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New applications drive the development of
wireless systems

digital video
(HDTV)

digital cameras

audio devices

mobile phones,
PDAs

digital video recorders

gaming consoles

laptops, computer
networking

access points
base station

• New applications require higher throughput
• Availability anywhere requires improved coverage and range
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The rapid evolution of wireless communication
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Edholm’s law [1]
Wireless standards have followed the increase in data rate in wired networks at a
pace that is close to doubling data rates every 18 months
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Need for higher data rates cannot be met by
simply increasing bandwidth or transmit power

40 MHz

20 MHz

Interference

• Licensed spectrum is expensive
• Massive interference in unlicensed spectrum
• Transmit power is limited

Achieving higher throughput and supporting more users requires better
spectral efficiency
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Solution: Wireless channels offer “spatial
bandwidth”
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Multi-antenna systems can leverage three types of gains [2]
• Diversity gain mitigates the impact of fading, improving quality of service

and reducing dead spots
• Array gain improves received signal strength, increasing range and

coverage
• Multiplexing gain enables higher peak data rates and improves overall

system capacity

MIMO wireless technology combined coding improves throughput, coverage,
and range at no expense in transmit power

Price to be paid: MIMO detection (i.e., separation of signal mixtures at
receiver) incurs significant computational burden
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Imbalance between complexity and integration
density

• Data rate doubles every 18 months
• Algorithm complexity grows (spectral efficiency)
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Evolution of complexity
Very rough complexity metric: GOps/s

• Definition of operation is very loose (add, mult, 4b, 8b, 16b,...)

802.11a 54Mbps ~1 GOps/s
UMTS/HSDPA 7.2Mbps ~5 GOps/s
LTE/LTE-A >100Mbps >10 GOps/s

Modern modems are in the 10GOps/s regime

6/165



Introduction System Design Advanced MIMO Detection IDD TxNoise References

Next generation wireless communication systems
still require dedicated HW for critical blocks
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Outline
1 Introduction
2 MIMO-OFDM System Design Example: 802.11n

IEEE 802.11n System and Receiver Architecture
Linear MIMO-OFDM Receiver for IEEE 802.11n

3 Advanced MIMO Receivers
Lattice Reduction Aided Linear Detectors
Maximum Likelihood (ML) Detection with Sphere Decoding
Low Complexity Soft-Output Sphere Decoding
System Integration of Sphere Decoding

4 The Last Frontier: Iterative MIMO Detection and Decoding (IDD)
Soft-input Soft-output MIMO Detection
System Integration: Layered Detection and Decoding

5 MIMO with Transmit RF Impairments
Impact on Channel Capacity
Impact on MIMO Detection
MIMO Detection with Tx-RF Impairments

6 References
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Case Study: Wireless LAN (IEEE 802.11)
• Home networking requires high throughput across large range
• Legacy WLAN standards can not meet these requirements
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application layer throughput [Mbps]
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[m
]

legacy
802.11

compound
throughput
requirement

4-stream
802.11n

IEEE 802.11n is an enabling Technology for the Digital Home
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MIMO-OFDM System Design Example: 802.11n

IEEE 802.11n System and Receiver Architecture
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IEEE 802.11n is Based on IEEE 802.11g
OFDM
Signal is modulated on orthogonal sub-carriers to avoid inter symbol
interfearence (ISI)

Cyclic prefix turn linear
convolution into cyclic
convolution

OFDM decomposes wide-band
frequency selective channel into
narrow-band flat channels

• No ISI
• Each tone can be treated

independently (expect of coding)
10/165
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Packet Based TX-Scheme
• 20MHz bandwidth with 64 tones (48 data + 4 pilots)
• Modulation: BPSK, QPSK, 16-QAM, 64-QAM
• Convolutional code: 1/2; with puncturing: 2/3, 3/4
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IEEE 802.11n Key Extensions

• Wider bandwidth: 20MHz and 40MHz
• Spatial multiplexing:

1,2 spatial streams mandatory
3,4 spatial streams optional

• Optional support for space-time block codes
• Optional support for beamforming
• Additional code rate 5/6

# of streams

1 2 3 4
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300

450

600

8
0

2
.1

1
a

1

802.1
1n
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IEEE 802.11n Extensions
Two new frame formats to support MIMO with backward compatibility

SIG Data-1 Data-2LTF-1a & 1bSTF-1 & 2 Data-N

Data-1LTF-1a & 1bSTF-1 & 2 Data-N
HT-

SIG-2
HT-

SIG-1
HT-
STF

HT-
LTF-1

HT-
LTF-N

Data-1LTF-1a & 1bSTF-1 & 2 Data-N
HT-

SIG-2
HT-

SIG-1
HT-

LTF-2
HT-

LTF-N

3.6 or 4us

0.4 or 0.8us GIHT mixed format

HT green field

SIG

BPSK

OBPSK

OBPSK

• Initial training (STF and LTF) is identical with 11g frames
• Mixed-mode frame is compatible with 11g up to the SIG field
• Offset-BPSK (OBSK) modulation indicates HT-frame
• Additional modes require additional signal fields (HT-SIGx)
• MIMO modes require additional training (HT-LTF)
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Receiver Architecture

AGC and synchronization
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RX baseband

- Deinterleavers

- Stream-deparser

- Depuncturers

- Viterbi decoders

- Decoder deparser

- Descrambler

• AGC&Synchronisation
Adjustment of the power level and frame synchronization.

• OFDM demodulation
Removal of the cyclic prefix and conversion to frequency domain.

• ST Processing
Separation of space-time streams.

• Channel decoding
Error correction.
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MIMO detection is a two-step process
We distinguish between channel-rate and symbol-rate processing:

• Channel-rate preprocessing comprises all those operations that are
carried out only when the channel (estimate) changes

• Symbol-rate detection comprises all those operations that need to be
carried out for each received vector

Detection can only start after preprocessing is complete

Computational effort for preprocessing introduces a latency
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MIMO Detection in wideband systems
OFDM: preprocessing and detection are performed on a tone-by-tone basis

• OFDM demodulation (FFT) delivers received vectors tone-by-tone to the
preprocessing and detection units

During detection the MIMO detector must keep up with the arrival rate of the
vector symbols (tones) from the FFT

• Preprocessing results are stored to be used in the second step
• A FIFO stores received vectors until preprocessing is ready

Preprocessing latency increases the size of the FIFO
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Systems impose performance constraints on both
preprocessing and detection
Slow preprocessing introduces additional overall processing latency.

CSMA in IEEE 802.11n requires a receiver latency below 10µs
Rx-latency

<16us

10us MACReceived packet Response (ACK/NAK)

Latency is not tolerable. Fast preprocessing is required.
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MIMO-OFDM System Design Example: 802.11n

Linear MIMO-OFDM Receiver for IEEE 802.11n
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Uncoded MIMO system model
MIMO-OFDM: Consider a narrow band model for each tone
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MIMO
Channel

y = Hs + n
x ... binary-valued data vector
s ... transmitted symbol vector, s ∈ OMT

O ... set of constellation points (e.g., 2Q-QAM)

H ... MR ×MT MIMO channel matrix, MR ≥ MT

n ... additive Gaussian noise vector, E
[
nnH] = NoIMR

y ... received vector

Hard-decision MIMO detector delivers binary estimates of the transmitted bits
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Soft-output MIMO detection obtains and forwards
LLRs to the FEC-decoder

Log-likelihood ratios (LLRs)

L (xj,b) = log
(

P(xjb = 0|y)

P(xjb = 1|y)

)
= log

(
P(y|xjb = 0)

P(y|xjb = 1)

)

Hard decisions from LLRs
x̂jb = sign

(
L
(
xj,b
)) •

∣∣L(xj,b
)∣∣ large: more reliable

•
∣∣L(xj,b

)∣∣ small: less reliable
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Straightforward soft-output MIMO detection
requires an exhaustive search

Definition
X (0)

j,b and X (1)
j,b ... sets of vector symbols for which xj,b = 0, 1

Optimum LLR metric

L (xj,b) = log

∑
s∈X (0)

j,b
e−
‖y−Hs‖2

2σ2∑
s∈X (1)

j,b
e−
‖y−Hs‖2

2σ2

Computational complexity
• Computation of optimum LLRs requires evaluation of ‖y−Hs‖2 for all
|OMT | candidate vector symbols

• The LLR expression itself has also a considerable complexity
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The Log-sum approximation simplifies the LLR
computation but complexity remains prohibitive
Application of the Log-sum approximation log2

∑
i e−|di |2 ≈ −min |di |2 to

L (xj,b) yields

Max-log approximation for LLRs

L (xj,b) = min
s∈X (0)

j,b

‖y−Hs‖2 − min
s∈X (1)

j,b

‖y−Hs‖2

• The max-log approximation simplifies the computation of the LLRs
• Unfortunately, even the max-log approximation requires searching two sets,

each with cardinality 1
2 |O

MT |

Example
For 64-QAM and MT = 4, computing max-log LLRs for 24 bits with an
exhaustive search requires evaluation of 16.8 million Euclidean distances

21/165



Introduction System Design Advanced MIMO Detection IDD TxNoise References

Linear equalization decomposes the MIMO
channel into MT SISO channels

soft-metric

soft-metric

demapper

G
linear equalizer




L(b(0) |z,H)

L(b(1) |z,H)

L(b(2) |z,H)

L(b(3) |z,H)




y = z = Gy =

Soft-output linear detection algorithm [3, 4]
• A linear equalizer G can be used to spatially separate the transmitted

signals from the received vector y
• Based on the equalizer output z = Gy, the bit-metrics are computed on

each spatial stream independently
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Linear detection [2] requires solving a system of
equations
Linear detection algorithm

• Estimate the received vector by solving y = Hs + n for s through linear
estimation techniques

• A straightforward approach is to obtain a linear estimator G which is
then applied to the received vector y

• Hard decisions can be obtained by quantizing to the nearest scalar
constellation point

ŝ = Q(Gy)

Zero-forcing detection
• Fully remove all interference from

other streams
• Noise enhancement

GZF = (HH H)−1HH

Biased MMSE detection
• Take the noise into account
• Minimize distortion from noise

and interference
GMMSE = (HH H + MTσ

2I)−1HH
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Linear receivers can be implemented based on
matrix inversion or QR decomposition [5]
Direct matrix inversion (DMI):

• Preprocessing unit computes
MMSE or ZF estimator

• Detection is based on
matrix-vector multiplication

QR decomposition (QRD):
• Preprocessing computes QRD of

H = QR
• Detection solves QHy = Rs

through back substitution

Advantages of the QR-decomposition approach
• Good numerical properties (unitary transformations) and high regularity
• Compatible also with many other MIMO detection algorithms
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QR based soft-output detection
1 Spatial separation
Solve QHy = Rz with back substitution

2 Max-log LLRs computation on scalar constellations X only

L (xj,b) = ρj

(
min

s∈X (0)
b

‖zj − s‖2 − min
s∈X (1)

b

‖zj − s‖2

)
︸ ︷︷ ︸

Λb(zj)

X (0)
b ,X (1)

b ... Scalar constellation points for which the bth bit is 0 or 1
ρj ... Per-stream post-equalization SINR

3 Per-stream SINR computation

ρi =
1

MTσ2
n

[
(HHH + MTσ2

nI)−1
]

i,i

− 1.
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Complexity reduced QR soft-output

Max-log LLRs computation L (xj,b) = ρjΛb(zj)

• With the appropriate Gray-labeled
QAM mapping, Λb(zj) reduces to
a set of piecewise linear functions Λ

(b
(λ
) ,
z
)

ℜ(zi)
0

6√
42

4√
42

2√
42

−2√
42

−4√
42

−6√
42

-1.5

-1

-0.5

0

0.5

1

1.5

λ mod 6 = 0

λ mod 6 = 1

λ mod 6 = 2

ρi computation

ρi =
1

MTσ2
n

[
(HHH + MTσ2

nI)−1
]

i,i

− 1 =
1

|
√

MTσ2
nR−1

i,: |2

• Note:
√

MTσR−1 = Qc
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Two main strategies exist for QRD preprocessing
• QR-decomposition of an augmented channel matrix H̄ =

[
HT √MTσI

]T
[

H√
MTσI

]
=

[
Qa,Qb
Qc,Qd

]
R = QR

Q : Unitary R : Upper triangular

Qa,R ... MIMO detection
Qc ...

√
MTσR−1

Qb,Qd ... no special properties

Givens rotation [6]
• Good numerical properties
• Implementation based on

CORDICs
• Economy version provides

Qa,Qb

Gram-Schmidt [SSB10]
• Numerical more challenging
• Implementation based on

conventional arithmetic
• Economy version provides

Qa,Qc =
√

MTσR−1, and r−1
ii

Low complexity: Gram-Schmidt QRD provides Qc as side-product
[SSB10] C. Senning, A. Staudacher, and A.Burg, “Systolic-array based regularized QR-decomposition for IEEE 802.11n compliant soft-MMSE
detection,” in Proc. of Microelectronics (ICM), 2010 International Conference on, Dec. 2009, pp. 391–394
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Complexity of a linear detection is negligible
ASIC was manufactured in a 0.13µm 1P8M process from UMC
ASIC key characteristics

• Die area: limited by 270 pads
(256 signal pads / 14 power
pads)

• Core area: 14.4mm2

• Logic complexity: 1.1M GEs
• Memory storage: 591 kBit in

49 single-port SRAM macros
• Reference clock: 80MHz
• PLL derives 160MHz and

320MHz internal clocks
PLL

MIMO
preproc./
detection

Channel
decoding

Channel coding OFDM
mod./

demod.

AGC
&

sync.

5mm

5
m

m
• MIMO preprocessing and detection consume together 25% of the active die

area (250k GEs)
• Preprocessing and memories account for 80% of this area, while the linear

soft-output detector requires only 50k GEs
[AHB+09] A. Burg, S. Haene, M. Borgmann, D. Baum, T. Thaler, F. Carbognani, S. Zwicky, L. Barbero, C. Senning, P. Greisen, T. Peter, C. Foelmli,
U. Schuster, P. Tejera, A. Staudacher, “A 4-Stream 802.11n Baseband Transceiver in 0.13um CMOS,” Proc. of the Symposium on VLSI Circuits, Jun.
2009.
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Advanced MIMO Receivers
Lattice Reduction Aided Linear Detectors
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MIMO detection
System with MT = 2 and real-valued 4-PAM constellations

Task of the MIMO detector: recover s from y (assuming H is known)

• Linear (ZF or MMSE) detection: Solve the linear system for y

ŝ = Q(Gy) with G being a linear filter matrix, e.g., G = H−1

• Maximum likelihood (ML) detection:

ŝ = arg min
s∈OMT

‖y−Hs‖2
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Constellation Point Remapping

• Constellation points are in most
standards, not on an integer lattice

• Normally constellation points are
normalized to power 1 at the receiver

• The detection problem remains
the same if the constellation
points are trans-located.

• Lattice point trans-location can be
achieved by computing:

ỹ =
1
a (y−Hd)

where a is a modulation dependent
scale factor and d is a constant
vector with all elements equal 1

2 for
all QAM modulations.

Lattice Theory
After trans-location on to an
integer lattice, lattice theory can
be applied
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Lattice reduction: Perform MIMO detection on a
“more orthogonal” basis
MIMO detection is mapping received vector to the closest lattice point
Linear detection (LD) and successive
interference cancellation (SIC) struggle with
ill-conditioned channel matrices:

• Lack of orthogonality between the
columns of H

• Decision regions deviate significantly
from Voronoi regions

Lattice reduction (LR)-aided MIMO detection:
• Relax the (finite) constellation to an (infinite) lattice with basis H{

Hx | x ∈ XMT
}
→ L(H),

{
Hx | x ∈ (CZ)MT

}
• For a lattice we can often find a “more orthogonal” basis

B = HT with |det(T)| = 1 (unimodular)

31/165



Introduction System Design Advanced MIMO Detection IDD TxNoise References

Decision Regions of Different Detectors
Fi
ni
te
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n ML Detector Linear Detector SIC Detector
In
fin

ite
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tt
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e

Decision regions of LD and SIC are far from the Voronoi regions
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Lattice reduction: Perform MIMO detection on a
“more orthogonal” basis (cont’d)

• Perform LD or SIC on the “more orthogonal” input-output relation
y = Bz + n with z ∈ (CZ)MT

• Perform slicing/ quantization within the “more orthogonal” basis
• Recover ŝ = T−1ẑ followed by remapping to (finite) constellation OMT

LR recovers decision regions that are close to the Voronoi region
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LR preprocessing boosts performance of LD/SIC

10 15 20 25 30 35
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−3

10
−2

10
−1

10
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Soft−output MMSE

Hard−output MMSE

Hard−output LR aided LD

• Lattice reduction enables full diversity for LD and SIC
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Remapping to infinite lattice points entails a BER
performance loss
BER performance
bound
LR-aided LD/SIC can not
be better then a relaxed ML
detector on an infinite
lattice.

Combining SIC with LR
improves the BER
performance slightly more
then combining LD with LR 5 10 15 20 25 30

10
-4

10
-3

10
-2

10
-1

10
0

SNR [dB]

u
n
c
o
d
e
d
 B

E
R

ZF LR

SIC LR

Relaxed MLD

MLD
10

-5

Conclusion
Relaxing the (finite) constellation to an (infinite) lattice entails a
BER performance loss
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Many LR algorithms available
Brun’s algorithm [7]

+ Low computational complexity
− Significant BER performance

loss
Lenstra-Lenstra-Lovasz (LLL)
algorithm [8, 9]

+ Near optimal performance with
SIC detector

+ Based on QR decomposition
+ Many implementation available

Siegel LLL (S-LLL) algorithm [10]
+ Based on LLL with similar

performance
+ Lower computational complexity

and storage requirements

Gaussian reduction algorithm [11]
+ Optimal reduction
− Only possible for 2x2 MIMO

Korkone-Zolotareff algorithm [12]
+ Optimal reduction
− Exponential complexity

Seysen’s algorithm [13, 14]
+ Better performance as LLL with

linear detector
+ Based on direct matrix inversion
+ Computational complexity

similar to S-LLL
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Performance Comparison of different LR
algorithms using SIC detection

Observation:
For SIC detection Brun’s
algorithm has a very large BER
performance loss.

Conclusion
• For SIC detection the LLL

or S-LLL algorithm should
be used.

• It can be shown that the
S-LLL require lower
computation complexity
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LLL algorithm for MIMO detection

• Most prominent algorithm for LR-aided MIMO detection
• Starts from the QR-decomposition H = QR of the channel

Basis is LLL reduced if:
1 Size is reduced

2|ri,j | ≤ rj,j , 1 ≤ j < i ≤ n
2 Lovász condition holds
δ|Rk−1,k−1|2 ≤ |Rk,k |2 + |Rk−1,k |2,
∀k, 0.25 < δ < 1

Size reduction requires per iteration:
• 2(k − 1) real-valued divisions
• 2k (k − 1) real-valued

multiplications
• hard to parallelize
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Replacing the Lovász condition with the Siegel
criterion
Siegel criterion: ε|Rk−1,k−1| ≤ |Rk,k |, ∀k, 0.25 < ε ≤ 0.5

Size reduction of Rl,k (∀l, k and l < k) does not improve the performance for
SIC, is not needed with the Siegel criterion, and hence, can be omitted

• Computationally complexity per iteration significantly reduced
• Worst-case iteration complexity of LLL is unbounded [Jaldén et al., 2008]:

Maximum number of iterations must be limited in practice
• Algorithms usually proceed from top left to bottom right, reverse

procedure possible
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Reverse processing order for delay - constrained LR

• Performance of SIC is dominated by weakest stream RMT ,MT of R
• In delay-constrained systems S-LLL might never process the lower-most

diagonal element

First iteration of reverse S-LLL:

Reverse S-LLL (RS-LLL) guarantees that
the weakest stream is processed first
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B
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ML
LLL+SIC
S-LLL+SIC
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RS-LLL+SIC, Smax=4

1.2dB

RS-LLL yields substantial improvements in error-rate under tight runtime
constraints (e.g., Smax = 4 )
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Architecture for RS-LLL

master-slave 

CORDIC  

& division     

R-memoryQ-memory T-memory

signal routing

complex-valued

multiplier array

R
S

-L
L

L
 F

S
M

I/O interface

Processing elements:
• Master-slave CORDIC computes

the rotation vector for Givens rotation
the division

• 4 complex-valued multipliers
apply the rotation vectors
compute the Siegel criterion

LLL and S-LLL in 130 nm CMOS:
110k GE + QRD (250k GE) with avg.
throughput 23.8M LR/s [BS+10]

[BS+10] L. Bruderer, C. Studer, M. Wenk, D. Seethaler, and A. Burg, “VLSI Implementation of a Low-Complexity LLL Lattice Reduction Algorithm
for MIMO Detection,” in Proc. of IEEE ISCAS, May. 2010
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Seysen’s algorithm for MIMO detection

Main characteristic:
• Similar performance as LLL for

linear detection
• Seysen’s algorithm minimizes the

Seysen orthogonality metric:
S(H) =

∑MT
n=1 ||hn||2

∣∣∣∣h#
n
∣∣∣∣2

Basic Idea:
• Add or subtract integer multiple of

columns from other columns until
the Seysen metric can no longer be
reduced.

hi = hi + λi,jhj

Iterates the following 4 steps
until no further update step,
improving the Seysen metric, is
fund.

1 Compute all possible
integer update factors λi,j

2 Computer for each λi,j the
impact ∆i,j on Seysen
metric

3 Select the index pair {s, t}
with largest ∆i,j

4 Update columns {s, t}
with the factor λs,t
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Seysen’s algorithm based on the Gramian matrices

Reminder
ZF detection estimation matrix:
MMSE detection estimation matrix:

WZF = (HHH)−1HH

WMMSE = (HHH + MTσ
2I)−1HH

Seysen’s algorithm can be efficiently formulated based exclusively on the
Gramian matrix G = HHH and it its dual G# = G−1.

Reuse of Gramian
ZF detection estimation matrix: WZF = G#HH

MMSE detection estimation matrix: WMMSE = (G + MTσ
2I)−1HH

Hermitian property of Gramian and it’s dual reduces storage requirements and
computational complexity within Seysen’s algorithm
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λ and ∆ Calculation

Step 1: λ calculation:
Compute the integer-rounded
candidate update factors λi,j for all
possible index pairs i and j
with 1 ≤ i, j ≤ MT and i 6= j as

λi,j =

⌊
1
2

(
G#

j,i

G#
i,i
− Gj,i

Gj,j

)⌉

λi,j = 0 if columns are orthogonal

Step 2: ∆ calculation:
For each candidate update factor λi,j ,
quantify the corresponding reduction
of the Seysen metric
∆i,j = S(H)− S(H′), where S(H′)
is the Seysen metric after an update
step with λi,j , according to

∆i,j =− 2
(
Gj,jG#

i,i |λi,j |2

−Gj,j<{λ∗i,jG
#
j,i}

+ G#
i,i<{λ∗i,jG∗i,j}

)
Seysen metric is never explicitly calculated
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Index Selection and Matrix Update
Step 3: Index selection

• Selection of the indices used for
the update step

• Many strategies possible:
Exhaustive search: Try all
possible updates in each
iteration results in best BER
performance
Greedy search: Choose index
pair {s, t} from all possible
pairs with largest ∆i,j in each
iteration
K-Select search: Greedy
search over a reduced set of
index pair with K elements.
Lazy search: Choose any
index pair with ∆s,t 6= 0

Step 4: Matrix update
Update the matrix G according to

G
′

s,j =Gs,j + λ∗s,tGt,j , j 6= s

G
′

j,s =G
′∗
s,j , j 6= s

G
′

s,s =Gs,s+

2<{λ∗s,tGt,s}+

|λs,t |2 Gt,t

and similar for G# and update
columns of T and rows of T#

according to:

ts = ts + λs,ttt

(t#)t = (t#)t − λs,t(t#)s.
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Algorithmic Modifications for VLSI
Implementation:
Restricting to unity-λ-factors
Nearly all multiplication in the
algorithm can be omitted with∣∣<{λi,j

}∣∣ and ∣∣={λi,j
}∣∣ ≤ 1

Simplifies computation of λi,j to:
<
{
λi,j
}

= 0 if∣∣∣<{G#
j,iGj,j −Gj,iG#

i,i
}∣∣∣ ≤ G#

i,iGj,j

else <
{
λi,j
}
is computed

<
{
λi,j
}

=

sign
{
<
{

G#
j,iGj,j −Gj,iG#

i,i
}}

× sign
{

G#
i,iGj,j

}

Regularization
• Regularization of H results in

MMSE detection and improves
BER performance

• Reduces the total
computational complexity (less
iteration needed)

• Minimal additional processing
before LR

Index selection scheme
• Evaluation of different index

selection schemes required
• K=1 corresponds to lazy search
• For 4× 4 MIMO K=12

corresponds to greedy search
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Complexity Considerations: Runtime limit required

Guaranteed throughput:
Similar to the S-LLL algorithm there is no theoretical iteration limit of
Seysen’s algorithm
⇒ Runtime limit for implementation is a must

Performance considerations:
Every iteration increases the orthogonality of the basis. Hence the
BER performance of LR-aided LD is also if LR is aborted, always better then LD
without LR

BER-Performance / Iterations Trade-off
The iteration/ runtime limit can be used, to trade BER performance with
number of iterations and thereby with energy consumption per received
frame of the receiver.
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Performance evaluation for different K-values,
restricted, and unrestricted λ factors dependent on
the iteration limit

Observations:
• The larger K, the fewer

iterations are required
for the same BER
performance

• Unity-λ updates
increase the required
iterations only
insignificantly

The number of iterations does not directly correspond to the computational
complexity of that configuration, as the complexity per iteration differ
significantly
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Impact of K on the arithmetic operations for a
given performance target [BSB10]

Observations
• The lower K the more

additions and
λ-multiplications are
required

• The lower K the fewer
computational complex
full multiplications and
divisions are required

A lower K reduces the number of computational intense operations per full LR.
(But will increases storage requirement and latency of the implementation)
[BSB10] L. Bruderer, C. Senning, A. Burg, “Low-Complexity Seysen’s Algorithm based Lattice Reduction-Aided MIMO Detection for Hardware
Implementations,” in Proc. of IEEE Asilomar Conf. on Signals, Systems, and Computers, Nov. 2010
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Computational Complexity Impact of
Modifications

Observations: For a given performance target the unity-λ factor modification
• reduces the number of

multiplications (including
multiplications with λ) drastically

• omits all divisions
• increases the required number of

additions minimal
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Relaxed Lattice Effects [CBH+12]

22 24 26 28 30 32 34 36 38

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR [dB]

C
o
d
e
d
 B

it
 E

rr
o
r 

R
a
te

 

 

code rate 5/6

code rate 3/4

code rate 2/3

non−punctured
punctured

• Neighboring lattice points in the
reduced basis do not have to be
neighbors in the original lattice

• It is unknown in the reduced basis
which lattice point is part of the
constellation

• After remapping of detected lattice
points into the original lattice,
some points could be outside of
the valid constellation

• Mapping lattice points outside of the constellation in the original basis to
the nearest constellation point results in a reduced BER performance

Puncture known faulty symbols results in better BER performance (up to
0.75 dB) than, mapping to the nearest constellation point in the original basis
[CBH+12] C. Senning, L. Bruderer, J. Hunziker, A. Burg, “A Lattice Reduction-Aided MIMO Channel Equalizer in 90 nm CMOS achieving 720Mb/s
with 28 pJ/bit,” in In preparation
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High-level Block diagram for Seysen’s algorithm
based LR-aided LD

Direct matrix inversion preprocessing
for LD is extended by

• a LR computation block
• a matrix multiplication block for

the basis transformation B = HT
• a lattice trans-location unit

Equalizer cache is extended by
• shift vector size
• T matrix size
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High-level Block diagram for SA-based LR

Explanations:

• Pipeline-interleaved architecture
• 2 clock-cycles per pipeline stage
• 3 independent channel matrices

(tones) processed in parallel
• Index selection merged with

∆ calculation

• Variable runtime with up to
12 iterations (rounds)

• Overtaking LRs have to be
rearranged outside of the
LR-block while writing into an
alignment buffer
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Implementation results
Unit Area [kGE]
Channel-estimation Ram 64
Gram calculation 28
Gram inversion 99
Sum of block-floating units 31
multiplications 58
Equalizer cache 87
Detector 28
Total Area LD 395
LR computation 112
multiplications 29
Sum of FIFO 71
Total Area LR-aided LD 622

Seysen’s algorithm in 90 nm CMOS:
throughput 15M LR/s [CBH+12] including full
preprocessing, buffers, and detection

• Only 18% of the area of the Seysen’s algorithm based LR-aided LD is the
LR-unit itself

• 82% of the total area is occupied by the channel matrix preprocessing
units, running at channel rate

[CBH+12] C. Senning, L. Bruderer, J. Hunziker, A. Burg, “A Lattice Reduction-Aided MIMO Channel Equalizer in 90 nm CMOS achieving 720Mb/s
with 28 pJ/bit,” in In preparation

54/165



Introduction System Design Advanced MIMO Detection IDD TxNoise References

Packet length vs energy consumption
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The separation of the MIMO detection problem into preprocessing at channel
rate and detection at symbol rate results in a strong dependency of the energy
consumption on the packet length
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Energy-Efficiency Comparison
1 MMSE PIC detector with
4 iterations a

2 Strongly constraint sphere 90 nm b

3 Strongly constraint sphere 65 nm
with SIC performance only b

4 K-Best detector 130 nm b

5 SA-based LR-aided LD detector a

a including preprocessing
b detection only

Conclusion
The energy efficiency of the SA-based LR-aided LD benefits from the extremely
simple detector implementation running at symbol rate and achieves near ML
BER performance because of the advanced preprocessing
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Exhaustive search ML detection suffers from an
exponential increase in complexity with rate

The optimum detector solves the maximum likelihood (ML) criterion which is
given by

ŝ = arg min
s∈OMT

‖y−Hs‖2

• The ML detection problem can always be solved with an exhaustive search
over all possible candidate vector symbols

• Unfortunately, the complexity of an exhaustive search grows
exponentially with the rate R (measured in bits per channel use (bpcu))

• For example, a 4× 4 system with 64-QAM modulation (R = 24) requires
the consideration of 16 777 216 candidate vector symbols
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Exhaustive search ML detection has also some
advantages for VLSI implementation

As opposed to linear and SIC algorithms, an exhaustive search offers a number
of advantages that greatly facilitate a VLSI implementation:

• Very high regularity, which reduces control overhead and allows for regular
hardware architectures

• Few data dependencies allow for massive parallel processing
• No costly operations in terms of silicon area (e.g., divisions, square roots)
• Relaxed numerical requirements

An exhaustive search may yield good results for low rates because
• the complexity order is less relevant in the low-rate regime (R ≤ 12)
• the suitability for VLSI implementation is often the most important criterion
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Optimizations must mitigate the impact of the
exponential term in the complexity expression
Algorithm transformations for complexity reduction focus on

• exposing common terms that can be precomputed once (Example: Based
on the CSI)

• reducing the number of costly operations at the symbol-rate, possibly at
the expense of additional, but less costly operations

• minimizing the memory required to store precomputed results

arg min
s∈OMT

‖y−Hs‖2 → arg min
s∈OMT

(
‖Hs‖2 − 2<

{
(yHH)s

})

[15] Proposed architecture [16]
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An exhaustive search is feasible for R ≤ 12, but
becomes prohibitively complex for higher rates
The proposed optimizations lead to a considerable complexity reduction in the
implementation of an exhaustive search:

[15] Proposed [16]
MT ×MR Rate R Throughput Area [GE] Throughput Area [GE]

2× 2 4 bpcu 9.6 Mbps 93K 100 Mbps 13K
4× 4 8 bpcu 19.2 Mbps 140K 50 Mbps 42K
6× 6 12 bpcu n.a. n.a. 18.8 Mbps 160K

For R >12 bpcu the complexity of an exhaustive search becomes
prohibitive
The key to complexity reduction is to

• constrain the search to a subset of the symbol alphabet (OMT )
• Enumerate the candidates in a clever fashion.
• preferably without accidentally excluding the ML solution.
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Maximum-likelihood (ML) detection
Exhaustive search: Enumerate all possible candidate vectors

• Number of candidate vectors grows exponentially in the number of transmit
antennas MT

• A 4×4 system with 64-QAM modulation
requires consideration of 16’777’216
candidates

4x4 IEEE 802.11n
baseband ASIC

[ETH Zurich, 2008]
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Exhaustive search is not economic for more than two spatial streams
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QR-decomposition allows to compute partial
Euclidean distances (PEDs)
With the QR-decomposition of H a modified input-output relation can be
obtained according to

ŷ = Rs + QHn with ŷ = QHy

The corresponding ML criterion is given by

ŝ = arg min
s∈OMT

d(s) with d(s) = ‖ŷ−Rs‖2

Computing partial Euclidean distances (PED):
• Define e = ŷ−Rs and e(i) =

[
ei ei+1 . . . eMT

]
.

• The PED di is given by di = ‖e(i)‖2 which depends only on
s(i) =

[
si si+1 . . . sMT

]
because R is triangular.
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The ML detection problem can be mapped to a
tree-search problem
All possible incarnations of s(i) and the corresponding PEDs di can be
associated with the nodes of a tree, with the root in i = MT + 1:
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• The leaf with the smallest d1 corresponds to the ML solution
• The PEDs can be computed recursively while traversing the tree

di = di+1 + |ei |2 with |ei |2 =
∣∣∣ŷi −

∑MT
j=i+1 Rijsj − Riisi

∣∣∣2
• Complexity reduction can be achieved by pruning parts of the tree which

are at least unlikely to contain the ML solution
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Sphere decoding (SD) [17, 18, 19] reduces the
number of candidate vector symbols
SD considers only candidate vector symbols for which Rs lies within a sphere
with radius r around ŷ

• The corresponding inequality is given by
the sphere constraint (SC):

d1 < r2

• Since di ≥ di+1, the SC can be applied to the PEDs of all nodes in the
tree: di < r2

Rule for pruning the tree:
• Nodes, violating the partial SC di < r2 can be pruned together with all

their children.

• Tree traversal for SD should be performed depth-first

64/165



Introduction System Design Advanced MIMO Detection IDD TxNoise References

Radius reduction with Schnorr-Euchner [20]
enumeration improves tree-pruning efficiency
The choice of the radius r is critical, because it governs the efficiency of the
tree pruning.

Radius reduction (RR):
• The initial radius is set to r =∞
• When a leaf is reached, the radius can be updated according to

r ← d1

With RR, tree pruning is more efficient, when a good solution is found as early
as possible

Schnorr-Euchner (SE) enumeration:
• With SE ordering the children of a node are visited in ascending order of

their PEDs
• The result is a more rapid shrinkage of the sphere
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One-node-per-cycle VLSI architecture [21]
With RR, parallel processing leads to poor hardware utilization.
A one-node-per-cycle architecture ensures that a new node is visited in
each cycle and no node is visited twice.

• Metric computation unit (MCU) handles
the forward iteration

• Metric enumeration unit (MEU) handles
the backward iteration

Metric Enumeration
(MEU)

Metric Computation
(MCU)

forward

iteration

backward

iteration

parent

node
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One-node-per-cycle VLSI architecture
• MCU considers the children of the current node and finds the starting point

for the SE enumeration
• The MEU is inactive in the first cycle

1
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One-node-per-cycle VLSI architecture
• MCU advances to the next level
• The MEU follows the MCU on its path and considers the siblings of the

current node to constructs a list of preferred children

2

2
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One-node-per-cycle VLSI architecture
• When the MCU reaches a leaf, the radius is shrunk
• The list of preferred children in the MEU is ordered depth-first and

membership is conditioned on compliance with the SC

1 2

3

23
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One-node-per-cycle VLSI architecture
• When the forward iteration stalls, the MEU provides the PED of a new

node to the MCU
• The MCU can immediately consider the children of a new node

1 2

3

23 4

4
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One-node-per-cycle VLSI architecture
• The average throughput Φ is determined by the average number of visited

nodes E{D} and by the cycle time tpd
• Φ = (MT log2O) / (E{D}tpd)

1 2

3

23 4

4

71/165



Introduction System Design Advanced MIMO Detection IDD TxNoise References

The clock frequency is limited by the calculation
of the `2-norm in the SC.
Simplified norm increases clock frequency and thereby, increase efficiency in
terms of circuit area times processing time.

Modified norm algorithm [21]:
• Take the square root of the PED and substitute xi =

√
di

xi =
√

x2
i+1 + |ei |2 < r

• Replace the `2-norm with an approximation of the form√
a2 + b2 ≈ f (|a| , |b|) to obtain

xi ≈ f (xi+1, |ei |), where |ei | ≈ f (<{ei},={ei})

Low-complexity approximations of the `2-norm are given by
f (|a| , |b|)

`1-norm |a|+ |b|
`∞-norm max (|a| , |b|)
Approx.1 3

8 (|a|+ |b|) + 5
8 max (|a| , |b|)

Approx.2 max
(
max (|a| , |b|) , 7

8 max (|a| , |b|) + 1
2 min (|a| , |b|)

)
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The `1- and the `∞-norm reduce the silicon area
and the delay of the PED computation circuit
Explore the area/delay tradeoffs for the norm approximations:

• Approx. 1 & 2 yield no advantages
• The `1- and the `∞-norm reduce both silicon area and the critical

path compared to the squared `2-norm circuit

0.0 

0.2k

0.4k

0.6k

0.8k

1.0k

1.2k

1.4k

1.6k

1.8k

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0

A
re

a
 [

G
E

]

Delay [ns]

Compare

f (|a| , |b|)

f (|a| , |b|)

|ℜ {ei}|

xi+1

|ℑ {ei}|

xi

r

Squared ℓ2-norm
ℓ1-norm
ℓ∞-norm
Approx. 1
Approx. 2

73/165



Introduction System Design Advanced MIMO Detection IDD TxNoise References

The choice of the norm approximation affects the
efficiency of the tree-pruning
Consider the impact on the number of visited nodes:

• Using the `1-norm increases the number of visited nodes
• Using the `∞-norm reduces the number of visited nodes
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• The `∞-norm is best suited for VLSI implementation because it improves
performance on algorithm and circuit level.
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The choice of the norm has a small impact on
BER performance, but preserves diversity
The modified-norm algorithm is no longer ML detection rule

• Using the `1-norm degrades the BER performance by 0.4 dB
• The `∞-norm algorithm entails a 1.4 dB SNR penalty
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For QAM identifying admissible children and
performing SE enumeration is difficult
For real-valued constellation points, the solution is simple:

• Solving di < r2 for si yields an admissible interval

di = di+1 +

∣∣∣ŷi −
∑MT

j=i+1 Rijsj − Riisi

∣∣∣2
• SE ordering [20] proceeds from the center in a zig-zag fashion [19]

Real-valued decomposition (RVD) for QAM:
• The the MT -dimensional complex-valued problem can be decomposed into

a 2MT -dimensional real-valued problem:[
<{y}
={y}

]
=

[
<{H} −={H}
={H} <{H}

] [
<{s}
={s}

]
+

[
<{n}
={n}

]
• Because the RVD increases the number of visited nodes, it is

ill-suited for a one-node-per-cycle architecture.

76/165



Introduction System Design Advanced MIMO Detection IDD TxNoise References

Exhaustive search enumeration [22] allows to
operate directly on complex-valued constellations

Exhaustive search enumeration:
• At each node, compute the PEDs of all |O| children
• Identify the admissible children by checking the SC
• Perform SE enumeration by explicitly sorting the children in ascending

order of their PEDs

• Complexity is reduced by exposing common terms in the computation of
|ei |2 for all si ∈ O:

|Ri,isi − bi+1|2 = |Ri,i |2 |si |2 − 2<{(Ri,ibi+1) s∗i }+ |bi+1|2 ,

where bi+1 = yi −
∑MT

j=i+1 Ri,jsj .
• The drawbacks are the amount of memory required to store the

PEDs and the need to find the minimum.
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The Hochwald/ten Brink scheme [23] allows for
direct enumeration of QAM constellations
Direct-QAM enumeration:

• For PSK constellations, admissible intervals can be defined, based on the
phase of the constellation points

• QAM constellation can be split into PSK subsets
• Within each 1-dimensional subset, SE enumeration follows a zig-zag pattern
• Enumeration across subsets is achieved by comparing the PEDs

Identifying the starting point within each subset and computing
boundaries of admissible intervals requires costly trigonometric functions.
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Introduction of decision boundaries reduces
complexity of direct-PSK/QAM enumeration
The starting point for the SE enumeration in the kth PSK subset O(k) can be
identified based on the phase of bi+1 according to

s(k)
i = arg min

si∈O(k)

|arc(bi+1)− arc(si)|

• The introduction of decision boundaries yields

s(k)
i = {O(k)}n if αk

n < arc bi+1 ≤ αk
n+1

• Operating on the tangent of those decision
boundaries yields inequalities of the form

X<{bi+1} ≷ Y={bi+1} with X ,Y ∈ N.

to find the starting point for the enumeration
and the initial direction
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Subset enumeration for higher-order constellations
For 64-QAM or more, enumeration on PSK subsets becomes tedious

• Number of subsets grows rapidly
• Decision boundaries become tedious and more complex
• PSK enumeration is no longer strictly optimal (though performance penalty

is hardly visible)

Subset enumeration based on PAM
• Subsets can either be based on
<{bi+1} or ={bi+1}

• 64-QAM requires 8 instead of 9 subsets
compared to PSK

• Decision rules simplify to comparing to
constants

<{bi+1} ≷ Y with Y ∈ N.

Re(s)

Im(s)

bi+1

80/165



Introduction System Design Advanced MIMO Detection IDD TxNoise References

Approximate enumeration reduces complexity
Subset enumeration has a few disadvantages

• Number of subsets is high for 64-QAM and above
• For each subset, the PED of one candidate must be computed and stored
• Enumeration across subsets must still be performed by explicit PED

comparison (min-search)

`∞-norm enumeration enumerate constellation points based on

max{|<(bi+1 − Ri,isi)| , |=(bi+1 − Ri,isi)|}

• Identify the closest point
• Use simple decision rules to localize bi+1 in one

of 8 sectors around the closest point
• Enumeration follows a pattern that can be

generated with only three small counters and a
very small amount of combinational logic
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Runtime constraints can be used to enforce a
guaranteed minimum throughput
In real systems, the maximum decoding effort must be constrained:

Early termination:
The decoder stops after Dmax visited nodes and returns the so far best
estimate.

D
max

terminated early

• Sorted QR preprocessing improves
BER performance

• Resource utilization is poor
• BER performance is poor

Dmax = 7
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Block processing [24] reduces BER performance
penalty from early termination
In real systems, the maximum decoding effort must be constrained:

Early termination with block processing:
The aggregate decoding effort for a block of N symbols is constrained to
NDavg visited nodes.

A scheduler determines the max.
runtime limit for each symbol:

Block

ND
avg

Scheduled

max. runtime

• Early termination with block
processing achieves close-to
ML performance

N = 64,Davg = Dmax = 7
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The K-best algorithm [25] traverses the tree with
a constraint on the maximum decoding effort
• Tree traversal is performed breadth-first
• On each level of the tree, the decoder visits only

(up to) K parent nodes and computes the PEDs
of their children

• The K -best children of these nodes are selected as
parent nodes for the next level

Rule for pruning the tree:
• The amount of pruning is governed by a runtime constraint
• The selection of the survivor-nodes is guided by the PED

Impact on BER performance
• This pruning strategy cannot guarantee ML performance
• The BER will depend on the design parameter K
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The fixed complexity of K-best decoding favors a
pipelined VLSI architecture [25, 26]

The architecture is a pipelined array of processing elements (PEs)
• Each pipeline stage (PE) considers one level of the tree.
• The PEs receive K parent nodes from the proceeding PE

The MCU computes the PEDs of the corresponding children
The KBU chooses the K best children to be passed on to the next PE

K-Best Unit

Metric Computation
(MCU)

Sort

K

K
PE 1

PE 2

PE x

• Finding the K best children is costly. Hence, the PEs distribute the
computation over multiple cycles (iterative decomposition).
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The K-best algorithm favors the use of the
real-valued decomposition [28]
The K-best decoder can operate directly on the complex-valued constellations or
use the real-valued decomposition:

The RVD provides better BER:
• Ordering is done for real

and imaginary parts
separately

• The 2nd quadrature
component already sees
2nd order diversity [27]

• A similar result has been
obtained for V-BLAST

• The RVD does not affect throughput (because all levels of the tree are
processed in parallel), but improves BER performance
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Sphere decoding with block processing
outperforms K-best decoding [24]
Compare sphere decoding and K-best decoding for a 4× 4 system with 16-QAM
modulation, implemented in a 0.25µm technology:

D =18avg
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• For better BER, SD with Davg = 18 provides almost twice the throughput
at half the silicon area of a K-best decoder with K = 10
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Hard-output ML detection competes with
soft-output linear detection
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4× 4, 16-QAM, MIMO-OFDM, R = 1/2, TGn-C channel

The lack of soft-information limits the advantage of hard-output ML
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Approximate LLRs can be computed using the
list-sphere decoding (LSD) algorithm [23]

List-sphere decoding algorithm
1 Obtain a reduced set L (list) of |L| candidate
vector symbols for which ‖y−Hs‖2 is small

2 Compute LLRs based on L instead of OMT

L (xj,b) = min
s∈L(0)

j,b

‖y−Hs‖2 − min
s∈L(1)

j,b

‖y−Hs‖2

Sphere decoding

LLR computation

Construction of the list L
• Initialize all entries of L and the radius r with infinity
• Perform depth-first tree traversal. When a leaf is reached

Insert the PED and its label s into L
When the list is full, remove the entry with the largest PED
Update the radius: r ← maxli∈L li
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For the LSD algorithm the list-size determines the
complexity/performance trade-off
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Complexity considerations
• A large list improves BER performance
• Complexity for identifying the entries of the list increases with |L|
• Large lists increase the complexity of the LLR computation and the

hardware overhead for the list administration during tree-traversal
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Use sphere decoding for computation of LLRs
Max-log approximation for LLRs

L(xj,b) = min
s∈X (0)

j,b

||y−Hs||2 − min
s∈X (1)

j,b

||y−Hs||2

X (0)
j,b ,X

(1)
j,b ... sets of symbol vectors for which xj,b = 0, 1

Repeated tree-search algorithm (RTS) [WG04]
• For each bit, one of the two minima corresponds to the ML solution
• Each counter-hypothesis is found through a separate search

[WG04] R. Wang and G. B. Giannakis, “Approaching MIMO channel capacity with reduced-complexity soft sphere decoding,” in Proc. of IEEE
Wireless Communications and Networking Conf. (WCNC), vol. 3, Mar. 2004, pp. 1620–1625
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Single Tree Search (STS) Algorithm [23] [29]

• Ensure that every node in the tree is visited at most once

• Search for the ML solution and all counter-hypotheses concurrently

• Maintain a list containing
the ML hypothesis xML and its metric λML

the metrics of the counter-hypotheses λML
j,b

• Search a sub-tree only if the result can lead to an update of either λML or
of at least one of the λML

j,b
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STS List Administration

• Initialization of the list: Set λML =∞ and λML
j,b =∞ for all j, b

• At a leaf (with label s), the decoder distinguishes between two cases:

d(s) < λML: new ML hypothesis
• Update counter-hypotheses:
λML

j,b ← λML for xj,b = xML
j,b

• Update the ML hypothesis
according to λML ← d(s) l

ML

l5,1

l4,1

l3,1

l2,1

l1,1

x
ML

1

1

1

0

0

1

0

1

1

0

l
ML

l5,1

l4,1

l3,1

l2,1

l1,11

0

1

1

0

x
ML

x

d( )s

ML

ML

ML

ML

ML

ML

ML

ML

ML

ML

d(s) ≥ λML: update only the counter-hypotheses
• Update those counter-hypotheses for which d(s) < λML

j,b according to
λML

j,b ← d(s)
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STS Tree Pruning Criterion

Ai = {al} =
{
λML

j,b
∣∣ xj,b = xML

j,b , j ≥ i
}
∪
{
λML

j,b
∣∣ j < i

}
d
(
s(i)
)
> maxal∈Ai al

ML hypothesis

]x
ML

=[0 1 1 10

Counter
hypotheses

ML
hypothesis

1

1

1

0

0

max

l
ML

l5,1

l4,1

l3,1

l2,1

l1,1

x
ML

Current subtree

]x=[0 11 ? ?

5
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3

2

1

ML
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M = 5, BPSK modulation
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LLR Clipping [Yee, 2005; Studer et al., 2006]

Low-complexity implementations of channel decoding with small word lengths
require clipping of LLRs:

LLR clipping ∣∣∣λML
j,b − λML

∣∣∣ ≤ Lmax

Clipping leads to a sphere constraint

LLR clipping can be built into tree
traversal by noting that it induces an
upper bound on the search radius
according to

rmax = Lmax + λML
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LLR clipping enables runtime constraints for
STS-SD
Consider block ET (N = 64) with maximum-first scheduling
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• Average runtime above Davg

• Performance limited by ET
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Straightforward application of a runtime constraint to STS-SD degrades
performance severely

LLR clipping level Lmax must be adjusted to runtime constraint Davg
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Comparison of RTS and STS
Adjust clipping level Lmax to trade off complexity for performance

• Complexity: average number of visited nodes
• Performance: SNR required to achieve a given target FER

STS yields factor 3–10 complexity savings over RTS
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Comparison of STS and LSD
List size is used to adjust the complexity of the LSD
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For a given complexity constraint, STS SD outperforms LSD
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Channel Matrix Preprocessing

Sorted QR decomposition (SQRD) [Wübben et al., 2003]
• Perform QR decomposition on reordered channel matrix: HP = QR
• Goal: Obtain R with |rii | ≥ |rjj | for i > j
• SQRD preprocessing entails almost no additional complexity

MMSE sorted QR decomposition (MMSE-SQRD)
• Perform sorted QR decomposition on a regularized channel matrix[

H
αI

]
P =

[
Q1
Q2

]
R

• Compared to QRD/SQRD the complexity of MMSE-SQRD preprocessing
increases by roughly 50%
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Impact of Channel Matrix Preprocessing
Consider STS with QRD, SQRD, and MMSE-SQRD preprocessing
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Performance improvement resulting from SQRD and MMSE preprocessing
becomes significant under stringent complexity constraints
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System bandwidth dictates the arrival rate of
symbols at the detector
Decodig effort must be adjusted to keep up with the given arrival rate

• LLR clipping enables to adjust the average complexity (throughput)
• Run-time constraints enforce latency constraints and a guaranteed

instantaneous throughput
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For a given detector implementation,
the performance (SNR required for a
given FER) depends on the bandwidth
of the system
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Meeting throughput requirements for any desired
performance target
Instantiation of multiple parallel STS-SD units allows to increase the
maximum decoding effort available per symbol vector:

Davrg =
NfSTS

B

B ... Bandwidth
N ... STS instances

fSTS ... STS frequency

Channel
estimation,

QR decomp.

Sphere
decoder

Re-order
buffer

Sphere
decoder

FIFO

FIFO

MIMO detection

MIMO pre-processing

OFDM
demodulation

Training

D
a
ta

Runtime
limit

Scheduler

RAM

• A scheduler distributes symbols across detector instances
• Due to variable runtimes in the STS-SD instances, symbols must be

reordered when they are collected at the output of the detectors

Better performance can easily be achieved at the cost of more silicon area and
power
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Sphere decoding suffers from variable complexity
Search effort varies as a function of noise and channel realization. The
worst-case complexity corresponds to that of an exhaustive search

Complexity still grows exponentially with the spectral efficiency and
linearly in the bandwidth

6 bits
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• Data rates specified in IEEE 802.11n vary by 2 orders of magnitude
• Truly optimum decoding remains prohibitive for highest-rate modes
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STS-SD performance advantage depends on the
transmission mode
Complexity of STS-SD algorithm can be adjusted at run-time

• LLR clipping ensures a graceful performance degradation when processing
requirements increase
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For a given implementation STS-SD leverages the maximum performance gain
in each transmission mode
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Application to 4-stream IEEE 802.11n
IEEE 802.11n uses 4-spatial streams with B = 40MHz bandwidth:

• Single STS-SD unit [WBB+10]: 100kGE @ fSTS = 320MHz in 0.13µm
• Instantiation of two STS-SD units
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[AHB+09] A. Burg, S. Haene, M. Borgmann, D. Baum, T. Thaler, F. Carbognani, S. Zwicky, L. Barbero, C. Senning, P. Greisen, T. Peter, C. Foelmli,
U. Schuster, P. Tejera, A. Staudacher, “A 4-Stream 802.11n Baseband Transceiver in 0.13um CMOS,” Proc. of the Symposium on VLSI Circuits, Jun.
2009.
[WBB+10] M. Wenk, L. Bruderer, A. Burg, C. Studer, “Area- and Throughput-Optimized VLSI Architecture of Sphere Decoding,” Proc. of the
VLSI-SoC Conf., Sep. 2010.
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Application to 4-stream IEEE 802.11n
IEEE 802.11n uses 4-spatial streams with B = 40MHz bandwidth:

• Single STS unit [WBB+10] : 100KGE @ fSTS = 320MHz in 0.13 µm
• Instantiation of 5 STS units

-80 -75 -70 -65 -60 -55
received power [dBm]

 

 

MMSE 
0.05M GE

4x4 STS 
5 instances
0.5M GE

2.15M GE
(estimated)

1.7M GE 216
Mbps

432
Mbps

108
Mbps

10-3

10-2

10-1

10 0

fr
a
m

e
 e

rr
o
r 

ra
te

[AHB+09]

[AHB+09] A. Burg, S. Haene, M. Borgmann, D. Baum, T. Thaler, F. Carbognani, S. Zwicky, L. Barbero, C. Senning, P. Greisen, T. Peter, C. Foelmli,
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The Last Frontier: Iterative MIMO Detection
and Decoding (IDD)
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Approaching the performance limits

Optimum detection of MIMO-BICM requires joint ML estimation (joint
detection and decoding) of an entire codeword

• Only large code blocks can get close to capacity

• Complexity of ML grows exponentially in the codeblock size

Joint MIMO detection and channel decoding is infeasible in practice
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Iterative MIMO detection and decoding (IDD)
[HB03] to the rescue

• Separate detection from
channel decoding

• Exchange reliability (soft)
information

• Soft-in soft-out (SISO) MIMO detector: Compute extrinsic LLRs

LE
j,b = log

(
P[xi,b = 1 | y,H]

P[xj,b = 0 | y,H]

)
− LA

j,b

based on y, H, and the a priori LLRs LA
j,b = log

(
P[xj,b=1]
P[xj,b=0]

)
.

• SISO channel decoder (e.g., LDPC, BCJR): Computes new a-priori LLRs
LA

j,b based on the LLRs LE
j,b and estimates of the transmitted bits b̂

[HB03] B. M. Hochwald and S. ten Brink, “Achieving near-capacity on a multiple-antenna channel,” IEEE Trans. Commun., Mar. 2003
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Near-optimum performance through MIMO IDD
Performance gains through IDD

~2dB

~4.5dB

~3.5dB

• MIMO-OFDM system,
16-QAM, 4× 4,
convolutional code,
TGn C channel

• Fundamental
performance limit:
outage lower bound

Iterative MIMO detection and decoding is able to approach the outage
lower bound on frame error rate
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IDD receiver components under investigation
Candidate soft-input soft-output MIMO detection algorithms

• Soft-input soft-output MAP detection with max-log approximation

Low complexity algorithm based on sphere decoding [SB10]
Considerable, but manageable computational complexity

• SISO MMSE parallel interference cancellation (PIC) [WP99]

Algorithm is an extension of linear MMSE detection
Computational complexity is lower than that of SISO MAP

Channel code / decoder
• Quasi-cyclic low density parity check (LDPC) code
• Layered message passing with offset-min-sum approximation

[SB10] C. Studer and H. Bölcskei, “Soft-input soft-output single tree-search sphere decoding,” IEEE Trans. Inf. Theory, Nov. 2010
[WP99] X. Wang and H. V. Poor, “Iterative (turbo) soft interference cancellation and decoding for coded CDMA,” IEEE Trans. Commun., July 1999
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SISO MAP detection can be performed with
sphere decoding
First iteration: conventional soft-output STS-SD metricMC
Subsequent iterations (I ≥ 2):

Max-log-approximated LLRs:
Li,b = ±

(
λMAP − λMAP

i,b

)
,

where the sign depends on xMAP
i,b

• Metric of the maximum a posteriori (MAP) solution

λMAP = min
s∈OMT

{ 1
No
‖y−Hs‖2− log P[s]

}
• Metric associated with counter-hypothesis

λMAP
i,b = min

s∈XMAP
i,b

{ 1
No
‖y−Hs‖2− log P[s]

}
• P[s] =

∏MT
i=1 P[si ], where P[si] is derived from a-priori feedback A

i,b
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SISO-STS SD with LLR clipping [SB10]
Reminder: Limiting the magnitude of LLRs can
inprove tree-pruning efficiency

• Clipping Li,b to Lmax can cause errors on
LE

i,b = [Li,b]Lmax − LA
i,b, e.g., if LA

i,b > Lmax

• LLR clipping needs to be performed on
LE

i,b < Lmax instead
• Pruning criterion: r2 = λMAP + Lmax

SISO STS-SD computes extrinsic information directly

LE
i,b = ±

(
λMAP − (λMAP

i,b ± LA
i,b)︸ ︷︷ ︸

=ΛMAP
i,b

)
,

where sign depends on xMAP
i,b

• Tree search based on ΛMAP
i,b

[SB10] C. Studer and H. Bölcskei, “Soft-input soft-output single tree-search sphere decoding,” IEEE Trans. Inf. Theory, Nov. 2010

112/165



Introduction System Design Advanced MIMO Detection IDD TxNoise References

Implementation challenge lies in efficient
enumeration
SISO STS-SD cost metricMC =MC +MA

• Euclidean distance metricMC

• A-priori metricMA

• Conventional STS-SD: efficient enumeration
based on geometrical properties ofMC

• SISO STS-SD: geometrical properties destroyed
by a priori informationMA

Alternative solution: Hybrid Enumeration [WB+10]
1 Enumerate concurrently based onMC andMA

2 Select symbol with minimumMP

I 

Q 

y 

MC
 (2) 

MC 
(1) 

MA 
(3) 

MA
 (1) 

MP
 (1) 

MP 
(3) 

MC
 (3) 

MA
 (2) 

MP
 (2) 

[WB+10] E. M. Witte, F. Borlenghi, G. Ascheid, R. Leupers, and H. Meyr, “A scalable VLSI architecture for soft-input soft-output single tree-search
sphere decoding,” IEEE Trans. Circuits and Systems II, Nov. 2010
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ASIC implementation of SISO STS-SD

SISO STS-SD by Witte, Borlenghi, et al., RWTH Aachen [BW+11]

4x4-16QAM 

4x4-64QAM 

4x4-4QAM 

Three configurable cores
• Technology: 90 nm CMOS
• All support 4-streams

• 4-QAM: 0.18mm2,
330·106 visited nodes/s

• 16-QAM: 0.354mm2,
244·106 visited nodes/s

• 64-QAM: 0.665mm2,
193·106 visited nodes/s

[BW+11] F. Borlenghi, E. M. Witte, G. Ascheid, H. Meyr, and A. Burg, “A 772 Mbit/s 8.81 bit/nJ 90 nm CMOS Soft-Input Soft-Output Sphere
Decoder,” IEEE Asian Solid State Circuits Conf. 2011
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FER performance at the expense of supported
bandwidth per instance
SISO STS-SD by Witte, Borlenghi, et al., RWTH Aachen [BW+11]

• Single instance ASIC (16-QAM):
fnode = 244·106 visited nodes/s

4x4-16QAM 

4x4-64QAM 

4x4-4QAM 

• IDD computational effort Davrg
per vector symbol for 4× 4,
16-QAM

2.3
MHz

4.2
MHz

6.8
MHz

14.7
MHz

Supported
bandwidth

• Supported bandwidth: BWmax = fnode/Davrg

Computational effort increases dramatically for 64-QAM
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IDD architecture: putting the pieces together
Conventional detection and decoding schedule

• Serial architecture
MIMO detector and channel decoder take turns processing one block

• Ping-pong architecture
MIMO detector and channel decoder process two blocks interleaved

Throughput and hardware utilization increase by 2x
Processing latency remains unaltered
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Complete IDD ASIC (RWTH/EPFL)[BWA+12]
• Ping-pong architecture
• 5 parallel SISO-STS cores served by a

scheduler
• Layered OMS LDPC for 802.11n QC-LDPC

Performance characteristics:
• Technology: 65nm CMOS, 1.2V
• Area: 1.58M GE (5 SISO-STS: 872k GE,

LDPC: 447k GE)
• Clock freq.: 135 MHz/299 MHz

(SISO-STS/LDPC)
• Supports up to ×4 with 64-QAM
• 4× 4, 64-QAM R = 1/2 with 1% BLER

@ 18 dB: 33 Mbps
@ 28 dB: 1250 Mbps

[BWA+12] F. Borlenghi, E.M.Witte, G. Ascheid, H. Meyr, and A. Burg, “A 2.78 mm2 65 nm CMOS Gigabit MIMO Iterative Detection and Decoding
Receiver," ESSCIRC 2012, to appear
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IDD with the MMSE-PIC algorithm
First iteration (initialization): conventional soft-output MMSE detection

Subsequent iterations (I ≥ 2)
• Interference cancellation (IC) based on feedback from channel decoder
• Re-detection with modified (feedback dependent) MMSE filter

interference

cancellation

MMSE

detection

• IC step requires intrinsic, instead of extrinsic feedback [WBS+02]
• MMSE filter needs to be recomputed for each symbol and each iteration

[WBS+02] M. Witzke, S. Bäro, F. Schreckenbach, and J. Hagenauer, “Iterative detection of MIMO signals with linear detectors,” Proc. of the IEEE
Asilomar Conf., Nov. 2002
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The MMSE-PIC algorithm

Channel
equalization

LLR
computation

Step 1: Initialization (1st iteration, I = 1)
• Compute the linear MMSE filter vectors wH

j = hH
j
(
HHH + N0I

)−1

• Unbiased MMSE estimation: ẑj = µ−1
j wH

j ŷj where µj = wH
j hj , ∀j

• Compute LLRs LE
j,b from ẑj and from the per-stream SINRs ρj

• Soft-output channel decoding yields intrinsic LLRs LA
j,b
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The MMSE-PIC algorithm
Symbol

estimation
Interference
cancellation

Step 2: Parallel interference cancellation (PIC)
• Compute soft-symbols ŝj = E[sj], ∀j, based on a priori LLRs LA

j,b
• Perform interference cancellation

ŷj = y−
∑
i 6=j

hi ŝi = hjsj +
∑
i 6=j

hiei + n︸ ︷︷ ︸
interference−plus−noise

, j = 1, . . . ,MT

• Variance of the residual interference terms ej : Ej = E
[
|sj − ŝj |2

]
, ∀j
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The MMSE-PIC algorithm

Channel
equalization

MMSE filter
computation

LLR
computation

Step 3: Re-detection after IC
• Re-compute the linear MMSE filter vectors

wH
j = hH (HΛjHH + NoIMR

)−1 with
Λj = diag(E1, . . . , 1/MT , . . . ,EMT )

• Unbiased MMSE estimation: ẑj = µ−1
j wH

j ŷj where µj = wH
j hj , ∀j

• Compute LLRs LE
j,b from ẑj and from the per-stream SINRs ρj

• Soft-output channel decoding yields intrinsic LLRs LA
j,b

119/165



Introduction System Design Advanced MIMO Detection IDD TxNoise References

ASIC implementation of SISO MMSE-PIC
MMSE-PIC ASIC implementation by Studer et al., ETH Zurich [SFB10]

soft sym.
& var.

LLR
comp.

PIC
1 & 2

G
ra

m
 m

a
tr

ix
 &

m
a
tc

h
e
d
 f
ilt

e
r

M
M

S
E

 f
ilt

e
r 

&
 S

IN
R

LUD &

forward

back-
subst.

I/O

• Support for 4-streams
• Modulation: BPSK to 64-QAM

• Technology: 90 nm CMOS
• Silicon area: 1.5mm2

• Supported bandwidth for 2
iterations: 16MHz up to
64-QAM

[SFB10] C. Studer, S. Fateh, and D. Seethaler, “A 757Mb/s 1.5mm2 90nm CMOS soft-input soft-output MIMO detector for IEEE 802.11n,” in Proc.
of IEEE European Solid State Circuits Conf. (ESSCIRC), Sept. 2010
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Scenarios for performance comparison
Consider two very different communication scenarios

Fast-fading: Channel changes rapidly from symbol to symbol
• Coding across independent channel realizations

• OFDM: highly frequency-selective channel

Y = [y1, . . . ,yN ] yt = Htst + nt Hl 6= Hk 6=l

Block-fading: Channel remains constant for all symbols in a code block
• Coding across only one channel realization

• OFDM: highly frequency-flat channel

Y = [y1, . . . ,yN ] yt = Hst + nt
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Performance comparison with fast-fading
Coding across independent channel realizations provides significant non-spatial
diversity

• Without iterations (I = 1), STS-SD clearly outperforms the MMSE
• For IDD (I ≥ 2), SISO STS-SD has a small advantage over MMSE-PIC
• Diminishing returns from SISO STS-SD with increasing number of iteration

[BW+11] F. Borlenghi, E. M. Witte, G. Ascheid, H. Meyr, and A. Burg, “A 772 Mbit/s 8.81 bit/nJ 90 nm CMOS Soft-Input Soft-Output Sphere
Decoder,” IEEE Asian Solid State Circuits Conf. 2011, submitted to
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Performance comparison with fast-fading
Coding across independent channel realizations provides significant non-spatial
diversity

For fast-fading channels, MMSE-PIC is a good alternative for the
more complex SISO STS-SD

[BW+11] F. Borlenghi, E. M. Witte, G. Ascheid, H. Meyr, and A. Burg, “A 772 Mbit/s 8.81 bit/nJ 90 nm CMOS Soft-Input Soft-Output Sphere
Decoder,” IEEE Asian Solid State Circuits Conf. 2011, submitted to
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Performance comparison with block-fading
Coding across only one channel realization provides no additional diversity (only
spatial diversity)

• MMSE-PIC suffers from a lack of diversity (for any number of iterations)
• SISO STS-SD outperforms MMSE-PIC even with much fewer iterations

[BW+11] F. Borlenghi, E. M. Witte, G. Ascheid, H. Meyr, and A. Burg, “A 772 Mbit/s 8.81 bit/nJ 90 nm CMOS Soft-Input Soft-Output Sphere
Decoder,” IEEE Asian Solid State Circuits Conf. 2011, submitted to
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Performance comparison with block-fading
Coding across only one channel realization provides no additional diversity (only
spatial diversity)

• MMSE-PIC fails if only spatial diversity is available
• A similar behavior is observed for code rates close to 1 (e.g., R = 5/6)

[BW+11] F. Borlenghi, E. M. Witte, G. Ascheid, H. Meyr, and A. Burg, “A 772 Mbit/s 8.81 bit/nJ 90 nm CMOS Soft-Input Soft-Output Sphere
Decoder,” IEEE Asian Solid State Circuits Conf. 2011, submitted to
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System Integration: Layered Detection and
Decoding
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System integration of IDD is difficult
IDD entails low throughput and its latency grows with the number of
iterations. But processing latency is crucial for system with tight round-trip time
requirements.

Techniques to increase the throughput (e.g. pipelining, interleaving, multiple
instances) usually do not improve the latency.

IDD receivers can not achieve the full iterative gain in latency constrained
environments.
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Efficient system integration of IDD is even more
difficult
100% hardware utilization requires matching the runtime of detection and
decoding block. This poses already a significant constraint on the design.

Modern communication standards usually define a wide variety of modes.
Corresponding run-times of detector and decoder are highly variable and change
with

• MIMO detector: modulation, SNR, antenna-configuration
• Channel decoder: code rate, block size, SNR

Optimal hardware implementations of IDD across all modes is not feasible.
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Layered detection and decoding (LDD) [PSB12]
schedule
The same block of data is detected and decoded at the same time.

LDD gets rid of the run-time matching constraint by removing the block-wise
data dependency between detection and decoding.
The decoder performs one continous decoding run, while updates from the
detector are injected.
[PSB12] N. Preyss, C. Studer ,and A. Burg, “Layered Detection and Decoding in MIMO Wireless Systems” in 2012 Conference on Design and
Architectures for Signal and Image Processing (DASIP), submitted to
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Comparing the performance of different iterative
receiver schedules
Performance metrics

• Hardware efficiency: (mm2) per Mbps

• System performance: SNR required to achieve 1%packet-error rate (PER)

Silicon area and throughput estimnates are obtained based on
• the MMSE-PIC implementation in [SFB10]

• the LDPC decoder implementation in [RMS+10]

Complexity/performance tradeoff is adjusted by changing the number of
detector instances
[SFB10] C. Studer, S. Fateh, and D. Seethaler, “A 757Mb/s 1.5mm2 90nm CMOS soft-input soft-output MIMO detector for IEEE 802.11n,” in Proc.
of IEEE European Solid State Circuits Conf. (ESSCIRC), Sept. 2010
[RMS+10] C. Roth, P. Meinerzhagen, C. Studer, and A. Burg, “A 15.8 pJ/bit/iter quasi-cyclic LDPC decoder for IEEE 802.11n in 90 nm CMOS,” in
Proc. IEEE Asian Solid-State Circuits Conf., Nov. 2010, pp. 313–316.
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LDD efficiency is comparable to the one of
conventional IDD
Do we achieve the same performance as with the conventional IDD schedule?
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LDD is almost as efficient as the conventional schedule, but does not require
run-time matching between detector and decoder
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LDD significantly outperforms conventional IDD
under latency constraint
Parallelization of the detection and decoding operations cuts the overall
processing latency almost into half.
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For a given latency constraint, LDD provides a significant performance (SNR)
advantage over IDD with ping-pong schedule
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LDD significantly outperforms conventional IDD
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Parallelization of the detection and decoding operations cuts the overall
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LDD is highly scalable in all performance metrics

LDD allows to increase the MIMO detection effort by instantiating multiple
detector units without sacrificing efficiency.
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Additional complexity offers not only more throughput but also less latency.
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System model used for simulation is based on
highly idealistic assumptions

Signal model chosen
for simulation
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System model used for simulation is based on
highly idealistic assumptions

Signal model chosen
for simulation

Transmitted RF
signal
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Real-world RF transmitters suffer from a variety of
impairments

90
o

PLL

DAC power
amplifier

digital
input

• Quantization noise from baseband processing and from the DAC
• Sampling- and carrier-frequency offset
• Phase noise from the PLL
• I/Q imbalance in mixers and analog filters
• Non-linear behavior of the power amplifier
• MIMO: Crosstalk/coupling between transmit-RF chains
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Distinguish between two types of impairments

Some impairments are well understood and their impact can partially be
mitigated or avoided (e.g., through calibration)

Residual Tx-RF impairments
defy proper compensation since
they ...
... are not well understood or difficult

to model
... based on random processes with

often unknown statistics
... require prohibitively complex

compensation algorithms

phase
noise

IQ imbalance

carrier
frequency

offset

residual
impairments
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Characterizing residual Tx-RF impairments
The error vector magnitude (EVM) is a lump-sum measure of the residual
distortions at the transmitter:

EVM =
E[‖s̃− s‖2]

E[‖s‖2]

s ... Reference transmitted signal
s̃ ... Measured transmitted signal after impairment compensation

Reference
signal

Impairment
compensation

«perfect»
receiver

Calibrated RF
hardware

EVM measurement

Typical EVM-values range from -22 dB to -32 dB

134/165



Introduction System Design Advanced MIMO Detection IDD TxNoise References

Model for transmitter with residual Tx-RF
impairments

Assumptions:
• Gaussian distributed
• Independent from the transmitted signals
• I.i.d. among I- and Q-path
• I.i.d. across transmit antennas (MIMO)

Model for a non-ideal transmitter
s̃ = s + nt

• nt ∼ CN (0, σ2
t IMT ) the transmit-noise (Tx-noise)

• Tx-noise variance: σ2
t = EVM−1
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Verification of the Tx-noise model for
MIMO-OFDM transmission
Measurements are performed to verify the model assumptions:

• 20MHz reference signal uses OFDM modulation
• MIMO RF-chain [WLK+09] based on commercial single-stream RF

chip-sets

SDA 808Zi Oscilloscope

PC

Bat board Wing board

USB
RF cable

Ethernet

[WLK+09] M. Wenk, P. Luethi, T. Koch, P. Maechler, M. Lerjen, N. Felber, and W. Fichtner, “Hardware platform and implementation of a real-time
multi-user MIMO-OFDM testbed,” in Proc. of the Int. Symp. on Circuits and Systems (ISCAS), May 2009, pp. 789–792.
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Measurements confirm model assumptions for
MIMO-OFDM

• Gaussian distribution: Quantile-quantile plot confirms at least a
Gaussian-like distribution

• Circular symmetry: Noise-correlation between I- and Q-path is negligible
after calibration

• Spatially white: Tx-noise correlation across antennas is 19.5 dB below the
Tx-noise level
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MIMO system model with transmit noise
Baseband input-output relation with transmit noise:

y = H(s + nt) + n = Hs + Hnt + n︸ ︷︷ ︸
z

Noise covariance matrix:

K = E
[
zzH] = σ2

tHHH + σ2
r IMR

Tx-noise appears spatially colored at the receiver

Equivalent received-signal model
Since nt and n are independent and both i.i.d. Gaussian distributed we can write

y = Hs + K 1
2w with w ∼ CN (0, IMR )
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Impact on Channel Capacity
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Impact of Tx-noise on channel capacity
MIMO channel capacity [T99] is well known

C (H) = log2 det
(
IMR +

1
σ2

r
HHH

)

• In our specific case : ˘ = K = σ2
tHHH + σ2

r IMR

• Application of the Eigenvalue decomposition HHH = U˜UH with
UHU = IMT and ˜ = diag(λ1, . . . , λMT )

Channel capacity with Tx-RF impairments

C (H) =

MT∑
i=1

Ci , Ci = log2

(
1 +

λi

σ2
r

)
.

[T99] I. E. Telatar, "Capacity of multi-antenna Gaussian channels," European Trans. Telecomm., vol. 10, no. 6, pp. 585-596, Sep. 1999.
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Impact of Tx-noise on channel capacity
MIMO channel capacity [T99] with spatially colored noise is well known

C (H) = log2 det
(
IMR + ˘−1HHH)

˘ ... noise covariance matrix

• In our specific case : ˘ = K = σ2
tHHH + σ2

r IMR

• Application of the Eigenvalue decomposition HHH = U˜UH with
UHU = IMT and ˜ = diag(λ1, . . . , λMT )

Channel capacity with Tx-RF impairments

C (H) =

MT∑
i=1

Ci , Ci = log2

(
1 +

λi

λiσ2
t + σ2

r

)
.

[T99] I. E. Telatar, "Capacity of multi-antenna Gaussian channels," European Trans. Telecomm., vol. 10, no. 6, pp. 585-596, Sep. 1999.

139/165



Introduction System Design Advanced MIMO Detection IDD TxNoise References

Impact of Tx-noise on ergodic capacity
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For SNR→∞ the channel capacity is upper bounded by

Clim = MT log2
(
1 + 1/σ2

t
)
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Impact of Tx-noise on outage probability
Outage probability: Cumulative distribution function (CDF) of the capacity

Pout (R,SNR) = Pr (C (H,SNR) < R)

R ... chosen transmission rate
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• Low SNR (σ2
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r ):
Transmit noise has no
impact on CDF shape

• High SNR (σ2
t � σ2

r ):
CDF becomes more and
more skewed (steep) as
SNR increases
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Impact of Tx-noise on frame error rate
Frame error rate is lower-bounded by the outage probability [ZT03]:

Pout(R,SNR) < PFER(R,SNR)
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[ZT03] L. Zheng and D.N.C. Tse, D.N.C., “Diversity and multiplexing: a fundamental tradeoff in multiple-antenna channels,” IEEE Transactions on
Information Theory, vol.49, no.5, pp. 1073–1096, May 2003

In the presence of Tx-noise, achieving high rates R with low FER
becomes increasingly difficult (requires very high SNR)
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Typical EVM with real-world RF chains
EVM depends strongly on transmit power: limited by the power amplifier

Typical 802.11n
EVM operating
range

Per-antenna 
output power 
limit @2.4GHz
for 2 antennas
(20dBm EIRP)

PA

PA

17
dBm

17
dBm

20 dBm EIRP
2.4 GHz ISM-
band limit

2
-s

tr
e

a
m

[CWM+07]

[CWM+07] R. Chang, D. Weber, L. MeeLan, D. Su, K. Vleugels, S. Wong, “A Fully Integrated RF Front-End with Independent RX/TX Matching and
+20dBm Output Power for WLAN Applications,“ Proc. of the IEEE Solid-State Circuits Conference, Feb. 2007
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Per-antenna 
output power 
limit @2.4GHz
for 2 antennas
(20dBm EIRP)

Total-power constraint: increasing the number of Tx-antennas reduces EVM
[CWM+07] R. Chang, D. Weber, L. MeeLan, D. Su, K. Vleugels, S. Wong, “A Fully Integrated RF Front-End with Independent RX/TX Matching and
+20dBm Output Power for WLAN Applications,“ Proc. of the IEEE Solid-State Circuits Conference, Feb. 2007
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4-stream 802.11n system : EVM ranges from -28 dB to -33 dB
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System-level implications of Tx-RF impairments
Compare ergodic capacity of systems with 2 and 4 transmit antennas under a
total-power constraint
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Additional transmit antennas reduce capacity-loss from Tx-noise
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System-level implications
EVM can be improved by adjusting output power at the expense of SNR
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Long distance: capacity
limited by thermal noise

Short distance: capacity
limited by Tx-noise

Reducing transmit power helps to increase channel capacity for short-distance
links

145/165



MIMO with Transmit RF Impairments

Impact on MIMO Detection



Introduction System Design Advanced MIMO Detection IDD TxNoise References

Impact of transmit-RF impairments on MIMO
detector performance

Until today, MIMO detectors have been designed
based on the assumption of spatially white Gaussian receive noise

• What is the performance impact of Tx-noise on these MIMO receivers?
• How can we mitigate the problem without too many changes or additional

complexity in the receiver?
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Impact of residual transmit-RF impairments on
MIMO detector performance

Zero forcing
EVM=-28dB

Zero forcing
w/o Tx-noise

MT = MR = 4, 64-QAM, block-fading, rate 1/2 coded,
1024 bits/frame, entries of H i.i.d. Gaussian

Linear (ZF or MMSE) receivers

H−1y = s + nt + H−1n

• No assumption on noise or
signal statistics

• Thermal noise H−1n
dominates performance

Transmit-noise has only minor impact on linear receivers
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Impact of residual transmit-RF impairments on
MIMO detector performance

ML with

EVM=-28dB
ML w/o

Tx-noise

MT = MR = 4, 64-QAM, block-fading, rate 1/2 coded,
1024 bits/frame, entries of H i.i.d. Gaussian

ML receiver

ŝML = arg min
s∈OMT

‖y−Hs‖2

• Decision rule assumes noise is
i.i.d. Gaussian

• Model mismatch!

ML detector is very sensitive to model mismatch
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Impact of transmit-RF impairments on MIMO
detector performance

ML-APP

EVM=-28dB

ML-APP

w/o Tx-noise

MT = MR = 4, 64-QAM, block-fading, rate 1/2
coded, 1024 bits/frame, entries of H i.i.d. Gaussian

ML-APP receiver

• Assumes noise is i.i.d. Gaussian

• Model mismatch!

• SNR advantage over ML

• Impact of Tx-noise increases
with SNR

SNR advantage of ML-APP over ML translates in lower error floor

149/165



Introduction System Design Advanced MIMO Detection IDD TxNoise References

Tx-Noise - Measurement Results
Simulation and measurement results for OFDM data transmission including

synchronization, channel estimation, and pilot-tracking

RF
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Tx-Noise - Measurement Results
Simulation and measurement results for OFDM data transmission including

synchronization, channel estimation, and pilot-tracking

Baseband
(frequency domain)
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Tx-Noise - Measurement Results
Simulation and measurement results for OFDM data transmission including

synchronization, channel estimation, and pilot-tracking

Measured
Simulated

ML

TGn-C channel model, 16-QAM, rate 1/2, 32 OFDM data symbols

150/165



Introduction System Design Advanced MIMO Detection IDD TxNoise References

Tx-Noise - Measurement Results
Simulation and measurement results for OFDM data transmission including

synchronization, channel estimation, and pilot-tracking

Measured
Simulated

ML

ZF

TGn-C channel model, 16-QAM, rate 1/2, 32 OFDM data symbols
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Noise whitening: Restore the original system
model
Employ spatial noise whitening at the receiver:

MIMO

detector

Whitening filter ... W =
√
σ2

rK−
1
2

Whitened signal ... ỹ = Wy = H̃s + ñ
Effective channel ... H̃ = WH

Noise seen by the detector ñ ∼ CN (0, σ2
r IMR )

is spatially white and has the same statistics as n
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Impact of noise whitening on error-rate
performance

ML with
EVM=-28dB

ML w/o
Tx-noise

ML with noise
whitening

EVM=-28dB

Noise whitening leads to a significant performance improvement for
ML detectors in the presence of transmit-RF impairments
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Impact of noise whitening on error performance

ML-APP with noise
whitening EVM=-28dB

ML-APP
EVM=-28dB

ML-APP
w/o Tx-noise

Noise whitening leads to a significant performance improvement for
ML-APP detectors (STS-SD) in the presence of transmit-RF impairments
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Tx-Noise - Measurement Results
Simulation and measurement results for OFDM data transmission including

synchronization, channel estimation, and pilot-tracking

RF
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Tx-Noise - Measurement Results
Simulation and measurement results for OFDM data transmission including
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Tx-Noise - Measurement Results
Simulation and measurement results for OFDM data transmission including

synchronization, channel estimation, and pilot-tracking

Measured
Simulated

ML, comp.

ML

ZF, comp.

ZF

TGn-C channel model, 16-QAM, rate 1/2, 32 OFDM data symbols
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Computation of the noise-whitening filter

Straightforward computation of the noise-whitening filter matrix:

W =
√
σ2

rK−
1
2

1 Computation of the covariance matrix: K=σ2
tHHH + σ2

r IMR

2 Cholesky decomposition: K = LLH with L lower-triangular

3 Matrix inversion and scaling: W =
√
σ2

rL−1

This method suffers from high computational complexity
and requires considerable arithmetic precision
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Efficient QR-decomposition-based solution
• Covariance matrix K can be written as

K = σ2
tHHH + σ2

r IMR = H̄HH̄ with H̄ =

[ √
σ2

tHH√
σ2

r IMR

]

• Application of economy-size QR-decomposition (QRD) to H̄:[ √
σ2

tHH√
σ2

r IMR

]
=

[
Qa
Qc

]
R̃

Since R̃H R̃ = K, we have R̃H = K 1
2

Since QcR̃ =
√
σ2

r IMR , we have Qc =
√
σ2

r R̃−1

Noise-whitening filter is immediately given by W =
√
σ2

rK−
1
2 = QH

c

Requires one economy-size QRD at preprocessing rate
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Algorithm comparison
Straightforward implementation

Channel
estimation

Cholesky
decomp.

Matrix
inversion

STS MIMO
detector

QR-based implementation

Channel

estimation

STS MIMO

detector

QR-based implementation of noise whitening is numerically
more stable and has lower computational complexity
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Impact of QRD-based noise whitening on silicon
area (estimated)

2.15M GE
(estimated)

MMSE-QRD STS
preprocessing:
0.25M GE

~2.4M GE
(estimated)

MMSE-QRD STS
preprocessing

MMSE-QRD for
noise whitening

Area reference:
5 STS units

Assumptions for area estimation
• Area of noise whitening dominated by QR

decomposition for computing W

• Area estimates based on MMSE-QR
preprocessing required for MMSE and STS
MIMO detector

• Preprocessing latency must remain
constant

Transmit-noise whitening has only minor impact on overall silicon area
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