
1976 IEEE COMMUNICATIONS LETTERS, VOL. 17, NO. 10, OCTOBER 2013

Necessary and Sufficient Conditions for
Recovery of Sparse Signals over Finite Fields
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Abstract—We consider a compressed sensing (CS) framework
over finite fields. We derive sufficient and necessary conditions
for recovery of sparse signals in terms of the ambient dimension
of the signal space, the sparsity of the signal, the number of
measurements, and the field size. We show that the sufficient
condition coincides with the necessary condition if the sensing
matrix is sufficiently dense while both the length of the signal and
the field size grow to infinity. One of the interesting conclusions
includes that unless the signal is very sparse, the sensing matrix
does not have to be dense to have the upper bound coincide with
the lower bound.

Index Terms—L0 norm minimization, compressed sensing,
finite fields.

I. INTRODUCTION

RECENTLY, compressed sensing (CS) theory has
emerged as a new paradigm for signal acquisition in

which compression and sampling of signals can be done simul-
taneously, introduced in the signal processing and information
theory, such as Candes and Tao [1] and Donoho [2]. One of the
main issues in the CS problems has been to quantify how many
measurements are needed for perfect recovery of unknown
signals. The most surprising and interesting discovery is that
perfect recovery is possible with the number of measurements
much smaller than the ambient dimension of the unknown
signal as long as the signal is sufficiently sparse in a certain
domain.

In general, the problems of CS have been considered mainly
over the field of real and complex numbers. One of the
key points in CS problems is to minimize the number of
measurements while unknown signals are perfectly recovered.
There are some applications that this CS problem over finite
fields can be useful, including, i) the problems of collecting
data samples from a group of correlated sources [3], [4], ii)
group testing [5] , iii) the problem of sensor failure detection
[6], and iv) minimization of file servers in order to complete
download in file sharing networks [7]. For instance, in [3],
Bassi et al. addressed the problem of the collecting spatially
correlated measurements in a wireless sensor network. All
sensors quantize their measured values, and map them to q-
level symbols. A sink receives coded packets which are linear
combinations of source packets over Galois fields.
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In this paper, we aim to investigate the core question of
CS problems, but for the CS systems over finite fields where
the sparse signals, the sensing matrix, and the measurements
are made of the elements from a finite field. We use the ideal
L0 norm (which is equal to the Hamming weight in coding
theory) minimization with a goal of providing benchmark to
performance of any practical recovery routines. We first derive
an upper bound on the probability of error. By using Fano’s
inequality [8], we derive a lower bound. We show that the
upper bound and the lower bound converge with each other if
the sensing matrix is sufficiently dense.

II. COMPRESSED SENSING OVER FINITE FIELDS

We describe the CS framework over a finite field of size q,
Fq: Let xxx ∈ F

N
q be a sparse signal of length N with sparsity

k1 which indicates the number of nonzero entries in xxx, k1 ∈
{1, 2, . . . ,K}, where K , 2K ≤ N , denotes the maximum
number of nonzero entries in xxx. Let L denote the set of sparse
signals, i.e., L :=

⋃K
k1=1 Lk1 where Lk1 denotes the set of

signals xxx of length N with sparsity k1. The size of the set
L is given by |L| = ∑K

k1=1

(
N
k1

)
(q − 1)k1 where |·| denotes

the cardinality of the set. A sparse signal xxx is randomly and
uniformly selected from the set L. Let AAA ∈ F

M×N
q be an

M ×N sensing matrix with N > M . The measured signal yyy
is given by

yyy = AxAxAx. (1)

We assume that the elements of the sensing matrix AAA are
independent and identically distributed (i.i.d.), so that

Pr{Aij = α} =

{
1− γ, if α = 0

γ/(q − 1), if α �= 0
(2)

where γ denotes the sparse factor which is the probability that
an element of the sensing matrix has nonzero values, and Aij

denotes the element of the ith row and the jth column of the
sensing matrix, for i ∈ {1, 2, . . . ,M} and j ∈ {1, 2, . . . , N},
and α denotes a dummy variable, i.e., α ∈ Fq .

III. UPPER AND LOWER BOUNDS FOR RECOVERY

PERFORMANCE

A. Probability of error for L0 norm minimization

In this section, we aim to derive an upper and a lower bound
for recovery of sparse signals in a CS framework for given
parameters, i.e., N , K , M , and γ. We assume that the decoder
in our scheme finds the sparsest feasible solution x̂̂x̂x using the
L0 norm minimization as follows,

(P0) x̂̂x̂x = min‖x̄̄x̄x‖0 subject to AAAx̄̄x̄x = yyy, (3)
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where x̄̄x̄x ∈ L is a feasible solution. Let k2 be the sparsity of
x̄̄x̄x as k2 := ‖x̄̄x̄x‖0.

For a given xxx, the decision x̂̂x̂x is a function of the random
matrix AAA. Let us define two sets of matrices, E0(xxx) := {AAA :
xxx �= x̂̂x̂x} and E(xxx, x̄̄x̄x) := {AAA : AAAxxx = AAAx̄̄x̄x}. Given these
definitions, an error is then said to occur when a realized
sensing matrix belongs to the set E0(xxx), i.e., AAA ∈ E0(xxx).
Note the following inclusion: E0(xxx) ⊆

⋃
x̄xx∈L,xxx �=x̄̄x̄x E(xxx, x̄̄x̄x). Let

Pr{xxx �= x̂̂x̂x} be the probability of error averaged over all xxx. We
consider Pr{xxx �= x̂̂x̂x} =

∑
xxx∈L Pr{AAA ∈ E0(xxx)|xxx}Pr{xxx}. Then,

the probability of error is upper bounded by the inclusion as
follows:

Pr{xxx �= x̂̂x̂x} ≤ 1

|L|
∑
xxx∈L

Pr
{
AAA ∈

⋃
x̄̄x̄x∈L,xxx�=x̄̄x̄x

E (xxx, x̄̄x̄x)
∣∣∣xxx}

(a)

≤ 1

|L|
∑
xxx∈L

∑
x̄̄x̄x∈L
xxx �=x̄̄x̄x

Pr
{
AAA ∈ E (xxx, x̄̄x̄x)

∣∣∣xxx}

(b)
=

1

|L|
∑
xxx∈L

2K∑
h=1

∑
x̄̄x̄x∈L̄h(xxx)

Pr
{
AxAxAx = Ax̄Ax̄Ax̄

∣∣∣xxx}

(c)
=

1

|L|
∑
xxx∈L

2K∑
h=1

∣∣∣L̄h (xxx)
∣∣∣Pr{AdAdAdh = 0

}

=
1

|L|
2K∑
h=1

K∑
k1=1

∑
xxx∈Lk1

∣∣∣L̄h (xxx)
∣∣∣Pr{AdAdAdh = 0

}

=
1

|L|
2K∑
h=1

Pr
{
AdAdAdh = 0

} K∑
k1=1

(
N

k1

)
(q − 1)k1

∣∣∣L̄h (xxx)
∣∣∣

(d)
=

1

|L|
2K∑
h=1

Nh Pr
{
AdAdAdh = 0

}
,

(4)

where the inequality (a) is due to the union bound, and (b)
is due to partition of the set {x̄̄x̄x ∈ L} with respect to the
Hamming weight h, i.e., L̄h (xxx) :=

{
x̄̄x̄x ∈ L : ‖xxx− x̄̄x̄x‖0 = h

}
,

for h = 1, 2, . . . , 2K . For the equality (c), we will show
shortly that for each x̄̄x̄x ∈ L̄h (xxx), the probability is identically
the same with each other, i.e., Pr

{
AxAxAx =Ax̄Ax̄Ax̄

∣∣xxx} = Pr
{
AdAdAdh =

0
}

, where dddh := xxx − x̄̄x̄x denotes a difference vector with
the Hamming weight h. Before moving on, please note that
Pr

{
AdAdAdh = 0

}
=

∏M
i=1 Pr

{
Aidddh = 0

}
where Ai denotes the

ith row of AAA since the elements of AAA are i.i.d.
For example, let us take h = 1. Then, it is easy to show

Pr
{
Ai1β1 = 0

}
= Pr

{
Ai1 = 0

}
for any β1 ∈ Fq\{0} since it

follows the property of multiplication over finite fields. Thus,
Pr

{
AxAxAx = Ax̄Ax̄Ax̄

∣∣xxx} = Pr
{
AdAdAd1 = 0

}
for each x̄̄x̄x ∈ L̄1 (xxx) re-

gardless of position of the nonzero entry in ddd1. For h = 2 and
two nonzero elements β1, β2 ∈ Fq\{0}, the following holds:
Pr

{
Ai1β1 + Ai2β2 = 0

}
=

∑
α∈Fq

Pr
{
Ai1β1 = α,Ai2β2 =

−α
}

=
∑

α∈Fq
Pr

{
Ai1 = αβ−1

1

}
Pr

{
Ai2 = −αβ−1

2

}
. It

is trivial to show Ai1 = Ai2 = 0 for α = 0. A little
tricky is the case for any α ∈ Fq\{0}. But note that both
αβ−1

1 and −αβ−1
2 are nonzero, thus from the probability

distribution (2),
∑

α∈Fq\{0} Pr
{
Ai1 = αβ−1

1

}
Pr

{
Ai2 =

−αβ−1
2

}
=

∑
α∈Fq\{0} Pr

{
Ai1 = α

}
Pr

{
Ai2 = −α

}
. Thus,

Pr
{
Ai1β1+Ai2β2 = 0

}
= Pr

{
Ai1+Ai2 = 0

}
. For 3 ≤ h ≤

2K , we can show Pr
{∑h

j=1 Aijβj = 0
}
= Pr

{∑h
j=1 Aij =

Fig. 1. One example for xxx and x̄xx.

0
}

using a recursion, i.e., Pr
{∑h

j=1 Aijβj = 0
}

=∑
α∈Fq

Pr
{∑h−1

j=1 Aijβj = α
}
Pr

{
Aihβh = −α

}
.

The last equality (d) of (4) is due to the collection of
difference vectors with the same Hamming weight, where Nh

denotes the total number of difference vectors with ‖xxx−x̄̄x̄x‖0 =
h, i.e., Nh =

∑K
k1=1

(
N
k1

)
(q − 1)k1 |L̄h (xxx)|, which will be

exactly figured out in Section III.B.

B. Upper bound

In this subsection, we aim to complete the derivation on
the upper bound given in (4). Let Ph be denoted as Ph :=
Pr

{
Aidddh = 0

}
= Pr

{∑h
j=1 Aij = 0

}
. Given the distribution

(2) and noting P0 = 1, Ph can be rewritten in a recursive
form,

Ph = Pr

{
h−1∑
j=1

Aij = 0

}
Pr

{
Aih = 0

}

+
∑

α∈Fq\{0}
Pr

{
h−1∑
j=1

Aij = α

}
Pr

{
Aih = −α

}

= Ph−1 (1− γ) + (1− Ph−1)
γ

q − 1
.

(5)

Let Qh := Ph − q−1. Then, the following equality can be
obtained

Qh = Qh−1

(
1− γ

1− q−1

)
. (6)

Solving the recursion, a closed form expression for Ph is
obtained

Ph = q−1 +
(
1− q−1

)(
1− γ

1− q−1

)h

. (7)

Next step is to compute Nh. For this, we use a combinatorial
approach which is to enumerate all difference vectors into
mutually exclusive groups with the same Hamming weight.
Please see Figure 1 for counting Nh. Let us consider xxx in
which the first k1 elements are nonzero and the rest of the N−
k1 elements are zero, i.e., xxx = [x1x2 · · ·xk10 · · · 0] where xj

denotes the jth element of xxx. Let the first and second index set
denote {1, 2, . . . , k1} and {k1+1, k1+2, . . . , N} respectively.
Suppose that a candidate signal x̄̄x̄x has k2 nonzero entries in
total. Among them, t ∈ {0, 1, · · · , k2} nonzero elements are
placed in the second index set of x̄̄x̄x. The rest k2 − t nonzero
elements of x̄̄x̄x are in the first index set as shown in Figure 1,
where x̄j denotes the jth element of x̄̄x̄x.

We enumerate all feasible signals x̄̄x̄x with sparsity k2 corre-
sponding to the same Hamming weight h. It is to be noted that
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TABLE I
THE NUMBER OF DIFFERENCE VECTORS Nh,k1,k2,t .

Nh,k1,k2,t t = 0 t = 1 t = 2 t = 3

h = 1 6 0 0 0
h = 2 12 63 0 0
h = 3 8 252 0 0
h = 4 0 252 567 0
h = 5 0 0 1134 0
h = 6 0 0 0 945

for a given t, the Hamming weight of the difference vector
is in the following range, i.e., k1 − k2 + 2t ≤ h ≤ k1 + t.
Given k1, k2, and t, the number of difference vectors with the
Hamming weight h for q > 2 can be computed by

Nh,k1,k2,t =

(
N − k1

t

)
(q − 1)t

(
k1

k2 − t

)

×
(

k2 − t

h− 2t− k1 + k2

)
(q − 2)h−2t−k1+k2 ,

(8)

where the first term
(
N−k1

t

)
(q − 1)t indicates the number of

sequences of the length N − k1 with t nonzero entries in
the second set, and the second term

(
k1

k2−t

)(
k2−t

h−2t−k1+k2

)
(q −

2)h−2t−k1+k2 indicates the number of sequences of the length
k1 having h − 2t − k1 + k2 nonzero entries. For q = 2, the
second term is

(
k1

k2−t

)
by only considering binary sequences.

Example: Let us consider one example of counting
Nh,k1,k2,t where N = 10, k1 = 3, k2 = 3 and q = 4. There
are

(
10
3

)
(4−1)3 signal vectors with sparsity 3. We assume that

the first 3 elements of xxx are nonzero, i.e., xxx = [1110000000],
a feasible signal x̄xx has t nonzero entries in the second set, i.e.,
for t = 2, x̄xx = [1001100000]. In this example, the maximum
t is 3, the Hamming weight of the difference vectors ranges
from 1 to 6. Table 1 shows the number of difference vectors,
Nh,k1,k2,t, with respect to t and h. End of Example

So far, we have found Nh,k1,k2,t for given k1, k2, and t.
Since we aim to find Nh, we take summation with respect to
k1, k2, and t,

Nh =

K∑
k1=1

(
N

k1

)
(q − 1)k1

k1∑
k2=1

k2∑
t=0

Nh,k1,k2,t. (9)

Substituting (7) and (9) into (4), we complete the derivation
on the upper bound.

Theorem 1 (Upper bound). For any sensing matrix with
the distribution (2), an upper bound on probability of error
for the P0 problem is given by

Pr{xxx �= x̂̂x̂x} ≤ 1

|L|
2K∑
h=1

K∑
k1=1

(
N

k1

)
(q − 1)k1

×
k1∑

k2=1

k2∑
t=0

Nh,k1,k2,tP
M
h .

(10)

This result is general. For sparse sensing matrices, one may
use the distribution given in (2) and obtain Ph from (7).

For dense sensing matrices, let γ = 1 − q−1 in (2); then,
Pr {Aij = α} = q−1 for any α ∈ Fq and the matrix becomes
uniform random. In this special case, Ph = q−1. Note there
is no dependency on h. Thus, the upper bound (10) can be

simplified as

Pr{xxx �= x̂̂x̂x} ≤ 1

|L|
2K∑
h=1

Nhq
−M

(a)
=(|L| − 1)q−M

< Kq−M

(
N

K

)
(q − 1)K

≤ 2log2 K−M log2 q+NHb(K/N)+K log2 (q−1),

(11)

where Hb (·) denotes the binary entropy function. The equality
(a) originates from the fact that

∑2K
h=1 Nh = (|L| − 1) |L|,

which is the total number of sequences except for the original
vector xxx. Consequently, from the condition that the exponent
of the R.H.S. of (11) remains negative so that the probability of
error goes to 0 as N → ∞, we derive the following sufficient
condition on M ,

M ≥ log2 K +NHb (K/N) +K log2 (q − 1)

log2 q
. (12)

Corollary 2 (Sufficient condition on M). Let γ = 1 − q−1.
If (12) is satisfied, then Pr{xxx �= x̂̂x̂x} → 0 as N → ∞.

C. Lower bound

Next, we aim to derive the lower bound on the probability
of error for the P0 problem. For this, we use the Markov
chain relation, a decision x̂xx is made given AAA and yyy, i.e.,
xxx → (AAA,yyy) → x̂xx, a standard approach in information theory.
Then, by the Fano’s inequality, the probability of error is lower
bounded as follows,

Pr{xxx �= x̂̂x̂x} ≥ H (xxx|yyy,AAA)− 1

logq |L|
=

H (xxx)−H (yyy|AAA)− 1

logq |L|
,

(13)

where H (·) denotes the entropy. According to the definition
of conditional entropy, H (xxx|yyy,AAA) = H (xxx) − I (xxx;yyy,AAA)
where I (·) denotes the mutual information. Assuming that
AAA is independent of xxx, we have I (xxx;yyy,AAA) = I (xxx; yyy|AAA). We
use the following I (xxx; yyy|AAA) = I (yyy; xxx|AAA) = H (yyy|AAA) −
H (yyy|xxx,AAA). Since yyy is a function of AAA and xxx, then
H (yyy|xxx,AAA) = 0, so that H (xxx|yyy,AAA) = H (xxx) − H (yyy|AAA).
Since H (yyy|AAA) ≤ H (yyy) ≤ MH (y1) ≤ M logq q = M and xxx
is randomly and uniformly chosen from the set L, we obtain
the lower bound,

Pr{xxx �= x̂̂x̂x} ≥ 1− M + 1

logq |L|
. (14)

If the number of measurements is smaller than logq|L| − 1
in the R.H.S. of (14), the probability of error of the CS
system is strictly away from and greater than or equal to the
positive number in the R.H.S. of (14). This means that the
negated condition, M > logq|L| − 1, is a necessary condition
for an unboundedly arbitrary probability of error. Note the
following inequlities, logq|L| > logq

(
N
K

)
+ logq(q − 1)K ≥

logq
2NHb(K/N)

N+1 + logq(q − 1)K .
Theorem 3 (Necessary condition on M). For an arbitrarily

small probability of error, the following

M >
NHb(K/N) +K log2(q − 1)− log2(N + 1)

log2 q
, (15)
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Fig. 2. (a) Lower bounds for N = 1000 (note that if N is sufficiently large
and γ = 1 − q−1, the upper and lower bounds coincide with each other).
(b) Upper and lower bounds with different sparse factors for N = 1000 and
q = 4. In the region above the upper bound, the probability of error is less
than 10−2, while in the region below the lower bound, the probability of
error is greater than 10−2.

is a necessary condition.
Furthermore, in the limit case, we prove that M > K is

necessary and sufficient for successful recovery by solving P0

problem. To do this, from both Corollary 2 and Theorem 3,
by dividing both sides of the inequalities by N , and we have
logq K

N → 0 in (12) and log2(N+1)
N → 0 in (15) as N → ∞

while the ratios M/N and K/N are fixed. In addition, when
the field size goes to infinity, q → ∞, then Hb(K/N)

log2 q → 0 and
log2(q−1)

log2 q → 1. Thus, for both the necessary and the sufficient
condition, we come to the following condition, M > K .

Corollary 4 (Coincidence). For fixed ratios M/N and K/N ,
as N → ∞ and q → ∞, the necessary, and the sufficient
condition, for successful recovery of the K sparse signals over
finite fields Fq is M > K .

IV. NUMERICAL RESULTS AND DISCUSSION

Figure 2 shows the compression ratio (=M/N) versus the
sparsity ratio (=K/N) for recovery of a K sparse signal of

length N = 1000 at the probability of error of 10−2. We
consider the following size finite fields: q = 2, 4, 16, and
256. Fixing K , we find the smallest integer M satisfying
the upper (10) and the lower bound (14) at 10−2. One
interesting feature of Figure 2(a) is that for the lower bound,
the compression ratio required for recovery of unknown sparse
signals dramatically decreases as the field size grows. This
result means that less number of measurements is needed
for a larger finite field. In addition, the upper bound for
uniform random sensing matrix is nearly identical with the
lower bound.

In Figure 2(b), with respect to different sparse factor γ for
a fixed field size, i.e., q = 4, we obtain the compression
ratio which satisfies the upper bound at 10−2. It can be
observed that a higher value of sparse factor γ is required
for recovery of very sparse signals. The aim of Figure 2(b)
is to show that as the sparse factor of the sensing matrix
increases, the upper bound approaches the lower bound even
in the region of small sparsity ratios. Namely, if the sensing
matrix is sufficiently dense, the upper bound coincides with
the lower bound over finite fields. It is easy to see that if
the signal and the sensing matrix are both sparse, the chance
of making a zero measurement gets high; then the number
of measurements needs to increase so as to compensate for
missed sensing opportunities.

V. CONCLUSION

In this work, we considered a CS framework over finite
fields. We derived the sufficient and necessary conditions for
recovery of sparse signals. We showed that the both conditions
are tight, and they coincide when the sparse factor of the
sensing matrix is sufficiently large. We found that for recovery
of ultra-sparse signals, the sensing matrix is required to be
dense. One interesting result is that when the sensing matrix
is sufficiently large and dense, and the field size is large, the
number of measurements needed for perfect recovery is only
M > K .
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