Mixed-Signal Implementation of Analog Front-end and ADC for Compressive Sensing

Sebastian Hoyos Analog and Mixed-Signal Center ECE Department Texas A&M University July 6th, 2012

Continuous Bandwidth Growth of Wireless Systems

Energy Consumption of State-of-the-Art ADCs ([1])

Key Question

Is it too conservative to always comply with the Nyquist sampling theory?

Theory of Compressive Sensing (CS) ([3], [4])

 The characteristics of sparse signals can be captured at its information rate which is usually much lower than the Nyquist rate.

Sparse Signals

- Naturally existed sparse signals
 - Sparse signals

$$r(t) = \sum_{i=0}^{S-1} a_i \Psi_i(t) = \Psi \mathbf{a}$$

where, $\|a\|_0 = K \ll S$, $\Psi_i(t)$: signal basis function, a_i : expansion coefficient

- Examples
 - Images, videos (wavelet-domain sparse);
 - UWB pulse trainings(time-domain sparse);
 - Frequency usage (frequency-domain sparse) ([2]);

Compressive Sensing

- How CS works?
 - Given a K-sparse vector

 $\mathbf{r} = \mathbf{\Psi} \mathbf{a}$ where, $\|\mathbf{a}\|_0 = K \ll S$

Step 1: random projection ([5])

a : expansion coefficients

- Ψ : signal basis
- Φ : projection matrix,
- y : compressive samples
- V: reconstruction matrix

Step 2: reconstruction

$$\hat{\mathbf{a}} = \operatorname{argmin} \|\mathbf{a}\|_{1}$$
 s.t. $\mathbf{y} = \mathbf{\Phi} \mathbf{\Psi} \mathbf{a} = \mathbf{V} \mathbf{a}$

Compressive Sensing of Analog Signals

• CS of digital signals vs. CS of analog signals

Compressive Sensing of Analog Signals

• Non-uniform sampling ([6])

• Random demodulation ([7])

! Difficult to maintain the timing shift accuracy at high-speed.
! Although the average sampling rate is sub-Nyquist, the sampling clock still runs at Nyquist rate.

! Does not consider practical constraints.! Lacks the flexibility

• Modulated Wideband Converter ([8])

! # of channels ≥ 4*# of bands, which is huge in terms of implementation.
! Challenging in generating the T-periodic waveforms.

2012 IEEE SPS Summer School, Hsinchu, Taiwan

Parallel Approach

2012 IEEE SPS Summer School, Hsinchu, Taiwan

• Parallel Segmented Compressive Sensing (PSCS) front-end

0

 $T_m T_c$

Matrix Representation of Parallel Approach

• Random projection "matrix"

- "Mixed-signal" feature;
- Bernoulli distribution (1/-1);

• Each parallel path's basis function is independent.

V

Ψa

Performance vs. Sampling Rate and Sparsity

Sub-Nyquist rate sampling and reconstruction

2012 IEEE SPS Summer School, Hsinchu, Taiwan

Performance vs. Complexity

• Tradeoff between the system complexity and the sampling rate

• Successful Reconstruction Rate (SRR): one successful reconstruction is claimed if

 $\hat{a}_i = a_i$, for all *i*

BW=528MHz, S=256, K=10, SNR=10dB, OMP is used for reconstruction, and a is QPSK modulated.

at the ith symbol is claimed if

• Symbol Error Rate (SER): one symbol error

 $\hat{a}_i \neq a_i$

Complexity vs. Sampling Rate

• Tradeoff between the system complexity and the sampling rate

Practical Imperfections

- Spurious frequency components (clock leakage, etc)
- ADC nonlinearity
- Static error (mismatches, offsets, delays, etc) in the PSCS front-end
- Random errors (noise, jitter, etc)

Flexible Spurs Rejection

- Windowed integration acts as low-pass filter with nulls at k^*f_0 , where $f_0=1/T_c$
- For spurs rejection, we need f_{spurs}/f_0 =integer

$$T = T_c \left(M - (M - 1)OVR \right) \implies \frac{f_{spur}}{f_0} = \frac{f_{spur} \cdot T}{\left(M - (M - 1)OVR \right)}$$

Example of Spurious Frequency

Leakage from the PN clocks to integrators

Flexible Spurs Rejection

• Tuning the null frequency by changing OVR

The overlapping windowed integration provides a flexible spurious frequency rejection scheme!

TEXAS A&M*

2012 IEEE SPS Summer School, Hsinchu, Taiwan

• Effect of randomization in the CS system

Two-tone test (noise-free)

• SFDR improvement from randomization (noise-free)

Two-tone test (noisy)

2012 IEEE SPS Summer School, Hsinchu, Taiwan

• SFDR improvement from randomization(noisy)

- SFDR improvement vs. signal sparsity
 - BW=1.28GHz
 - Input to ADC: full-scale

Sparsity level	2%	4%	10%
CS sampling rate (MHz)	240	480	1200
Median SFDR _{Nvauist} (dB)	42.50	48.13	51.47
Median SFDR _{CS} (dB)	56.80	55.58	53.60
SFDR improvement (dB)	14.30	7.45	2.13

The CS randomization spreads the error power along the signal bandwidth and leads to ADC SFDR improvement!

Static Errors in the PSCS Front-end

- The reconstruction matrix $V_{MN \times S} = \Phi \Psi$ where
 - Ideally, $V_{(n-1)M+m,i} = \int_{mT_m}^{mT_m+T_c} e^{j2\pi f_i t} \Phi_n(t) dt$
 - Actually, $\int_{mT_m+\delta t_1}^{mT_m+T_c+\delta t_2} \alpha e^{j2\pi(s\Delta f+\delta f)t+\theta} \left(\Phi_n(t)+\delta \Phi_n(t)\right)^* dt = V_{(n-1)M+m,i} + \Delta V_{(n-1)M+m,i}$
- Assuming that the system is linear and time-invariant, given the nominal input $r(t) = \sum_{i=0}^{S-1} a_s e^{j2\pi f_i t} = \Phi \mathbf{a}$
 - The ideal output

$$y = Va$$

The actual output

$$\mathbf{y} = (\mathbf{V} + \Delta \mathbf{V})\mathbf{a}$$

Example of static errors in the PSCS front-end

• Finite settling time of the PN sequences

Compensation of Static Errors

• Direct training

LMS Algorithm for Digital Calibration

Background iterative calibration

Calibration Results

Background iterative calibration

Static errors can be compensated through training and iterative background calibration!

TEXAS A&M* ENGINEERING

2012 IEEE SPS Summer School, Hsinchu, Taiwan

Example of Random Errors in the PSCS front-end

- Noise $\|\mathbf{a} \hat{\mathbf{a}}\|_2 \le c\varepsilon_n$ where, $\varepsilon_n = \|n\|_2$
- Jitter $SNR_j = \frac{V_{sig,output}^2}{N_j^2} = \frac{\lambda}{2\sigma_j^2 f_{clk}^2}.$
 - where, f_{clk} is the clock frequency, σ_j is the std of random jitter, λ depends on the signal characteristics.

! Random errors can not be calibrated out and need to be paid special attention during circuitlevel design.

• Design specifications

S	∆f	BW	T=1/Δf	М	Ν	Δt=T/M	fs=1/∆t	Тс	Τον	OVR
100	2KHz	200KHz	500µs	16	4	31.25 μs	32KHz	36.5 µs	5.6µs	15.34%

• Overall configuration

• Multi-carrier signal generator

Agilent 33120A

2012 IEEE SPS Summer School, Hsinchu, Taiwan

- Mixer and Integrators
 - Gm stage: TIOPA861 (Gm=116mS)
 - Switches: CD4066BCN transmission gate

2012 IEEE SPS Summer School, Hsinchu, Taiwan

- Mixer and Integrators (cont.)
 - Interleaved integration with overlapping windowing

• Test setup and Measurement results

Sub-carrier's	Input Testing signal	Reconstructed signal's		
amplitude (mV)	frequency (kHz)	frequency (kHz)		
0.3	[61, 121]	[61, 121]		
0.3	[41, 131]	[41, 131]		
0.3	[41, -131]	[41, -131]		
0.3	[-51, 63, 111]	[-51, 63, 111]		
0.2	[71, -85, 91, -101]	[71, -85, 91, -101]		
0.2	[41, 61, 85, 91, 101]	[41, 85, 91]		

Spectrum Sensing for Cognitive Radios

- Current frequency usage shows some sparsity.
- Simulation setup: S=128, K=17, SNR_{overall}=-10dB, NSR=0.32 when PSCS is used.
- Results: MSE=-5dB when Nyquist rate FFT is used, MSE=-14dB when PSCS is used

Digital Spectrum Analyzers

- Ex: THD (Total Harmonic Distortion) test for a DTV receiver.
 - f1=400MHz, up to 5th order harmonics needs to be tested.

Can CS Really Lower the Sampling Rate of ADCs? At What Cost?

• Traditional RF data acquisition receiver

ADC location in RX Chain

 New wideband Application (i.e., Cognitive Radio) Call for high speed & high resolution ADCs

State-of-the-Art

• Performance of state-of-the-art ADCs ([1])

Time-Interleaving Option

 Time-interleaving ADCs for achieving high SR and high SNDR

Time-interleaved ADC architecture.

Ex.: [2] 1.8GS/s, 8bits, 420 mW 0.98 pJ/conversion step

Parallel CS Option

 Is that possible to sample the wideband sparse signal with low sampling rate?

Power Spectral Estimation

 $x \in R^{N \times 1}$ Frequency domain sparse signal: $\psi \in C^{N \times N}$ $y = \psi x \quad y \in R^{N \times 1}$ The N-points Fourier transform Matrix: The signal spectrum: $K \ll N$ K non zero elements Y_1 Input X_2 Spectrum Y_2 signal with K N points FFT • with K non-zero (N*N matrix) • tones elements $K \ll N$ $K \ll N$ Y_N XN

Matrix Notation

Frequency domain sparse signal:

The N-points Fourier transform Matrix:

The signal spectrum:

 $x \in R^{N \times 1}$ $\psi \in C^{N \times N}$ $y = \psi x \quad y \in R^{N \times 1}$

K non zero elements, K << N

Signal Reconstruction

Frequency domain sparse signal:

The N-points Fourier transform Matrix:

The signal spectrum:

 $x \in R^{N \times 1}$ $\psi \in C^{N \times N}$ $y = \psi x \quad y \in R^{N \times 1}$

K non zero elements, K << N

Vector to be sampled:

$$s = \Phi x \quad s \in \mathbb{R}^{M \times 1} \quad \Phi \in \mathbb{R}^{M \times N} \quad M << N$$
$$\Phi \psi^{H} y = S$$

$$y = \arg \min \|y\|_1$$
 s.t. $\Phi \psi^H y = s$ $M \ge K \log_2(N/K)$

,

2012 IEEE SPS Summer School, Hsinchu, Taiwan

System Level Implementation

• System level architecture of a CS data acquisition system

Analog Windowing

•Segmented integration windows for reducing # of paths (PSCS)[5]

ENGINEERING

System Level Diagram

System level diagram

TEXAS A&M* ENGINEERING

Circuit Level Implementation

• One path circuit

Simplified integrator schematic

2012 IEEE SPS Summer School, Hsinchu, Taiwan

Circuit Level Implementation

• Operation of the differential active integrator

Integrating in the upper branch

Read out integrated data In the upper branch and start to integrate in the lower branch

Reset the upper branch

Analysis

• The Signal gain of the front-end

Analysis

• Signal gain of the front-end

0.4< λ <1, = 0.67 with normally distributed input

2012 IEEE SPS Summer School, Hsinchu, Taiwan

Jitter and SNR

PN Generator: The Speed and Power Bottleneck

• The PN generator

Limiting the signal bandwidth and reconstructed signal quality

3G~4G with 90nm CMOS

Signal Reconstruction

Introduction

 $\Phi \psi^H y = s$ $y = \arg \min \|y\|_1$ s.t. $\Phi \psi^H y = s$

PN Sequence Imperfections

Introduction

$$\Phi \psi^{H} y = s$$

y = arg min ||y||₁ s.t. $\Phi \psi^{H} y = s$

• In reality, the PN sequence that is applied to the circuit is distorted (ex. charge leakage)

PN Sequence Imperfections

Introduction

$$\Phi \psi^{H} y = s$$

y = arg min $\|y\|_{1}$ s.t. $\Phi \psi^{H} y = s$

• In reality, the PN sequence that is applied to the circuit is distorted (ex. Finite rising/falling time)

2012 IEEE SPS Summer School, Hsinchu, Taiwan

Signal Reconstruction

A CS Front-end with Discrete Components

• A low frequency BPSK communication system

S	К	Δf	BW	T=1/∆f	Ν	∆t=T/M	fs=1/∆t	OVR	BER
100	5	2KHz	200KHz	500µs	4	31.25 µs	32KHz	15.34%	5.36E-4

Gm: TIOPA861, 116 mS Switches: CD4066BCN Sampling Capacitor: 17 nF

A CS Front-end with Discrete Components

• A low frequency BPSK communication system

An example of the output waveforms

A GHz CS Front-end with 90nm CMOS

• System level parameters, with IBM 90nm CMOS process

Input Signal Bandwidth	$10 \text{ MHz} \sim 1.5 \text{ GHz}$				
Number of Parallel Paths	8				
Single Path sampling rate (10/256 signal sparsity)	110 Ms/s				
Overall System Sampling rate	880 MS/s (29% Nyquist Rate)				
SNDR with 0.5 ps jitter	44 dB				
Max. signal gain at the front- end	around 20 dB				
Fullscale input / output	-20 dBm / -2 dBm (referred to 50 ohms) 0.06 / 0.5Vpp				

A GHz CS Front-end with 90nm CMOS

• Circuit block parameters

Gm	6.5 mS				
NF of Gm / IIP3	11.1 dB / 6 dBm				
DC Gain of the OTA	37 dB				
GBW of the OTA	250M				
SNDR of the OTA	> 50 dB				
Phase margin of the OTA	69 degree				
Sampling capacitor	1 pF				

Those numbers are determined by equations in Part III

Simulations

• Block Level Simulations

NF of the Gm stage

Bode plot of the OTA

3 GS/s PN sequence

Spectrum of the generated PN

2012 IEEE SPS Summer School, Hsinchu, Taiwan

Simulations

• Block Level Simulations

An example of the output waveform obtained in simulation

Reconstructed SNR = 40 dB with sampled data from coarse transient simulation

2012 IEEE SPS Summer School, Hsinchu, Taiwan

Comparison with State of the Art

Power consumption & comparison with other works

Gm stages	16 mW		Design		[6]	[2]a	[2]b	[8]	This work
			Sampling Rate (GS/s)	1	0.8	1.35	1.8	3.5	3
Integrator S	19.2 mW		ENOB (SNDR in dB)	8.8 (55)	9 (56)	7.7 (48.2)	7.9 (49.4)	4.9 (31.18)	7 (44)
Clocks	57.6 mW		Power consumption (mW)	250	350	180	420	98	120.8
DU			Process(nm)	130	90	130	130	90	90
PN			FOM (pJ/conversion step)	0.56	0.85	0.64	0.98	0.94	0.31
sequences			Signal Sparsity		Arbitrary 4%				
ADCs	28 mW								
Overall	120.8 mW		where <i>P</i> is the powe	er and S	5 <i>R</i> 15 the	e ADC sa	mpling ra	ite.	
	Gm stages Integrator s Clocks Clocks ADCs ADCs	Gm stages16 mWIntegrator s19.2 mWClocks57.6 mWPN sequences57.6 mWADCs28 mWOverall120.8 mW	Gm stages16 mWIntegrator s19.2 mWClocks57.6 mWPN sequences57.6 mWADCs28 mWOverall120.8 mW	Gm stages16 mWDesignIntegrator S19.2 mWSampling Rate (GS/s)Sampling Rate (GS/s)ENOB (SNDR in dB)Clocks PN sequencesPower consumption (mW)PN sequences57.6 mWProcess(nm)FOM (pJ/conversion step) Signal SparsitySignal SparsityADCs28 mWwhere P is the power120.8 mWTo the power	Gm stages16 mWDesign[7]Integrator S19.2 mWSampling Rate (GS/s)1Integrator S19.2 mWENOB (SNDR in dB)8.8 (SS)Clocks Power consumption (mW)250PN 	Gm stages16 mWDesign[7][6]Integrator s19.2 mWSampling Rate (GS/s)10.8Integrator s19.2 mWENOB (SNDR in dB)8.89Clocks sequencesPower consumption (mW)250350PN sequences57.6 mWProcess(nm)13090FOM (pJ/conversion step)0.560.85Signal SparsityIntegrator where P is the power and X is the where P is the power and X is the power and X is the where P is the power and X is the power and X is the where P is the power and X is the power	Gm stages16 mWDesign[7][6][2]aIntegrator S19.2 mWSampling Rate (GS/s)10.81.35Marker Pisces19.2 mWENOB (SNDR in dB)8.897.7Clocks SequencesPower consumption (mW)250350180PN sequences57.6 mWPower consumption (mW)2500.64ADCs28 mWFOM (pJ/conversion step)0.560.850.64Noverall120.8 mWmWwhere P is the power and strice to the power	Gm stages 16 mW Design [7] [6] [2]a [2]b Integrator S 19.2 mW Sampling Rate (GS/s) 1 0.8 1.35 1.8 Merry S 19.2 mW ENOB (SNDR in dB) 8.8 9 7.7 7.9 Clocks Sequences Power consumption (mW) 250 350 180 420 PN Sequences 57.6 mW Power consumption (mW) 250 0.64 0.98 MDCs 28 mW FOM (pJ/conversion step) 0.56 0.64 0.98 Moverall 120.8 mW where P is the power and Sr is the ADC sampling rate of the power and Sr is the ADC sampling rate of the power and Sr is the ADC sampling rate of the power and Sr is the ADC sampling rate of the power and Sr is the ADC sampling rate of the power and Sr is the ADC sampling rate of the power and Sr is the ADC sampling rate of the power and Sr is the ADC sampling rate of the power and Sr is the ADC sampling rate of the power and Sr is the ADC sampling rate of the power and Sr is the ADC sampling rate of the power and Sr is the ADC sampling rate of the power and Sr is the ADC sampling rate of the power and Sr is the ADC sampling rate of the power and Sr is the ADC sampling rate of the power and Sr is the ADC sampling rate of the power and Sr is the ADC sampling rate of the power and Sr is the ADC sampling rate of the power and Sr is the ADC sampling rate of the power and sampling rate of the power and Sr is the ADC sampling	Gm stages 16 mW Power Design [7] [6] [2]a [2]b [8] Integrator S 19.2 mW Sampling Rate (GS/s) 1 0.8 1.35 1.8 3.5 Integrator S 19.2 mW ENOB (SNDR in dB) 8.8 9 7.7 7.9 4.9 Clocks Power consumption (mW) 250 350 180 420 98 PN sequences 57.6 mW Power consumption (mW) 250 350 130 130 90 ADCs 28 mW FOM (pJ/conversion step) 0.56 0.85 0.64 0.98 0.94 MOverall 120.8 mW mW where P is the power and Sr is the ADC subject subjec

 $FOM = \frac{P}{2^{ENOB}SR}$

Die Photo

Testing

• Test bench diagram

PN jitter 4.13 ps Max PN speed 1.25G Max signal BW 500M

Target: 41 dB SNR 1GS/s equivalent Sampling rate

Testing

• Test bench

Board

• PCB

Waveforms

• The output waveform

Waveforms

• The output waveform

Performance

• Reconstructed SNR vs. frequency (single tone test)

Predistortion for Calibration

• Reconstructed Spectrums (Multi-tone test)

Differential amplitudes are introduced by predistortion of the AWG

• Reconstructed Spectrums (Multi-tone test)

Case 1: 50, 250, 490 The reconstructed SNR= 29.26dB

• Reconstructed Spectrums (Multi-tone test)

Case 2: 20, 70, 250, 450 The reconstructed SNR=27.74dB

• Reconstructed Spectrums (Multi-tone test)

Comparison with State of the Art

• Comparison table

Design	[7]	[6]	[2]a	[2]b	[8]	This work (sim)	This work (tested)
Sampling Rate (GS/s)	1	0.8	1.35	1.8	3.5	3	1
ENOB (SNDR in dB)	8.8 (55)	9 (56)	7.7 (48.2)	7.9 (49.4)	4.9 (31.18)	7 (44)	6 (38)
Power consumption (mW)	250	350	180	420	98	120.8	60
Process(nm)	130	90	130	130	90	90	90
FOM (pJ/conversion step)	0.56	0.85	0.64	0.98	0.94	0.31	0.9
Signal Sparsity	Arbitrary 4%					4%	4%
where P is the power and SR is the ADC sampling rate.							

Asynchronous Compressive Sensing Front-end

Motivation

- Next-generation wireless medical sensing systems
 - Reliable: Real-time monitoring and operation
 - Portable: Miniaturized implementation
 - Low-power: Ultra-high power efficiency
- Example: wireless body area network, MIR, ECG, etc.

Neural Recordings Example

• Multi-channel neural-spike recordings

Specifications

Specifications for next-generation body area network
[1]

Distance	2 m standard / 5 m special use			
Piconet density	2 – 4 nets / m ²			
Devices per network	Max: 100			
Net network throughput	Max: 100 Mbit/s			
Power consumption	~ 1 mW/Mbps			
Latency	10 ms			

How CS Fits into This Application?

- Sub-Nyquist signal processing via Compressive Sensing (CS) ([2], [3])
 - Naturally existed sparse/compressible signals:
 - Images, videos (wavelet-domain sparse);
 - UWB pulse trainings (time-domain sparse);
 - Frequency usage (frequency-domain sparse);
 - Compressive sensing theorem states sparse and/or compressive signals can be captured at its information rate which is usually much lower than the Nyquist rate.

Sub-Nyquist rate sampling and reconstruction

2012 IEEE SPS Summer School, Hsinchu, Taiwan

Architectures

- Conventional mixed-signal CS front-end
 - Random demodulation ([4])

- Modulated Wideband Converter ([5]
 - # of channels ≥ 4*# of bands, which is huge in terms of implementation.
 - Challenging in generating the T-periodic waveforms.

Lacks flexibilityRequires dedicated analog devices

Objective

 Optimal combination of analog and digital subsystems for mixed-signal CS front-end with low power, low complexity, and high flexibility

DACS front-end

- Real bio-signals are continuous and have bounded variation
 - Modulate amplitude variation to ternary timing information Digitally-assisted CS
 - Area, power and linearity!

DACS front-end

Continuous-Time Ternary Encoding(CT-TE)

Resembles Delta-Sigma Modulation!

Signals

An example on ECG signal. From top to bottom, the three waveforms show original ECG signal, output of CT-TE scheme with Q = 1 and output with Q = 5, respectively.

Architecture

• Algorithmic Logic

Proposed S-member groupbased total variation

• Sparse recovery via total variation

$$\min_{x} \alpha TV(x) + \gamma GTV(x, S) + \|y - Ax\|_{2}^{2}$$
$$TV(x) = \|Dx\|_{1}$$
$$GTV(x, S) = \sum_{i=1}^{N} \|Dx_{i}^{i+S_{i}-1}\|_{1}$$
$$S_{i} = \min(S, g_{i})$$
$$g_{i} = \arg\max_{g} \left(\|Dx_{i}^{i+g}\|_{\infty} \le TH < \|Dx_{i}^{i+g+1}\|_{\infty}\right)$$

Include both intra-group and inter-group total variation

Problem finds optimal solution to equivalent compact signal

Proposed S-member groupbased total variation

- Recovery of original ternary timing information
 - Rounding: all piecewise-constant sections have integral values.
 - If piecewise-constant value **equal** to 1 or -1, keep it same.
 - If piecewise-constant value larger than 1 or smaller than -1, there is a zero-valued section ahead current constant section. The amplitude of current section indicates the length of zero-valued section.

•Original waveform of QRS complex and its ternary timing approximation by CT-TE scheme, Q = 1.

•Recovery of equivalent compact signal $x_{eq}(n)$ by conventional TV-based method and S-GTV scheme in noise-free case. (a) Recovery waveforms; (b) MSE versus iteration time.

•Recovery of equivalent compact signal $x_{eq}(n)$ by conventional TV-based method and S-GTV scheme when SNR = 40dB. (a) Recovery waveforms; (b) MSE versus iteration

•Recovery of equivalent compact signal $x_{eq}(n)$ by conventional TV-based method and S-GTV scheme when SNR = 20dB. (a) Recovery waveforms; (b) MSE versus iteration time.

•Recovery of original ternary timing signal with rounding, SNR=20dB

Analog to Digital Converter

2012 IEEE SPS Summer School, Hsinchu, Taiwan

A/D and D/A Conversion

A/D Conversion

D/A Conversion

A/D and D/A Performance Metrics

- Dynamic performance
 - Signal-to-noise ratio (SNR)
 - Signal-to-noise plus distortion ratio (SNDR)
 - Spurious-free dynamic range (SFDR)
 - Aperture uncertainty
 - Dynamic range (DR)
 - Idle channel noise
- Static performance
 - Monotonicity
 - Offset
 - Gain error
 - Differential nonlinearity (DNL)
 - Integral nonlinearity (INL)

Quantization

- Quantization = division + normalization + truncation.
- Full-scale range (V_{FS}) is determined by V_{ref}.

Quantization Error

"Random" quantization error is regarded as noise.

Quantization Noise

Assumptions:

- N is large.
- $0 \le V_{in} \le V_{FS}$ and $V_{in} >> \Delta$.
- V_{in} is active.
- ε is Uniformly distributed.
- Spectrum of ε is white.

<u>Ref</u>: W. R. Bennett, "Spectra of quantized signals," *Bell Syst. Tech. J.*, vol. 27, pp. 446-472, July 1948.

Signal-to-Quantization Noise Ratio (SQNR)

Assume V_{in} is sinusoidal with $V_{p-p} = V_{FS}$,

$$SQNR = \frac{V_{FS}^{2}/8}{\sigma_{\varepsilon}^{2}} = \frac{(2^{N} \Delta)^{2}/8}{\frac{\Delta^{2}}{12}} = 1.5 \times 2^{2N},$$

$$SQNR = 6.02N + 1.76 dB.$$

N	SQNR		
(bits)	(dB)		
8	49.9		
10	62.0		
12	74.0		
14	86.0		

- SQNR depicts the theoretical performance of an ideal ADC.
- In reality, ADC performance is limited by many other factors:
 - Electronic noise (thermal, 1/f, coupling, and etc.)
 - Distortion (measured by THD, SFDR)

ADC Architectures

A/D Converter Architectures

- Nyquist-rate converters
- Oversampling converters

Bandpass oversampling

Nyquist-Rate ADC's

- The "black box" version of the quantization process
- Digitizes the input signal up to the Nyquist frequency $(f_s/2)$
- Minimum sampling frequency (f_s) for a given input bandwidth
- Each sample is digitized to the maximum resolution of the converter

Nyquist-Rate ADC's

- Word-at-a-time (1 step)⁺
 - Flash
 - Folding
- Level-at-a-time (2^N steps)
 - Integration (Serial)
- Bit-at-a-time (N steps)
 - Successive approximation
 - Algorithmic (Cyclic)
- Partial word-at-a-time (1<M≤N steps)
 - Subranging
 - Multi-step
 - Pipeline

⁺ the number in the parentheses is the "latency" of conversion, not "throughput".

Oversampling ADC's

- Sample rate is well beyond the signal bandwidth.
- Coarse quantization is combined with feedback to provide an accurate estimate of the input signal on an "average" sense.
- Quantization error in the coarse digital output can be removed by the digital decimation filter.
- The resolution/accuracy of oversampling converters is achieved in a sequence of samples ("average" sense) rather than a single sample; the usual concept of DNL and INL of Nyquist converters are not applicable.

Oversampling ADC's

- Predictive
 - Delta modulation
- Noise shaping
 - Sigma-delta modulation
 - Multi-level (quantization) sigma-delta modulation
 - Multi-stage (cascaded) sigma-delta modulation (MASH)

Building Blocks for Data Converters

- Comparators (Preamp and Latch)
- Sample-and-Hold (Track-and-Hold) Amplifier
- Operational Amplifier (ELEN 474, ELEN609)
- Switched-Capacitor Amplifiers, Integrators and Filters (ELEN622)
- Voltage and Current DAC's
- Current Sources (ELEN 474)
- Voltage/Current/Bandgap References (ELEN474)

Flash ADC Architecture

- Reference ladder consists of 2^N equal size resistors
- Input is compared to 2^N-1 reference voltages.
- Massive parallelism
- Fastest ADC architecture
- Latency = $1T = 1/f_s$
- Throughput = f_s
- Complexity = 2^N

Successive Approximation ADC

2012 IEEE SPS Summer School, Hsinchu, Taiwan

Successive Approximation ADC

- Binary search algorithm $\rightarrow N^*T_{clk}$ to complete N bits.
- Conversion speed is limited by comparator, DAC, and SAR (successive approximation register)

Binary Search

- DAC output gradually approaches the input voltage.
- Comparator differential input gradually approaches zero.

Charge Redistribution SA ADC

- 4-bit binary-weighted capacitor array DAC.
- Capacitor array samples input when Φ_1 is asserted (bottom-plate).

Charge Redistribution (MSB)

$$V_{i} \cdot \sum_{j=0}^{4} C_{j} = \left(V_{R} - V_{X}\right) \cdot C_{4} - V_{X} \cdot \sum_{j=0}^{3} C_{j} \implies V_{X} = \left(V_{R} \cdot C_{4} - V_{i} \cdot \sum_{j=0}^{4} C_{j}\right) / \sum_{j=0}^{4} C_{j} = \frac{V_{R}}{2} - V_{i} \cdot \sum_{j=0}^{4} C_{j} = \frac{V_{R}}{2} - \frac{V_{R}}$$

TEXAS A&M*

2012 IEEE SPS Summer School, Hsinchu, Taiwan

Comparison (MSB)

- If $V_X < 0$, then $V_i > V_R/2$, and MSB = 1, C_4 remains connected to V_R .
- If $V_X > 0$, then $V_i < V_R/2$, and MSB = 0, C_4 is switched to ground.

Charge Redistribution (MSB-1)

$$V_{i} \cdot 16C = (V_{R} - V_{X}) \cdot 12C - V_{X} \cdot 4C \implies V_{X} = (V_{R} \cdot 12C - V_{i} \cdot 16C)/16C = \frac{3}{4}V_{R} - V_{i}$$

TEXAS A&M* ENGINEERING 2012 IEEE SPS Summer School, Hsinchu, Taiwan

- If $V_X < 0$, then $V_i > 3V_R/4$, and MSB-1 = 1, C_3 remains connected to V_R .
- If $V_X > 0$, then $V_i < 3V_R/4$, and MSB-1 = 0, C_3 is switched to ground.

Charge Redistribution (Other Bits)

Test completes when all four bits are determined w/ four charge redistributions and comparisons.

After Four Clock Cycles...

- Usually, half T_{clk} is allocated for charge redistribution and half for comparison + digital logic.
- V_x always converges to 0 (V_{os} if comparator has nonzero offset).

Bottom-Plate Parasitics

- If $V_{os} = 0$, C_P has no effect; otherwise, C_P attenuates V_X .
- AZ can be applied to the comparator to reduce offset.

2012 IEEE SPS Summer School, Hsinchu, Taiwan

Summary on SA ADC

- Power efficiency only comparator consumes DC power.
- DAC nonlinearity limits the INL and DNL of the SA ADC
 - N-bit precision requires N-bit matching from the cap array.
 - Calibration can be performed to remove mismatch errors (Lee, JSSC 84).
- If $C_p=0$, comparator offset V_{os} introduces an input-referred offset V_{os} ; for nonzero C_p , input-referred offset is larger than V_{os} ($\delta^{\sim}C_p/\Sigma C_i$).
- If $V_{os}=0$, CP has no effect ($V_x \rightarrow 0$ at the end of search); otherwise, charge sharing occurs at summing node (V_x is attenuated).
- Binary search is sensitive to intermediate errors made during search
 - DAC must settle into ½ LSB within the time allowed.
 - Comparator offset must be constant (no hysteresis).
 - Nonbinary search can be used (Kuttner, ISSCC, 2002).

A 6b 1.6GS/s ADC with Redundant Cycle 1-Tap Embedded DFE in 90nm CMOS

E. Zhian Tabasy, A. Shafik, S. Huang, N. Yang, S. Hoyos, and S. Palermo

TABLE I ADC PERFORMANCE COMPARISON

SPECIFICATION	[3]	[8]	[9]	This Work
CMOS Technology	130nm	130nm	40nm	90nm
Supply Voltage (V)	1.2	1.2	1.0	1.3
Resolution (bit)	5	6	6	6
Samp. Rate (GS/s)	4.8	1.25	1.25	1.6
ERBW (GHz)	4	0.45	0.6	0.8
Max ENOB (bit)	4.76	5.5	4.77	4.75
Power (mW)	300	32	6.08^{**}	20.1
FoM(pJ/ConvStep)	2.3	0.78	0.18	0.46
Embedded	DFF*	N/A	N/A	DFF
Equalization	DIL	14/11	14/11	DIL
Active Area (mm ²)	1.69	2.32	0.014	0.24

* The embedded equalization is referred as multi-level DFE in [3].

** There is no front-end active T/H, and this structure does not need reference or common-mode voltage buffers.

Oversampling ADC

Nyquist-rate Sampling and Over-Sampling

- Nyquist-rate Sampling
 - Sampling frequency F_s slightly higher than the Nyquist rate of the signal, $F_{Nyquist} = 2 \cdot f_b$.
 - F_S > 2·f_b but F_S \approx 2·f_b.
- Over-Sampling
 - Sampling frequency F_s much higher than the Nyquist rate of the signal, $F_{Nyquist} = 2 \cdot f_b$.
 - $F_{S} >> 2 \cdot f_{b}$.
- The ratio $M = F_s/(2 \cdot f_b)$ is called oversampling ratio (OSR).

Nyquist-rate and Over-sampling Data Converters

- Nyquist-rate data converters
 - Sampling frequency F_s slightly higher than the Nyquist rate of the signal, $F_{Nyquist} = 2 \cdot f_b$.
 - OSR is larger but close to 1
- Over-sampling data converters
 - Sampling frequency F_s much higher than the Nyquist rate of the signal, $F_{Nyquist} = 2 \cdot f_b$
 - OSR usually larger than 8.

Why Over-Sampling? – Better SQNR

- Benefit of over-sampling: lower quantization noise within signal bandwidth.
- Assuming quantization noise is white, every time we double the sample frequency, the effective resolution increases with 3 dB (0.5 bit).

The quantization noise outside of the frequency of interest could be filtered out by post digital low pass filtering.

* In many situations, dither is needed to make quantization white.

2012 IEEE SPS Summer School, Hsinchu, Taiwan

Why Over-Sampling? – Better SQNR (Cont'd)

 The higher sampling frequency, the lower inband quantization noise
Doubling sampling frequency increases

Why Over-Sampling? – Relaxed AAF Requirement

 Another benefit for oversampled A/D conversion is much relaxed anti-alias filter requirements.

- For true Nyquist rate ADCs, very steep brick wall type anti-alias filters are required with large phase distortion, high power consumption, and large silicon area.
- In practice, Nyquist rate ADCs always have certain "oversampling" with practical anti-alias filters.
- For over-sampling ADCs, simple low order anti-alias filters could be utilized.

Anti-Alias Filter Order vs. OSR

• Anti-alias filter order (Butterworth type) vs. OSR

[R. van de Plassche, CMOS Integrated Analog-to-Digital and Digital-to-Analog Converters, 2nd ed., 2003, p. 41]

A 6th-order 200MHz IF Bandpass Sigma-Delta Modulator With over 68dB SNDR in 10MHz Bandwidth

Cho-Ying Lu, Fabian Silva-Rivas, Praveena Kode, Jose Silva-Martinez and Sebastian Hoyos

TABLE VComparison with Previously Reported BP $\Delta\Sigma$ Modulators

Referenc	Technology	Fs	IF	Band-	Peak	IM3	Power	Area	FoM
e			(MHz	width	SNDR			mm ²	(pJ/bit)
)						
[1] BP	CMOS;0.18um	60MHz	40	2.5 MHz	69dB	-	150mW	-	13
[2] BP	CMOS;0.35um	240MHz	60	1.25 MHz	52dB	-51dB	37mW	1.2	45.5
[3] BP∆	CMOS;0.18um	264MHz	44	8.5 MHz	71dB#	-72dB	375mW*	2.5	7.6*
[4] BP	CMOS;0.35um	60MHz	40	1MHz	63dB#	68dB	16mW	0.44	6.69
[6] BP	SiGe; 0.25um	3800MHz	950	1 MHz	59dB	-62dB	75mW**	1.08	51.5**
[7] BP	SiGe; 0.13um	40GHz	2000	60MHz	55dB	-	1.6W*	2.4	29*
This	CMOS;0.18um	800MHz	200	10MHz	68.4dB	-73.5dB	160mW*	2.48	3.72*
work									

2012 IEEE SPS Summer School, Hsinchu, Taiwan

Design Tools for Multi-Channel Filter-Bank Receiver Architectures

Sebastian Hoyos

Analog and Mixed-Signal Center Texas A&M University

Learning Objectives

- After completing this course, you will know the fundamental design tools for modeling multi-channel filter-bank receivers.
- After completing this course, you will understand the impact of clock-jitter on time-interleaved and multi-channel filter-bank receivers.
- After completing this course, you will understand the trade-offs among power consumption, noise and area in multi-channel receivers.
- After completing this course, you will understand how to use digital background calibration to compensate non-idealities in multi-channel receivers.
- □ After completing this course, you will learn several applications of multichannel receivers including multi-standard receivers .

Outline

- Motivation and introduction to multi-channel receivers.
- Clock-jitter in time-interleaved ADCs and multi-channel filter-bank ADCs
- Robustness to clock-jitter in multi-channel filter-bank receivers.
- Modeling of multi-channel filter-bank receivers for design optimization.
- Digital background calibration of non-idealities in multi-channel filter-bank receivers.
- Applications

Introduction

Ever increasing demand on Data Transmission: need larger bandwidth and dynamic range, higher data rate, etc.

MRI (magnetic resonance imaging)

Cognitive radios

Future mmWR standards

SDR (software-defined-radio)

ADCs in nanometer CMOS technology

Trends:

- Extensive use of parallelism
- Techniques that take advantage of digital trends
- Digital circuitry is "almost free"
- Reduced supply voltages make

Sampling rate

CMOS Nyquist ADC's: State of the art

Little room for cascoding
Poor devices if V_{DS} is further reduced

Parallel Multi-Channel ADCs

Digital intensive RF receivers -> ADCs with wide bandwidths and large dynamic range. Solution ? -> Parallelization. Time-interleave SAR becoming very popular.

Parallelized ADCs

Time-interleaved ADC

Drawbacks

- □ SHA has stringent tracking bandwidth requirements
- Each ADC sees full input signal bandwidth (nonlinearity and aliasing)

Drawbacks

- □ Filters with very tough specs (aliasing)
- Signal reconstruction increases complexity

The Clock-Jitter Limitation in Time-Interleaved ADCs

■ Multiple ADCs in parallel, each sampling at *Fs/N* Hz.

□ Each ADC still sees full bandwidth of
Vin → suffers from aliasing of full
bandwidth noise.

$$SNR = (1 / 2\pi \sigma_j BW)^2$$

BW	bits	SNR	σ_{j}
5GHz	7	44 dB	201fs
50MHz	14	84 dB	201fs

Very stringent clock-jitter specs.

ADCs State-of-Art Survey

Multi-Channel Filter Bank Receiver

Basic block diagram of a multi-channel filter-bank ADC array.

- Channelization in the frequencydomain.
- Ideal reduction of noise produced by clock-jitter of variance σ_j

$$\sigma_n^2 = \left(\frac{2\pi\sigma_j BW}{N}\right)^2$$

- However, no any filter-bank can provide clock-jitter robustness.
- For instance, a first-order filter bank with filters of bandwidth *BW/N* is even worse than time-interleaving.
- Need optimization tools to obtain N^2 times reduction in σ_n^2

SNR vs. Clock-Jitter

- 2nd order Rx perfroms very close to brickwall Rx, 20dB enhancement.
- For 40dB SNR, **10X** improvement of jitter tolerance.

Model for Receiver Analysis (1)

Block diagram that models the transmitter and multi-channel receiver including noise sources such as the clock jitter.

$$\mathbf{a} = [\mathbf{a}_1, \mathbf{a}_2, ..., \mathbf{a}_S]^T$$
$$\Psi = [\Psi_{1,1}, \Psi_{2,2}, ..., \Psi_S]$$

(Valid for any arbitrary Tx that simultaneously sends S symbols.) \mathcal{N}_1 : Noise added from transmission.

x(t): OFDM signal composed of M sinusoidal signals.

$$x(t) = \sum_{m=1}^{M} A_m \sin(m\Delta\omega t)$$

- Φ : Analog filter bank transformation.
- n_2 : Noise added from sampling.
- \mathbf{R} : Symbol detection matrix.

Model for Receiver Analysis (2)

To characterize multi-channel Rx for clock-jitter tolerance, need:

144
SNR_{symbol detection} **Derivation**

SNR_{symbol detection} **Derivation**

Multi-Channel Receiver SNR

- Larger number of channel enhances SNR further.

- Signal is OFDM with BW=5 GHz.
- 1st and 2nd order filters are effective in tolerating clock-jitter if BW is optimized.
- 2nd order Rx has an optimal SNR point around 300MHz.
- Reducing the BW in the 1st order filters lowers power consumption and circuit complexity.

First Order Multi-Channel Filter-Bank Architecture

Analog Complexity

Sinc Filter Bank	Continuous integrator filter bank	
f _{-3dB} ≈ 0.44 / Ts	f _{-3dB} ≈ 1 / 2πR _f C _f	
DC gain = Gm Ts / C	DC gain = GmR _f	
Int. noise = KT/C (2GmTs/C) + KT/C	Int. noise = GmR _f KT/C _f + KT/C _f + KT/C _s	
GBW (op-amp 1,2) >> 1/ $2\pi R_o C$ GBW (1,2) > 7/(settling time) (β ~1) (10bits)	GBW (1) >> 1/ $2\pi R_f C_f$ GBW (2) > 7/(settling time) (β ~1) (10bits)	
Example: Assuming Gm = 1mA/V, Ts = 4ns,		
DC gain = 4, f _{-3dB} ≈ 110MHz	For DC gain = 4, Rf = 4K For $f_{-3dB} \approx 110$ MHz, $C_f \approx C/3$	
Noise = 9KT/C	Noise = $13KT/C + KT/C_s$	
GBW (1,2) ≈ 1.75 GHz	GBW (1) \approx 1.5 GHz (as C _f \approx C/3) GBW (2) \approx 3.5 GHz (for settling time = 2ns)	

Rx Block Diagram with I&Q Mixing

 Block diagram of proposed multi-channel receiver with I&Q 10
GS/s and SNR=40 dB (10 channels, of which only 5 are shown in Fig.).
All the clocks can tolerate up to 5
ps of clock-jitter standard deviation.

Now, realization of MRI, cognitive radio, SDR, and other wideband communication systems become feasible.

Low complexity in clock generation; critical power savings (lower frequency.)

Noise, Power, and Area Trade-offs

Block diagram of a first order filter based on a continuous-time integrator.

$$V_{n,sampled}^2 = \frac{kT}{C} (GmR_f + 1) + \frac{kT}{C_L}$$

- Much more technology scalable than conventional time interleaved ADCs. - N filters of bandwith BW/N each consumes the same or lower power comparing with one filter with bandwidth of BW.

- G_m needs to be reduced to lower BW. \Rightarrow I_{bias} and W can be sized (2 degrees of freedom.)

$$G_m = \sqrt{\frac{KI_{bias}W}{L}}$$

Multi-Channel Receiver Non-idealities

Gain and Phase Mismatches between different paths.

Phase offsets in the Carriers

□ Frequency offset in the Carrier Frequencies

Frequency offset in the Mixing LO's

Where G and R are the Generation Matrix and Symbol detection matrix respectively.

R is sensitive to mismatches, imperfections and offsets in the system, therefore it has to be calibrated to give good SNDR. Least Mean Squares(LMS) has been adopted for calibration of R. Note that the frequency offset causes a time varying error to be introduced therefore it has to be estimated and corrected before the actual calibration of R.

Complete System Calibration

Digital Background Calibration based on LMS

Reverse Problem update equation

$$\hat{R}(L+1) = \hat{R}(L) + \frac{\vec{e}_a(L) * \vec{y}}{\|y\|^2}$$

Digital Background Calibration based on LMS

Initialization of G matrix

Input -> a1 a2 a3 aS	Output -> r1 r2 r3rS	
a1 -> [1 0 0 0 0] [⊤] a2 -> [0 1 0 0 0] [⊤] a3 -> [0 0 1 0 0] [⊤]	r1 forms 1 st column of G matrix r2 forms 2 nd column of G matrix r3 forms 3 rd column of G matrix	
aS -> [0 0 0 0 1] [⊤]	rS forms S th column of G matrix	

Once the frequency offset has been estimated, we form the Generation matrix by scanning the carriers. The above data pattern is sent to scan the carriers. Once this formation is done, calibration of the formed matrix starts.

LMS calibration

Two methods:

1. Forward Problem Calibration

2. Reverse Problem Calibration

Initialization of G matrix (Graphical Explanation)

Simulations

Mean squared error convergence

1. With arbitrary R matrix

SNR vs. Iterations

-All multi-channel systems are sensitive to mismatches in key blocks.

-Digital back-end detects the symbols from ADC output, and has the LMS algorithm learning the mismatches in Rx.

-Controlled mismatches are between different channels. Gain variation: 10~20% Phase mismatch: 10~15% Mismatch in the type of LO signal added.

Calibration algorithm improves the Rx SNR from 20dB to 80dB.

Digital Complexity

Sparsity of (G^HG)⁻¹

 $G^H G$ is denoted by $X = [X_{i,j}]_{S \times S}$

$$X_{i,j} = \sum_{\substack{m=0\\N-1}}^{M-1} \sum_{n=0}^{N-1} e^{-j2\pi(i-j)m/M} Q_{i,n} Q_{j,n}^*$$
$$= \sum_{n=0}^{N-1} Q_{i,n} Q_{j,n}^* \sum_{m=0}^{M-1} e^{-j2\pi(i-j)m/M}$$
$$X_{i,j} = \begin{cases} M \sum_{n=0}^{N-1} Q_{i,n} Q_{j,n}^* & (i-j)mod M = 0\\ 0 & otherwise \end{cases}$$

 $X_{i,j}$ is non-zero only when (i-j) mod M = 0

- *G^HG* has only 2N non-zero elements in each row
- Inverse of *G*^H*G* also has the same sparsity.

Complexity of computation of

- G^HG -> o(2N x 2N x 2S) = o(8N²S)
- $(G^{H}G)^{-1} \rightarrow o(2N \times 2N \times 2S) = o(8N^{2}S)$

Digital Complexity

Step 1: $\overrightarrow{p} = G^H y$ Complexity: o(4S(logM + N))Step 2: $\widehat{a} = (G^H G)^{-1} \vec{p}$ Complexity: o(4NS)

Total Complexity of LS estimation : o(4S(logM + N)) + o(4NS)

Example: S = 128, M = 32, N = 5

Complexity of FFT: o(4SlogS) = o(28S)

Complexity of LS estimate,

Sinc filter bank: o(4S(logM + N)) + o(4NS) = o(60S)

Analog filter bank: o(4NMS) = o(640S)

Complexity of estimation during LMS calibration

Comparative Study	Sinc Filter Bank	Analog Filter Bank
Analog Front end complexity	Larger capacitors	Smaller capacitors
	No resistor required. Reset	Resistor required for finite DC
	ensures finite DC gain.	gain.
	Lesser noise	Noise is high.
	Smaller GBW for op-amps.	Larger GBW for op-amps.
Analog Power consumption	Less	4 times higher
Digital complexity	o (4S (N + logM)) + o(4NS)	o (4NMS)
(Estimation)	Example: o (60S)	Example: o (640S)
Digital complexity	o(16N ² S) + o(4S (logM+N)) +	o (4NMS)
(Estimation @ calibration)	o(4NS)	
	Example: o(460S)	Example: o (640S)
Digital power consumption	Low	High
	Example: About 10% of power	Example: 10 times more
	of analog filter	power than sinc filter 🛛 🔌

Reverse Problem update equation

Multi-Standard Receiver Front-end

GSM	200 KHz and 14 bits
Bluetooth	1 MHz and 12 bits

Multi-Standard Receive^{802.11 G} **Front-end**

Anti-aliasing **ΣΔ ADC** Filter Digital Post Processing F1 - I and Q Anti-aliasing **ΣΔ ADC** Filter LNA I/P & **Gm** Stage F2 - I and Q Integrator **ΣΔ ADC** Clock = Fs/5 F5 - I and Q

167

50 M S/s and 8 bits

Multi-Standard Receive

Integrator **ΣΔ ADC** Clock = Fs/5 **Digital Post Processing** F1 - I and Q Integrator **ΣΔ ADC** Clock = Fs/5 LNA I/P & Gm Stage F2 - I and Q Integrator **ΣΔ ADC** Clock = Fs/5 F5 - I and Q

500 M S/s and 5 bits

Decentralized Sensor Network

Summary and Conclusions

- Optimal design of baseband multi-channel receivers with robustness to clock-jitter will open a large number of possibilities in future wideband communication applications.
- Design example of 5GHz baseband signal with 40dB of SNR with sampling clock that can tolerate 5ps (standard deviation) is introduced.
- Very low complexity multi-channel digital background calibration techniques can compensate the nonidealities.

References

1. S. Hoyos and B. M. Sadler, "Ultra-wideband analog to digital conversion via signal expansion," *IEEE Trans. on Vehicular Technology*, vol. 54, no. 5, pp. 1609–1622, Sept. 2005.

2. S. R. Velazquez, T. Q. Nguyen, and S. R. Broadstone, "Design of hybrid filter banks for analog/digital conversion," *IEEE Transactions on Signal Processing*, vol. 4, pp. 956–967, April 1998.

3. S. Haykin, Adaptive Filter Theory, 4th ed. Upper Saddle River, New Jersey 07458: Prentice Hall, 2002.

4. A. Papoulis, "Generalized sampling expansion," *IEEE Transactions on Circuits and Systems*, vol.CAS-24 No. 11, pp. 652–654, Nov. 1977.

5. B. Razavi, "Design of millimeter-wave CMOS radios: A tutorial," *IEEE Transactions on Circuits and Systems-I*, pp. 4–16, Jan. 2009.

6. J. Mitola, "The software radio architecture," IEEE Communications Magazine, vol. 33, pp. 26–38, May 1995.

7. A. Abidi, "The path to the software-defined radio receiver," *IEEE Journal of Solid-State Circuits*, vol. 42, pp. 954 – 966, May 2007.

8. J. Mitola and J. G.Q. Maguire, "Cognitive radio: making software radios more personal," *IEEE Personal Communications*, vol. 6, pp. 13–18, Aug. 1999.

9. K. Muhammad, R. Staszewski, and D. Leipold, "Digital RF processing: toward low-cost reconfigurable radios," *IEEE Communications Magazine*, vol. 43, pp. 105 – 113, Aug. 2005.

10. "2009 international microwave symposium at the radio-frequency integrated circuit workshop titled: Challenges for future RF integration," http://www.ims2009.org/workshop_descrip.htm#WSG.

- 1. In a time-interleaved ADC topology with Nyquist sampling rate of 10 GS/s, what is the rms clock-jitter requirement for a SNR=44 dB if a single tone input is used?
 - a) 201 ps_{rms} (correct)
 - b) 500 ps_{rms}
 - c) 1 ps_{rms}
 - d) 5 ps_{rms}

The correct answer is "a)", which can be obtained from the SNR equation discussed in slide 7.

- 2. In a time-interleaved ADC topology with Nyquist sampling rate of 10 GS/s, what is the rms clock-jitter requirement for a SNR=40 dB if a 128-tone input is used?
 - a) 201 ps_{rms}
 - b) 500 ps_{rms} (correct)
 - c) 1 ps_{rms}
 - d) 5 ps_{rms}

The correct answer is "b)" which can be obtained directly from the figure in slide 10. Note that multi-tone signals have lower jitter specifications.

- 3. In a 10-channel brickwall multi-channel filter-bank receiver topology with sampling rate of 20 GS/s, what is the rms clock-jitter requirement for a SNR=40 dB if a single tone input is used?
 - a) 201 ps_{rms}
 - b) 500 ps_{rms}
 - c) 2 ps_{rms} (correct)
 - d) 5 ps_{rms}

The correct answer is "c)" which can be derived from the equation in slide 10. Note also that the jitter requirement is 10 times smaller than in time interleaved ADCs.

- 4, In a multi-channel filter-bank receiver topology with sampling rate of 20 GS/s, what is the rms clock-jitter requirement for a SNR=40 dB if a 128-tone input is used?
 - a) 201 ps_{rms}
 - b) 500 ps_{rms}
 - c) 1 ps_{rms}
 - d) 5 ps_{rms} (correct)

The correct answer is "d)" which can be obtained from the figure in slide

10. TEXAS A&M* ENGINEERING

- 5. Due to the sparsity of the detection matrix in sinc filter banks, how many times is the digital detection complexity reduced?
 - a) 2 times
 - b) 5 times
 - c) 7 times
 - d) 10 times (correct)

The correct answer is "d)" which was derived in slide 30.

- 6, How much is the gain-bandwidth product reduction of a sinc filter versus a continuous-time filter for a 10-bit settling error?
 - a) 2 times (correct)
 - b) 5 times
 - c) 7 times
 - d) 10 times

The correct answer is "a)" which was summarized in slide 18 but the derivation was not provided but left as homework to the reader..

- 7. When comparing the silicon area of a multi-channel receiver versus a single-channel receiver, we can say that:
 - a) They are the same
 - b) Multi-channel has an area overhead (correct)
 - c) Multi-channel occupies less area

The correct answer is "b)" which was discussed in slide 20.

- 8. When comparing noise performance and power consumption with a single channel receiver, the total integrated noise in a multi-channel receiver is:
 - a) worse
 - b) better
 - c) same
 - d) It's a flexible design parameter and can be made better if desired (correct)

The correct answer is "d)" which was discussed in slide 20.

9. The same jitter robustness of a perfect multi-channel receiver can be achieved with practical finite order multi-channel filter-bank receivers?

- a) False (correct)
- b) True

The correct answer is "a)", it is not exactly the same but it is very close as shown throughout the course.

- 10. Why is the LMS initialization important in the background calibration algorithm?
 - a) To achieve faster convergence
 - b) To achieve a cleaner convergence
 - c) To improve the steady state error
 - d) a and b are both correct (correct)

The correct answer is "d)", slide 27 illustrates this point.

Glossary

- Multi-channel: Collection of multiple channels or paths connected in a particular topology, typically connected in parallel.
- Filter-bank: Parallel connection of filters driven by a common input signal.
- Brickwall filter: Ideal filter whose frequency response resembles a brickwall.
- Analog filter: Filter whose input and output signals are analog, i.e. continuoustime.
- Sinc filter: Discrete-time filter based on time windowing whose frequency response is a sinc response.
- Time-Interleaved: Topology based on time multiplexing that uses uniformly spaced phases in a clock period to sampled a signal at a fraction of Nyquist rate.
- Clock-Jitter: Clock timing uncertainty.
- Digital Background Calibration: Calibration performed at the digital back-end of a system.

The End

Thank you

References

- [1] S. Drude, "Tutorial on Body Area Networks", *Project: IEEE P802.15 Working Group for WPANs*, Jul. 18, 2006.
- [2] D. L. Donoho, "Compressed sensing," IEEE Trans. Inf. Theory, vol. 52, pp. 1289 -1306, Apr. 2006.
- [3] E. J. Candes, J. Romberg, and T. Tao, "Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information," IEEE Trans. Inf. Theory, vol. 52, pp. 489–509, Feb. 2006.
- [4] S. Kirolos, J. Laska, M. Wakin, M. Duarte, D. Baron, T. Ragheb, Y. Massoud and R. Baraniuk, "Analog-to-information conversion via random demodulation", IEEE Dallas Circuits and Systems Workshop (DCAS), Dallas, Texas, 2006.
- [5] M. Mishali and Y. C. Eldar, "From theory to pratice: Sub-Nyquist sampling of sparse wideband analog signals," IEEE Journal of Selected Topics in Signal Processing, pp. 375–391, Apr. 2010.

References

- [1] B. Murmann, "ADC performance survey 1997-2010," Jun. 2010, online. [Online]. Available: http://www.stanford.edu/ murmann/adcsurvey.html
- [2] S. M. Louwsma, A. J. M. van Tuijl, M. Vertregt and B. Nauta, "A 1.35GS/s, 10b, 175 mW Time-Interleaved AD Converter in 0.13 um CMOS", *IEEE J.Solid-State Circuits*, Vol.,43, No.4, April, 2008.
- [3] D. L. Donoho, "Compressed sensing," IEEE Trans. Inf. Theory, vol. 52, pp. 1289 -1306, Apr. 2006.
- [4] E. J. Candes, J. Romberg, and T. Tao, "Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information," IEEE Trans. Inf. Theory, vol. 52, pp. 489–509, Feb. 2006.
- [5] Zhuizhuan Yu, Xi Chen, Sebastian Hoyos, Brian M. Sadler, Jingxuan Gong, and Chengliang Qian, "Mixed-Signal Parallel Compressive Spectrum Sensing for Cognitive Radios," *I.J. of D. M. B.*, vol. 2010, Article ID 730509, 10 pages, 2010.
- [6] C.-C. Hsu et al., "An 11b 800MS/s time-interleaved ADC with digital background calibiration," *IEEE ISSCC Dig. Tech. Papers*, pp. 464-465, Feb. 2007.
- [7] S. Gupta, M. Choi, M. Inerfield, and J. Wang, "A 1GS/s 11b time-interleaved ADC in 0.13 um CMOS," *IEEE ISSCC Dig. Tech. Papers*, pp. 264-265, Feb. 2006.
- [8] K. Deguchi, N. Suwa, M. Ito, T. Kumamoto and T. Miki, "A 6-bit 3.5-GS/s 0.9-V 98-.W Flash ADC in 90-nm CMOS", *IEEE J. Solid-State Circuits*, Vol., 43, No. 10, Oct. 2008.

References

- [1] B. Murmann, "ADC performance survey 1997-2010," Jun. 2010, online. [Online]. Available: http://www.stanford.edu/ murmann/adcsurvey.html
- [2] FCC, "Spectrum policy task force report," ET Docket, Tech. Rep. 02-135, Nov. 2002.
- [3] D. L. Donoho, "Compressed sensing," IEEE Trans. Inf. Theory, vol. 52, pp. 1289 -1306, Apr. 2006.
- [4] E. J. Candes, J. Romberg, and T. Tao, "Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information," IEEE Trans. Inf. Theory, vol. 52, pp. 489–509, Feb. 2006.
- [5] Richard Baraniuk, "Compressive sensing", IEEE Signal Processing Magazine, 24(4), pp. 118-121, July 2007.
- [6] J. Laska, S. Kirolos, Y. Massoud, R. Baraniuk, A. Gilbert, M. Iwen and M. Strauss, "Random sampling for analog-to-information conversion of wideband signals", IEEE Dallas Circuits and Systems Workshop (DCAS), Dallas, Texas, 2006.
- [7] S. Kirolos, J. Laska, M. Wakin, M. Duarte, D. Baron, T. Ragheb, Y. Massoud and R. Baraniuk, "Analog-to-information conversion via random demodulation", IEEE Dallas Circuits and Systems Workshop (DCAS), Dallas, Texas, 2006.
- [8] M. Mishali and Y. C. Eldar, "From theory to pratice: Sub-Nyquist sampling of sparse wideband analog signals," IEEE Journal of Selected Topics in Signal Processing, pp. 375–391, Apr. 2010.

Related Publications

Zhuizhuan Yu, Jun Zhou, Mario Ramirez, Sebastian Hoyos, Brian M. Sadler, **"The impact of ADC nonlinearity in a mixed-signal compressive sensing system for frequency-domain sparse signals,"** *Physical Communication*, 17 November 2011, ISSN 1874-4907, 10.1016/j.phycom.2011.10.007.

X. Chen, Z. Yu, S. Hoyos, B. M. Sadler, and J. Silva-Martinez, "A Sub-Nyquist Rate Sampling Receiver Exploiting Compressive Sensing," *IEEE Transactions on Circuits and Systems I*, Vol. 58, Issue 3, pp. 507-520, Mar. 2011.

Z. Yu, X. Chen, S. Hoyos, B. M. Sadler, Jingxuan Gong, and Chengliang Qian, "**Mixed-Signal Parallel Compressive Spectrum Sensing for Cognitive Radios**," *International Journal of Digital Multimedia Broadcasting*, Vol. 2010, 10 pages, Jan. 2010.

Thanks!

