus, the eliminated training trials have features
similar to those of many training trials of a different class.
Therefore, we expect to further increase the incoherence of the
dictionary by using the IDM method; this might lead to a high
discrimination capability for training trials of two different classes.

In the IDM method, coherence value of the dictionary A can be
simply estimated by each element of G A A: T= . Thus, i jG ,( ) indi-
cates the coherence value between i and j-th column of the dic-
tionary. Therefore, i jG ,( ) is equal to j iG ,( ). For example, if the
number of training trials of each class-dictionary is five, then the



Fig. 2. Example of incoherence based dictionary modification (IDM) method.

Fig. 3. Concept of the proposed dictionary update rule.
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dimension of G is 10 10× . From the G, we focus on the cross
coherence part between the two classes. Thus, we extract columns
from 1-th to 5-th and rows from 6-th to 10-th of the G which are
corresponding to the class 1 and class 2 respectively. Therefore,
the dimension of cross coherence part is 5 5× in this example. We
represent this cross coherence part as GCC. Using the GCC, we can
easily check which trials of class 1 dictionary have large coherence
values with trials from class 2 dictionary and vice versa.

Fig. 2 shows example values of cross coherence GCC
5 5∈ × and

concept of the IDM method. In this figure, each number means the
coherence value ranged from 1 to 9. Red colored elements repre-
sent high coherence values which are set up to be the values
greater than or equal to 8. The values of last row and column
represent the averaged value of five columns and rows respec-
tively. In this example, we set the number of elimination trials n
equal to one. Thus, we aim to eliminate the highest average value
for each column and row respectively.

From the averaged value of cross coherence, the third row and
third column shows highest averaged value of 6.4 and 5.8. This
means that 8-th row (8-th trial from class 2 dictionary) and third
column (third trial from class 1 dictionary) shows high coherence
value with many trials, i.e., many red colored elements, from the
other class-dictionary. Therefore, we can eliminate the one trial in
the each class-dictionary.

We summarize the incoherence based dictionary modification
(IDM) algorithm as follows:

1. Set n the number of elimination trials.
2. Compute the average value of each column of GCC.
3. Collect the indices of column numbers which have n highest

average coherence values.
4. Eliminate n indices from original class-dictionary.
5. Repeat 2–4 steps for row of GCC.

For each subject dataset, we apply the IDM algorithm to the
dictionary. After then, we perform the SRC steps with the modified
dictionary.

3.3.2. Dictionary update methods
Normally, in motor imagery based BCI systems, a translation

algorithm such as a classifier is designed using the collected
training data. Then, an application device or program is controlled
by using the classification algorithm in each test trial. However,
because of the inherent non-stationarity of EEG, the classification
performance deteriorates from the training to the test session in a
BCI experiment. To overcome this drawback, many adaptive clas-
sification schemes are proposed. The main concept of the adaptive
classification is re-adjustment (re-training) of the classifier for the
new test data. On the other hand, in the SRC scheme, one impor-
tant characteristic is that training (or parameter decision) of a
classifier is not needed unlike in other decision hyper-plane based
classification methods such as LDA and SVM [31]. Thus, in the SRC
scheme, a dictionary is simply formed by collecting the training
feature vectors as columns of the dictionary. Then, using the dic-
tionary sparse coding step is performed for each test data. Due to
this unique classification mechanism, a simple intuitive method
for adaptive SRC is dictionary update.

As we mentioned in Section 3.2, the dictionary A is formed by
class-dictionary A a a a, , ... ,i i i i N,1 ,2 , t= [ ] in the SRC method. Each
column vector aij is a j-th training feature vector of class i.
Therefore, for each test trial in the online testing phase, a feature
vector of a new test trial y can be easily updated as a new column
of the dictionary. Then, characteristics of the test feature can be
applied into the dictionary while the online testing experiment is
performed. And therefore, we can expect the classification per-
formance of the online testing phase is not deteriorated.

In this study, we consider four types of dictionary update rule,
supervised accumulated update (SAU), supervised fixed update
(SFU), unsupervised accumulated update (UAU) and unsupervised
fixed update (UFU) rule. In our online experimental paradigm, as
shown in Fig. 1, a target class label is first provided as the position
of the target bar. Then, subjects perform motor imagery corre-
sponding to the class label information for each trial. In the
supervised update rule, the target class label of test trials is used
for updating the online test trials. Thus, a new test trial which has
same class label of training trials in the class-dictionary is updated
into the corresponding class-dictionary. However, this strategy is
not practical for a general online scenario. Therefore, we also
consider the unsupervised update rule. In the unsupervised
update rule, class label information of the test trial is not used.
Thus, each test trial is updated into the corresponding class-dic-
tionary based on the estimated result of the current classifier,
which is represented by the direction of the yellow ball movement
shown in Fig. 1.

For the case of accumulated update method, as shown in ① of
Fig. 3, all updated test trials are just stacked at the end (last col-
umn) of the class-dictionary based on the class label and classified
result for SAU and UAU respectively. However, for the case of fixed
update rule, SFU and UFU, the oldest training trial, i.e., the first
training trial of the class-dictionary is eliminated as shown in ② of
Fig. 3 when each new test trial is updated. Note that if available
training data in the dictionary is large enough and online testing
phase is long, i.e., the number of test trials is large; the dictionary
will be a fat matrix in the case of accumulated update rule. In this
case, computation time for sparse representation is also increased.
Therefore, in this study, we consider fixed update rule which has a
same size dictionary, i.e., number of columns in the dictionary,
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with the original training dictionary. We compare computation
time between accumulated and fixed update rule in Section 6.2.
4. Results

4.1. Evaluation strategy

Using the online experimental dataset, we aim to evaluate
proposed adaptive SRC schemes, i.e., four dictionary update
methods (supervised accumulated update (SAU), supervised fixed
update (SFU), unsupervised accumulated update (UAU) and
unsupervised fixed update (UFU) rule) and an incoherence based
dictionary modification (IDM) method. From the multi session
datasets of 10 subjects, 12 session datasets are selected for eva-
luation of proposed methods. In this selection, for a reliable
assessment of classification methods, we choose datasets over 60%
classification accuracy in the online experiment (in the binary
classification, theoretical random chance level is 50%). Each ses-
sion dataset consists of 60 training trials and 75 test trials for each
class.

In this study, for the two class classification problems of the
conventional SRC method, the dimension of the dictionary A is
10 120,× i.e., m¼10 CSP features and N¼120 training trials. For
each subject, 150 test trials where each has the same 10 dimension
features are evaluated with dictionary A. For the proposed adap-
tive methods, we perform the incoherence based dictionary
modification (IDM) method using the original dictionary A. After
then, for each new test trial, we perform the each proposed dic-
tionary update method for adaptation of test data.

Due to the inherent non-stationarity of EEG signals, online test
data have different feature characteristics compared to training
data [11,26,27]. And therefore, even though classifier is well
trained for training data, satisfactory classification performance is
not guaranteed for online data. We expect that in the SRC method
the proposed incoherence based dictionary modification (IDM)
method is effective for proper dictionary design by maximizing
incoherence between two classes. In addition, to overcome the
non-stationarity of EEG, new test features will be applied into the
original dictionary using updated new test trials from the pro-
posed dictionary update method. Using online experimental
dataset, we evaluate classification accuracy of the conventional
SRC, each dictionary update method and IDM based adaptive SRC
method. In addition, we also compare the classification results of
Table 1
Classification accuracy of conventional SRC and proposed adaptive SRC schemes (SRC_S
accuracy (%) of each method with and without IDM. The highest classification accuracy

Dataset SRC SRC_SAU SRC_

w/o w/ w/o w/ w/o
IDM IDM IDM IDM IDM

1 66 66.7 67.3 70.7 66.0
2 86 86.7 88.0 88.0 88.0
3 88.7 90.7 90.0 90.0 89.3
4 96.4 96.4 96.4 96.4 97.1
5 83.3 89.3 93.3 96.0 96.0
6 82.7 78.7 86.7 86.7 84.0
7 77.3 75.3 78.0 80.0 78.7
8 73.3 88.0 88.7 88.7 89.3
9 70.0 75.3 74.0 74.7 73.3
10 62.0 64.0 66.0 68.7 67.3
11 84.0 87.3 88.7 89.3 88.7
12 96.7 96.0 97.3 98.0 97.3
Mean 80.5 82.9 84.5 85.6 84.6
Std. 11.13 10.74 10.69 9.94 10.99
the proposed methods with other adaptive classification methods
such as adaptive LDA and SVM method.
4.2. Experimental results

To evaluate classification performance of the proposed adaptive
SRC schemes, we compare classification accuracy (%) of proposed
methods with that of conventional SRC method using the online
experimental dataset of 12 motor imagery sessions. Table 1 shows
the classification accuracy of the SRC and the proposed dictionary
update based SRC methods with and without IDM method. For fair
comparison, we set the same value of n (the number of elimination
trials of IDM) of 10 for all subjects and all IDM based adaptive SRC
methods.

From the results of Table 1, all five methods with IDM show
better mean classification accuracy than the without IDM method.
Thus, the proposed IDM method is effective for the SRC frame-
work. Furthermore, the proposed simple dictionary update
methods with and without IDM show improved mean classifica-
tion accuracy than the conventional SRC method. Supervised
update methods, i.e., SAU and SFU, show more improved results
than the unsupervised methods, UAU and UFU. However, mean
difference between SAU/ SFU with IDM and UAU/ UFU with IDM is
not much.

For further analysis, in Fig. 4, we investigate the comparison of
the classification accuracy of 12 datasets using scatter plots. Each
point indicates the classification accuracy of each dataset which is
used for computing mean classification accuracy in Table 1. Fig. 4
left shows the comparison results between the SRC and the two
supervised dictionary update methods with IDM. Classification
accuracies of the SRC and supervised methods are represented in X
and Y-axis respectively. For the supervised methods (Y-axis), blue
square points indicate the SAU with IDM method and red circle
points indicate the SFU with IDM method. Similarly, Fig. 4 right
shows the comparison results between the SRC and the two
unsupervised dictionary update methods.

From the results of Fig. 4 left, both SAU and SFU with IDM show
higher classification accuracies than the SRC method for eleven
datasets. Thus, the 11 data points positioned over the black linear-
line which indicates the same classification accuracy between SRC
and proposed methods. On the right figure, we also observe that
the both UAU and UFU IDM show higher classification accuracies
than the SRC for 10 datasets. In addition, p-values obtained from
AU, SRC_SFU, and SRC_USU) for 12 session datasets. We present the classification
for each dataset is highlighted in bold.

SFU SRC_UAU SRC_UFU

w/ w/o w/ w/o w/
IDM IDM IDM IDM IDM

64.7 66.0 67.3 66.0 67.3
88.0 87.3 89.3 82.7 90.7
90.7 90.0 90.7 90.7 88.7
97.1 96.4 96.4 96.4 96.4
96.7 93.3 95.3 94.7 97.3
84.0 80.0 84.0 80.7 83.3
79.3 76.7 77.3 79.3 78.0
91.3 78.0 89.3 84.7 90.7
74.0 70.0 72.0 70.0 71.3
71.3 62.0 63.3 68.0 66.7
89.3 86.7 88.0 88.0 88.7
98.0 96.7 98.0 96.7 98.0
85.4 81.9 84.3 83.1 84.8
10.89 11.73 11.64 10.84 11.40



Fig. 4. Comparison of classification accuracy of all 12 datasets. (Left): Scatter plot of classification accuracies between conventional SRC (X-axis) and the both supervised
update methods SAU and SFU with IDM (Y-axis). (Right): Scatter plot of classification accuracies between conventional SRC (X-axis) and the both unsupervised update
methods UAU and UFU with IDM (Y-axis).

Fig. 5. Scatter plot of training and test features for two different classes in two
dimensional feature spaces using an example dataset 5. All training and test
samples are scattered and fitted by Gaussian distribution. (For interpretation of the
references to color in this figure, the reader is referred to the web version of this
article.)
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paired t-test are smaller than 0.05 for all comparisons between the
SRC and proposed methods in Fig. 4.

To evaluate the effect of the proposed methods, we analyze one
dataset in the feature space. Fig. 5 shows scatter plots of training
and test features of dataset 5 used in Table 1. For ease of visuali-
zation, we use two-dimensional feature spaces which are corre-
sponding to the first and the last CSP filters. In Fig. 5, the red and
black x marks indicate the 60 training and 75 test features for one
class, respectively. On the other hand, the blue and green circles
indicate the 60 training and 75 test features for another class,
respectively. Each class training and test data element is fitted by a
Gaussian distribution. Therefore, we can easily check the dis-
tribution change from the training to the test data during the
experimental sessions. When the distribution of the test data is
changed from that of the training data, the previously designed
dictionary based on the training data is not optimal for the clas-
sification of new test data.

Fig. 6 shows one classification instance of a test trial, which is
represented by a filled green point (class 2) in the left figure. In
this test, the test feature is not correctly classified, i.e., classified as
class 1, by the conventional SRC without IDM method. All training
features in the dictionary of classes 1 and 2 shown in Fig. 5 are
utilized for the classification of the test feature without the use of
any adaptation techniques. Fig. 6 right shows the coefficients
recovered by the conventional SRC for the test feature represented
in the left figure. The X-axis represents the training trial number
(column number) of the dictionary, and the red dotted line
denotes the boundary of two different classes. In the right figure,
the numbering ①, ② and ③ represent the coefficients corre-
sponding to the training trials of black x marks ①, ② and ③ in the
left figure. Because the three training points of class 1 are used for
the sparse representation of the test trial and have large coefficient
values, the test feature is classified as class 1 by using the mini-
mum residual rule in Eq. (2).

On the other hand, Fig. 7 shows the classification results of
SRC_UAU IDM for the same test trial used in Fig. 6. In Fig. 7 left, we
can see that some training features which are originally positioned
at the area of different class features including the black x marks
①, ② and ③ in Fig. 6 left are effectively eliminated by the IDM
method. In addition, new test trials represented by the black x
marks and the green and black circles are also updated before the
classification of the current test trial, which is represented by the
filled green circles. From the result of Fig. 7 right, we conclude that
the test trial is correctly classified as class 2 and the three updated
test trials represented by black circles ①, ② and ③ in the left
figure have large coefficients. Therefore, for the classification of
new test trials, IDM and the dictionary update method in SRC are
very effective, and we can see that the proposed methods with
IDM show relatively improved classification accuracy compared to
the conventional SRC from the results of dataset 5, presented in
Table 1.

In Table 2, we compare the classification accuracy of the con-
ventional SRC and the proposed adaptive SRC methods with the
non-adaptive and adaptive LDA and SVM classification methods
using our experimental dataset. The LDA and SVM are widely used
classification methods in many EEG based BCI researches [26]. For
the adaptive LDA and SVM methods, first, linear decision hyper-
plane is chosen from training data. Then in the testing session, the
decision hyper-plane is re-trained for new test sample as shown in
[11]. We only consider supervised adaptation for the LDA and SVM
methods.

From the results presented in Table 2, we can first see that the
conventional SRC exhibits better mean classification accuracy than
the non-adaptive LDA and SVM methods. These results are con-
sistent with those of the previous studies [17,31] mentioned in
Section 1. Second, the proposed adaptive SRC methods show
better mean classification accuracy than the other adaptive LDA
and SVM methods. Note that even though the accuracy difference
between the unsupervised adaptive SRC methods and adaptive
SVM method is not much, in the conventional adaptive methods,



Fig. 6. Classification results of conventional SRC for one test sample of dataset 5. (Left): Scatter plot of training features for two classes and one test feature of class 2. (Right):
Sparse representation results of one test feature shown in left figure from the conventional SRC. X-axis represents the training trial number in dictionary and Red dotted line
means the boundary of two different classes. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Classification results of SRC_UAU IDM for the same test sample in Fig. 6. (Left): Scatter plot of training features for two classes and one test feature of class 2. (Right):
Sparse representation results of one test feature shown in left figure from the SRC_UAU IDM.(For interpretation of the references to color in this figure, the reader is referred
to the web version of this article.)
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re-training (re-adjustment) of the decision hyper-plane for new
test data is time consuming process. However, in the proposed
methods, dictionary update for adaptation of each test sample is
very simple process and re-training of classifier is not needed.
5. Discussions

5.1. Results for public dataset

For the evaluation of the proposed methods, we use a public
dataset obtained from Dataset IVc of BCI Competition III [32]. In
this dataset, the test data were separately recorded for more than
3 h after the acquisition of the training data. Therefore, the dis-
tribution of some EEG features could be effected by non-statio-
narities. This dataset was recorded from a healthy subject. He sat
in a comfortable chair with his arms resting on the armrests. The
training dataset consists of the data of the first three (non-feed-
back) sessions. In all, 210 training trials (105 for each class) were
obtained. The visual cues (letter presentation) indicated for 3.5 s
which of the following two motor imageries that the subject had
to perform: (L) left hand and (F) right foot. The target cues were
presented at intervals of random length ranging from 1.75 to
2.25 s, in which the subject could relax. In the test sessions, total
280 test trials (140 for each class) were recorded. The experi-
mental setup was similar to the setup of the training sessions, but
the motor imagery had to be performed for 1 s only, compared to
3.5 s in the training sessions. The recording was made using
BrainAmp amplifiers and a 128-channel Ag/AgCl electrode cap
from ECI. A total of 118 EEG channels were measured at the
positions of the extended international 10/20 system. Signals were
band-pass filtered between 0.05 and 200 Hz, and then digitized at
1000 Hz.

Table 3 shows the classification accuracy of the public dataset
for conventional SRC and the four proposed adaptive SRC schemes
when the number of elimination trials n is varied from 0 (no IDM)
to 30. For this dataset, six CSP filters are used for feature extrac-
tion, and thus, the dimension of dictionary A is 6 210× for the
original SRC. In all, 280 test trials are classified by each classifica-
tion method. From the results presented in Table 3, we find that all
proposed adaptive SRC methods exhibit improved classification
accuracy compared to the conventional SRC method irrespective of
the value n of IDM. Supervised dictionary update methods (SAU
and SFU IDM) show better classification accuracy than the unsu-
pervised methods (UAU and UFU IDM); however, the difference is
very small (within 1%). Further, the difference between the accu-
mulated (SAU and UAU IDM) and the fixed dictionary update
methods (SFU and UFU IDM) is more small and negligible for this
dataset.

5.2. Comparison between proposed adaptive schemes

In this section, first, we compare the accumulated and fixed
dictionary update rule for each supervised and unsupervised dic-
tionary update method. From the results of Table 1, the mean
difference between SRC_SAU and SRC_SFU with IDM is just 0.2%.
For the unsupervised case, SRC_UAU and SRC_UFU with IDM
exhibit a mean difference of 0.5%. To analyze the statistical



Table 2
Comparison of classification accuracy (%) between conventional non-adaptive classification methods (LDA, SVM, and SRC) and adaptive classification methods (including the
proposed adaptive SRC schemes). The highest classification accuracy for each dataset is highlighted in bold.

Dataset LDA Adaptive LDA SVM Adaptive SVM SRC SRC_SAU IDM SRC_SFU IDM SRC_UAU IDM SRC_UFU IDM

1 56.0 62.7 68.7 69.3 66.0 70.7 64.7 67.3 67.3
2 88.0 87.3 88.0 88.0 86.0 88.0 88.0 89.3 90.7
3 87.3 86.7 86.0 86.0 88.7 90.0 90.7 90.7 88.7
4 94.3 94.3 95.7 95.0 96.4 96.4 97.1 96.4 96.4
5 78.0 84.0 80.0 89.3 83.3 96.0 96.7 95.3 97.3
6 79.3 82.0 84.7 90.7 82.7 86.7 84.0 84.0 83.3
7 68.7 74.0 71.3 80.0 77.3 80.0 79.3 77.3 78.0
8 84.7 89.3 70.7 89.3 73.3 88.7 91.3 89.3 90.7
9 70.7 74.0 69.3 73.3 70.0 74.7 74.0 72.0 71.3
10 53.3 63.3 58.0 62.7 62.0 68.7 71.3 63.3 66.7
11 79.3 82.7 70.0 87.3 84.0 89.3 89.3 88.0 88.7
12 87.3 91.3 94.0 95.3 96.7 98.0 98.0 98.0 98.0
Mean 77.2 81 78 83.9 80.5 85.6 85.4 84.3 84.8
Std. 12.84 10.36 11.70 10.36 11.13 9.94 10.89 11.64 11.40

Table 3
Classification accuracy (%) of conventional SRC and the proposed adaptive SRC
methods for the BCI competition dataset.

n of IDM SRC SRC_SAU SRC_SFU SRC_UAU SRC_UFU
IDM IDM IDM IDM

0 92.5 95.36 95.36 93.93 94.64
5 92.86 96.07 95.71 94.64 94.64
10 90 95.36 95.71 93.93 93.93
15 92.86 95.36 95.36 94.64 94.64
20 91.43 95.36 95.71 95.36 94.64
30 91.79 95 95 94.64 94.64
Mean 91.91 95.42 95.48 94.52 94.52
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significance of the mean differences, we perform the paired t-test
for the accuracy of each subject. The obtained p-values of the t-test
are larger than 0.05 for the comparisons of the accumulated and
the fixed update rule, which means that the differences are not
statistically significant. As we mentioned in Section 3.3.2, when
the number of original training trials in the dictionary and that of
the updated new test trials are large, the computation time of the
accumulated dictionary update based SRC method might be
increased to solve the sparse coding step, i.e., Eq. (1), by using L1
minimization as compared to the fixed dictionary update based
SRC method. Thus, in the fixed update rule, the dictionary size is
fixed for all test trials and the computation time for sparse coding
is not increased. However, in the accumulated update rule, the
dictionary size is increased in every test trial, and therefore, the
computation time for the sparse coding step is also increased. We
compare the running time (computation time) of the accumulated
and fixed dictionary update methods. Because of the number of
training trials and that of the test trials of the competition dataset,
which is used in Section 6.1 (210 and 280), are larger than our
dataset (120 and 150), we use the competition dataset to evaluate
the running time. The tic and toc MATLAB commands are used for
measuring the running time of the sparse coding step in the SRC
algorithm. We repeat 100 times and measure the average running
time for each method. For a single test trial, the average running
time of the sparse coding step in SRC_SAU and SFU are 5.47 ms and
4.29 ms respectively. Further, the SRC_UAU and UFU show the
average running time of 5.45 ms and 4.26 ms for the sparse coding
step, respectively. Therefore, for a single test trial, the differences
in the running time between the accumulated and the fixed
update rule are very small and negligible for online BCI
applications.

Second, we investigate supervised and unsupervised dictionary
update methods. From the results presented in Table 1, we find
that the mean difference between SRC_SAU and SRC_UAU with
IDM is 1.3%. For this comparison, we obtained a p-value of 0.04
from the paired t-test. For the unsupervised case, the mean dif-
ference between SRC_SFU and SRC_UFU with IDM is 0.6% and the
obtained p-value is larger than 0.05. Even though the mean dif-
ferences are not much, all supervised methods consistently show
better mean classification accuracy than the unsupervised meth-
ods for our dataset and the public dataset presented in Tables 1
and 3, respectively. In the unsupervised dictionary update method,
the class labels of the test trials are determined by the results of
the current classifier. Unfortunately, the classifier usually does not
provide perfect classification results for all test trials because of
the non-stationarity of EEG. Few incorrectly classified test trials
are also updated in a different class-dictionary with the original
target class. These trials affect the sparse coding step in the SRC
algorithm. Therefore, this might be the reason that the unsu-
pervised methods exhibit lower mean classification accuracy than
the supervised methods. However, from the results for our dataset
and the public dataset, we find that the unsupervised methods still
show improved classification results compared to the original SRC.

5.3. Analysis of IDM method

As shown in the results of Table 3, the classification accuracy of
IDM based SRC methods may vary on the basis of the value n of
IDM. The value n can be heuristically chosen to optimize the
classification accuracy. In this section, we analyze the effect of the
number of elimination trials n of IDM by using our experimental
dataset. In the results presented in Table 1, for a fair comparison,
we set the same value of n of 10 for all 12 datasets. For the same
datasets, in Fig. 8, we compute average classification accuracy over
all datasets when the number of elimination trials of SAU, SFU,
UAU and UFU IDM is varied from 0 to 30. From the results of Fig. 8,
the optimal number n is different for each method. This means
that there is a place to improve classification performance of IDM
based adaptive SRC method by finding optimal n for each method
and also each subject dataset. In Fig. 8, compared to the results of
supervised update methods average accuracy is decreased with
the large value of n in the case of unsupervised update methods.
This might be because if the number of elimination trials n is large,
number of training trials is decreased in the dictionary. Thus, the
role for classification task of updated new test trials is increased.
However, in the case of unsupervised method, class label of new
test trials is not always correctly updated. Therefore, for the
unsupervised update methods with IDM, the value n is needed to
choose more carefully.

Next, we analyze the effect of the incoherence based dictionary
modification (IDM) method. As we mentioned in Section 3.1.1, we



Fig. 8. Average classification accuracy of SAU IDM and UAU IDM when the number
of elimination trials n is varied.
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propose an IDM method to make more incoherent dictionary after
applying the CSP filtering. Incoherence of dictionary can be mea-
sured by coherence value C introduced in Eq. (3). To evaluate the
change in the coherence value, we measure the C value of SRC
without IDM and with IDM method. From the average results over
twelve datasets, The SRC without IDM shows 0.983 value of C. On
the other hand, the SRC with IDM shows 0.934 value of C. This
means that after applying the IDM method, we can make more
incoherent dictionary than the without IDM method.
6. Conclusion

Because of the inherent non-stationarity of EEG signals, per-
formance degradation is an inevitable phenomenon in EEG based
BCI systems. In particular, an already designed classifier by the
training data does not guarantee satisfactory classification accu-
racy for new test data in the online feedback stage. In this paper,
we propose dictionary update methods with incoherence based
dictionary modification (IDM) as adaptive SRC schemes to com-
pensate for the non-stationary effects. We consider supervised/
unsupervised and accumulated/fixed dictionary update rules with
IDM. With the unique classification mechanism of the SRC, i.e., a
fixed decision rule is not required for the classification, in the
proposed dictionary update methods, the test data are easily
updated and utilized for the classification of other new test data
without requiring any additional computation. In addition, in the
IDM algorithm, we try to create a maximally incoherent dictionary
for SRC by using a simple incoherence measure of the training
data. By using two online motor imagery based BCI experimental
datasets, we evaluate the classification performance of the pro-
posed adaptive schemes. From the results, we find that the pro-
posed IDM based adaptive SRC schemes show improved classifi-
cation results compared to the conventional SRC. Further, unsu-
pervised adaptive SRC schemes that are more practically applic-
able in BCI exhibit competitive classification accuracy than other
adaptive LDA and SVM methods. An analysis of a stable dictionary
to overcome the inter-subject variation in BCI systems and a fully
adaptive classification method developed by combining adaptive
CSP filtering with adaptive SRC will be interesting future works.
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