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Sampling: “Analog Girl in a Digital
World...” Judy Gorman 99
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. :High DSP rates

ADC:s, the front end of every digital
application, remain a major bottleneck
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Today’s Paradigm

The Separation Theorem:
v Circuit designer experts design samplers
at Nyquist rate or higher

v DSP/machine learning experts process the data

¢ Typical first step: Throw away (or combine in a “smart” way e.g.
dimensionality reduction) much of the data ...

¢ Logic: Exploit structure prevalent in most applications to reduce
DSP processing rates

r However, the analog step is one of the costly steps

Can we use the structure to reduce sampling rate + first

DSP rate (data transfer, bus ...) as well?

Eldar, 2012 K]



Key Idea

Exploit structure to improve data processing performance:

¥ Reduce storage/reduce sampling rates
¥ Reduce processing rates

¥ Increase imaging resolution

¥ Reduce power, size, cost...

Goal:

e Survey sampling strategies that exploit signal structure to reduce rate
B Present a unified framework for sub-Nyquist sampling
e Provide a variety of different applications and benetfits

Eldar, 2012 4



Outline

¢ Partl: Introduction
¥ Part2: Sub-Nyquistin a subspace

¥ Generalized sampling framework

. Examples

¢ Part3: Union of subspaces
e Model, analog and discrete applications
#  Short intro to compressed sensing

¥ Part4: Xampling, Sub-Nyquist in a union
#  Functional framework
¥ Modulated wideband conversion
®  Sparse shift-invariant sampling
» Finite-rate/sequences of innovation methods
» Random demodulation

¥ Part5: From theory to hardware
e Practical design metrics
e Circuit challenges
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Tutorial Goal

To be as interactive as possible!

b Feel free to ask questions
¥ Raise ideas
¥ Slow me down if things are too fast ...

Hope you learn and enjoy!

Eldar, 2012 6



— Part 1 -

Introduction

- QOutline
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ADC Market

+ Analog Devices ® National Instruments 2 Maxim < Texas Instruments
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16 4 & ¢¢¢ € X OX6X @
X

12 1 «e X

Stated number of bits

State-of-the-art
Nyquist ADCs

N @\ RS N
Sampling rate (samples/sec)

e State-of-the-art ADCs generate uniform samples at the input’s Nyquist rate
e Continuous effort to:

B increase sampling rate (Giga-samples/sec)

B increase front-end bandwidth

B increase (effective) number of bits

Working in digital becomes difficult



Nyquist Rate Sampling

I Standard processing techniques require sampling at the
Nyquist rate = twice the highest frequency

B Narrow pulse, wide sensing range = high Nyquist rate
B Results in hardware excessive solutions and high DSP rates

B Too difficult to process, store and transmit

Main Idea:

Exploit structure to reduce sampling and processing rates

Eldar, 2012 9



The Key - Structure

z(t) Sampling c[n]
—_— —_—
Uncountable = Countable

¥ Sampling reduces ' dimenions”

¥ Must have some prior on x(t)

e Model too narrow (e.g. pyre sine) 2 __not widely applicable

e Model too wide (e.g. band]imited) rate reduction
x ()t pidsendlizaitedar

Key: Treat signal models that are sufficiently
wide and structured at the same time

10T (= Signal IVIodel) INecessary Tor Kecovery
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Structure Types

¥ In this tutorial we treat 2 main structures:

Subspace Union of subspaces

z(t) € ALUA U -
u

z(t) e A

Linear:z,y € A v ax+Pyc A ¥ Nonlinear: x + y ¢ U (typically)
Generalized sampling theory e Xampling (functional framework)

o9 N
=l
e
5 D
-
-
2
NoH
(o)

C
=t
o
=
3

at rates7as low as the actual information rate
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Ultrasound

Tx pulse Ultrasonic probe
(Collaboration with g(t)

General Electric, Israel) / — 5
{ \ t .

Rx signal Unknowns

Tlme
Amphtude a;
j\

®  Echoes result from scattering in the tissue

¥ The image is formed by identifying the
scatterers

Eldar, 2012



Processing Rates

¥ Toincrease SNR the reflections are viewed by an antenna array

. SNRis improved through beamforming by introducing appropriate
time shifts to the received signals

- Focusing the received

beam by applying delays

Xdcr

Scan Plane

<—

B Requires high sampling rates and large data processing rates

B One image trace requires 128 samplers @ 20M, beamforming to 150
points, a total of 6.3x10° sums/frame

Compressed Beamforming

Eldar, 2012



Resolution (1): Radar

¥ Principle: ‘ »
¥ A known pulse is transmitted c
¥ Reflections from targets are received //

¥ Target’s ranges and velocities are identified

¥ Challenge: ﬁ
¥ All processing is done digitally / / f

¥ Targets can lie on an arbitrary grid \"
¥ Process of digitizing J /\
- loss of resolution in range-velocity domain ~/- \~_\

X True Targets
QO MF peaks

e Subspace methods:

Eldar, 2012



Resolution: Subwavelength Imaging

(Collaboration with the groups of Segev and Cohen)

Diffraction limit: Even a perfect optical imaging system has a
resolution limit determined by the wavelength A

¢ The smallest observable detail is larger than ~ A/2
¢ This results in image smearing
¥ Equivalent to viewing the image through a LPF

aaaaaa

S e |aser beam

Sketch of an optical microscope:
the physics of EM waves acts

Nano-holes as an ideal low-pass filter Blurred image
as seen in ~ seenin
electronic microscope optical microscope
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Imaging via Union Modeling

¥ Radar:

. 05 T T T T

X True Targets @ ; ® True Targets

O MF peaks : : O Union method
7 | ~ . i | |
E £ E 8 :
3 % i : ® :
s 5 0r
o =3 : :
8 & E ®
s ; ® |
s .
® | |
-05 1 i i I

%4 0.6 : 0 0.2 0.4 0.6 0.8 1

elay (x t__)
ma Delay (x Tmax)

¥ Subwavelength: Bajwa et al., ‘11

Gazitet al., "11

Eldar, 2012
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Wideband Communication

g AM FM QAM QPSK
] A — f
0 f 7 f max

# Subspace methods: 7
¥ RF demodulation
¥ Undersampling
¥ and more...

> f; are known

-

e Unknown f;, e.g. cognitive radio. Should we sample at 2 fiax?

® Union modeling:

e Can sample at the actual information bandwidth, even though
fi are unknown

e Can process at low rate (no need to reconstruct Nyquist-rate samples)

Eldar, 2012 17




Sub-Nyquist Demonstration

Carrier frequencies are chosen to create overlayed aliasing at baseband

FM@6312MHz AM@807.8 MHz  Sine @ 981.9 MHz MWC prototype aliasing around 6.171 MHz

10 kHz o 100 kHz

g

Reconstruction
(CTF)

N
AL
$z

Lo

>

FM @ 631.2 MHz AM @ 807.8 MHz
Mishali et al., “10
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z(t) /o L x(nT) =\DSP

Xampling

High-rate

"\ ADC |

z(nT)

Compress

A

| <ssm | ow-rate

¥ Main idea:

Eldar, 2012

¢ Move compression before ADC

HW

SW

. Use nonlinear algorithms to interface with standard DSP and
signal reconstruction




Xampling

z(t)] Analog / X Nonlinear (t)
—_— . > > . > DSP > DAC
compression \ ADC algorithms
HW
New hardware designs @ New digital algorithms SW

¥ Main idea:
¢ Move compression before ADC

e Use nonlinear algorithms to interface with standard DSP and
signal reconstruction

e Follow a set of design principles 2 step from theory to hardware

Eldar, 2012




From Theory to Hardware

10:00_ (@

B 2.4 GHz Nyquist-rate, 120 MHz occupancy

E 280 MHz sampling rate
E 49 dB dynamic range
E SNDR > 30 dB over input range Mishali et al., 10

RICE 1-pixel camera DARPA AZ2I Project

B See many more contributors in compressive sensing hardware

e Tutorial briefly covers circuit challenges in sub-Nyquist systems

Sub-Nyquist technology becomes feasible !

Can gain significant advantages in practical applications

Eldar, 2012


http://www.youtube.com/watch?v=cYbBS1tptUM
http://sites.google.com/site/igorcarron2/compressedsensinghardware

Tutorial Goal

¥ Instead of a single subspace modeling use union of subspaces
framework

¥ Adopt a new design methodology — Xampling
¥ Compression+Sampling = Xampling
b X prefix for compression, e.g. DivX

# Result: Simple hardware and low computational cost on the DSP

Theory, Algorithms, Hardware
What'’s next:

e Part2:  Sub-Nyquist in a subspace
e Parts 3-5: Sub-Nyquist in union models

Eldar, 2012




— Part 2 -
Sub-Nyquist in a Subspace

- QOutline
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Shannon-Nyquist Sampling

Theorem [Bandlimited Sampling]

If a function x(t) contains no frequencies higher than W cycles-per-second, it is
completely determined by giving its ordinates at a series of points spaced 1/2W
seconds apart

z(t) = ;:c (%) sinc(2Wt — n), sinc(a) = Sin;ga)
Shannon, ‘49
Y 6(t —nT)
t=nl i
() —2 2 )&— h(t) |— (1)
¥ Model: W-Bandlimited signals
® Sampling: Pointwise at rate 1/7" > 2W

# Reconstruction: Interpolation by h(t) = sinc(2Wt)

Eldar, 2012



Avoiding High-Rate ADC

¥ Use several samplers:

¥ Papoulis’ theorem > Overall rate = Nyquist
¢ Time-interleaved ADC (special case)

¥ Exploit signal structure (subspace):
¥ Pulse streams -
¢ Multiband sampling

Can approach
information rate

Eldar, 2012




Papoulis’ Theorem

¥ Model: W -bandlimited (same) 1 oW
¥ Sampling: M branches sampled at 1/M the Nyquist rate, — > —
Flexible constraints on s;(t), h;(t) r— M
¥ Reconstruction: b o S.O(t—nT)
n Papoulis, ‘77
s1(t) =X :@{)_. (1)
wt)—f o)

sar(t) —AX :é—. hat (1)

® Overall rate is 2WW (same)

Eldar, 2012




Time-Interleaved ADCs

A high-rate ADC comprised of a bank of lowrate devices

delay Lowrate

{

\ 4
A 4

¢1

>
w,
@

\ 4

P2

a

z(t) .

. @ analog ED

{

:(pM

A\ &

=
-,
Q

» .
» -

Analog Devices Corp.

Texas Instruments Corp.

MAXIM Corp.
National InstrumentsCorp.

— z(nT)
(ideally)

e Each branch (coset) undersamples at 1/M of
the Nyquist-rate

® Widely-researched Yen, ‘56

Eldar and Oppenheim, “00
Johansson and Lowenborg, ‘02
Levy and Hurst, ‘04

...and more

Eldar, 2012
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Practical ADC Devices

Analog bandwidth limitation b Sampling rate r

/ lowpass pointwise
p sampler

ANALOG 8-Bit 40 MSPS/60 MSPS/80 MSPS Analog 7{ Digital
DEVICES A/D Converter >

\ AD9057

\4

cutoff b maxmial rate

FE&L:IRES " 7 FUNCTIONAL BLOCK DIAGRAM r Samp]es / secC
ZDIMHZ Analog Bandwidth i Zypiea! 0 - HH—
On- " nd Track-and-Hold -1 — H
1V p-p Analog Input Range 2 "N
Single 5V Sup_ply Operation . \\
5 Vor 3V Logic Interface 1 [ \
Power-Down Mode: <10 mW @ g = 60MSPS
3 Performance Grades (40 MSPS, 60 MSPS, 80 MsPy = AN = 0-50BFS \
APPLICATIONS 3 6 ll
Digital Communications (QAM Demodulators) é '(
RGB and YC/Composite Video Processing -7 ‘l
Digital Data Storage Read Channels 8
Medical Imaging :9 'l
Digital Instrumentation
v 5ANAI1(U)G FRZSQUEN(?S' (MH‘;;U 0 o
TPC 12. ADC Frequency Response
Black and Hodges, ‘80
In time-interleaved architectures: . Je“‘ll' =L
. . ornsson et al., ‘05
[
The overall rate is Nyquist | | | R
e Each branch needs front-end with Nyquist bandwidth Murmann et al., ‘09
(will be important later) Goodman et al., 09
B Accurate time delay are required ¢; -+-.and more
Eldar, 2012
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Generalized Sampling in a Subspace

¥ Model: Shift-invariant (SI) subspace of possible inputs

{ Zd a(t — nT), d[n]eﬁg(R)}

a(t)
an(t) = sinc(2Wt — n) 4/%__/\_

A = W-bandlimited |
A is NOT bandlimited

¥ Practical ! e.g., splines, pulse amplitude modulation (PAM), and more...
¥ Sampling: Inner products, c[n] = (z(t), s, (%))

B s,(t) =0(t —nT) — pointwise sampling c|n| = z(nT)
t=nl

s s, (t) =s(t—nT) —  z(t)—] s(t) —"%—c[n]

Eldar, 2012




Reconstruction from Generalized Samples

¥ Shift-invariant case

¥ Model: z(t) = Z dnla(t — nT) ‘ X(w) = D(e?*T) A(w)
¥ Sampling: c[n| = (z(t), s(t —nT))

() =) X(w+ 2mk)S*(w + 27k) = D(e77)Gq(e™7)
k

¥ Recovery: Filter by G '(e’“T)to obtain d[n], then interpolate Z(2)

> 0(t —nT)

x(t)— s(t) —xﬂ»Gdl(ejWT)Mﬁlbﬂ a(t) |— z(t)

¥ Sampling rate is 7 rather than the Nyquist rate of z(t)

Aldroubi and Unser, ‘94
® Approach does not depend on fax Christensen and Eldar, ‘05

Eldar, 2012 30




Multiple Shift-Invariant Generators

N
¥ Model: x(t) = Z Z di[n|a;(t —nT)

I=1 n
¥ Sampling / Reconstruction:

si(—t) P :%nTCI ] > ) »&— L (t)
. Y 6(t —nT)
o =l wT ~ . { )
2(t) — : Gy (¢77) . @)
N x N
t=nlT T
Y 6(t — nT)
a1 5 (7 F1) i (7 -7
keZ
# Sampling rate is % - independent of fmax de Boor, DeVore and Ron , 94

Christensen and Eldar, ‘05

Eldar, 2012 31




Toy-Example (1)

Y o(t—nT)
1 t=nil !

z(t)— At —%ﬂ G (e3%T) Jird — a(t) |—z(t)

v

r Model: «(t) =Y d[nla(t —nT)

¢ Sampling: choose s(t) = 0(t) |
3 adjacent shifts contributes to each sample <::I Subspace

» Recovery: exploit known shape a(t) <::I prior

iw 1
Gy (™) = > Alw = 27k/T)

e Rate: %

¥ fmax can be very high, since z(t) is not bandlimited

Eldar, 2012




Toy-Example (2)

B -

1 R
_e—t/q-u(t) - >
T ==
1
Rate: T
fmax is high...

w

Eldar, 2012

Perfect recovery !

A\

— i)

X cln
0 dn

|

|

t

Lowpass data can contain all relevant information !




Pulse-streams (known locations)

r* Model: fixed delayst,,, unknown d,,

:Zn:dnh(t— /!\ /\ A

i1 19 3

r Sampling: design s,(t) = h(t —t,) and sample c[n] = (z(t), s,(t))
t, and h(t) are known

e Recovery: {d,},{c[n|} satisfy a linear system, with coefficients

depending on t,, and h(t) <:I

c[n] = d,||h(t)]|* (for the easiest case with no overlaps)

r Rate: information rate = #pulses/second

* Jmax is high, since z(t) is not bandlimited

Eldar, 2012




Generalized Sampling in Practice

Y o(t—nT)
t=nil "

x(t)—| s(t) X _clnl, G (e3%T) dln] 3 | a(t) |— &(t)
So far:
¥ Toy-examples: perfect recovery of nonbandlimited inputs! (A =SI)
r Pulse streams, A = known pulse shape and fixed delays

A common denominator
Design assumption Sampling & processing rates
fmax-bandlimited High
exact knowledge x(t) € A Approach minimal

# Next slides: Multiband signals, A = known carrier frequencies

Eldar, 2012




Mutliband (known carriers)

g AM FM QAM QPSK
] A — f
0 f 7 f max

¥ Model: narrowband transmissions in wideband range,
modulated on carrier frequencies [; < fmax

= Sampling:
» RF demodulation
¢ Undesampling - Utilize knowledge z(t) € A <:I

# Nonuniform strategies

» Sampling and processing at rate fmax are often impractical

Eldar, 2012




Landau’s Theorem

v States the minimal sampling rate for any (pointwise) sampling strategy
that utilizes frequency support knowledge

Theorem (known spectral support)

Let R be a sampling set for B = {z(t) € L*(R) | supp X (f) C F}. <:|
Then,
D™ (R) > meas(F)

——

Average sampling rate

Landau, ‘67

e N bands, individual widths < B, requires at least N B samples/sec

® Note: & bandpass with single-side width B requires 2B samples/sec
= k transmissions result in N = 2k bands (conjugate symmetry)

Eldar, 2012




RF Demodulation

o) ml\/[ QAM\QPSK
PR A BT

| | |
0 fz fmax

cos (27 f;t) p Y 8(t —nT) cos (27 f;t) p

nT "
z(t) Jx\ X— Dsp Jx\ Jx\ i (t)

(X) Lowpass (X) Interp. (X)

¥ f; value is used in sampling and reconstruction
# Analog preprocessing with RF devices (1 branch/transmission)
® Minimal rate: NB

® Zero-IF, low-IF topologies Crols and Steyaert, ‘98

Eldar, 2012




Undersampling

¥ a.k.a. bandpass sampling N
o) QPSK
A N/ - NN
I 1 > i
0 f [ f (7 f max
> 6(t —nT) cos(2 fit)
nT’ " J\ J\
x(t) 2 DSP ) Interp. ) x(t)
® Sampling: Select rate to satisfy "alias free condition” <:I
¥ Reconstruction: Same as in RF demodulation <:|

# No analog preprocessing

Eldar, 2012




Allowed Undersampling Rates

¥ Sampling rate must be chosen in accordance to band location:

2fu 2fl
a3 < f, < r— <:I Vaughan et al., 91
10 +: - : L
9—.
- Allowed
—~
£ 7
i Forbidden
~150% increase | & *
: =0
above optimal =
2B i
l‘.
01'__ r
1 2 3 4 5 6 7 8 o 10

Band position f,/B
k Robustness to model mismatch requires significant rate increase
® Multiband alias-free conditions are complicated and generally
do not result in significant rate reduction

Eldar, 2012




Periodic Nonuniform Sampling

¥ Advantages:
¥ No analog preprocessing
e No alias-free’”” conditions, work for multiband
¥ Approach minimal rate N B

r Sampling: 74 zn: ot =nl) 74

[on X0 m(t)—l

z(t) — o

S6(t—nT)
delay nl' 4
J ¢, X é)_. g, (t) 4]

(N ]
=>
=

e In general, a p'th-order PNS can resolve up to p aliases:
® Bandpass sampling at average rate 2B Kohlenberg, 53
# Multiband sampling at rate approaching minimal  Lin and Vaidyanathan, ‘98

Eldar, 2012




Reconstruction from 24 order PNS

Input spectrum Aliases Output spectrum Folding index 3(f)
k+1

j - k=2 kt1

u\ A s sl

i i I
l u l U . I Jm Ju

| =%
—(k+1)

Z 5(t - nTe)

— T;;
t = nT, Frequency response G1(f)
— A yn— g1(t) ;

! | T et <:|
i Z 6(t - nTe - qb) -
t=nl " H I
: Ji fm fu
> Q’ﬁ j{—» Y2 [n} qé—» go (t) _,_ :
delay

r Delays result in different linear combinations of the bands

T: Ya(f) = X(f) + X(f — B(f)B) Choose ¢ such that
T, Yo(f) = X(f) + X(f — B(f)B)e 9278(H)¢B e=92mB(H$B £ | <:I

Eldar, 2012




Multi-Coset Sampling

¢ PNS with delays {¢; } on the Nyquist grid

uniform rate ngQ
Analog signal
N0 @ Point-wise samples
3 L=T7
p=3
C =10,2,3}
L. L L

Eldar, 2012




Multi-Coset Sampling

¢ PNS with delays {¢; } on the Nyquist grid | <
C3
C2
¥ Semi-blind approaches: <5
¢ Choose {¢;} universally (or at random) Herley et. al,, 99
¥ Design reconstruction filters g1 (), ..., gp(?) <:| Bresler et al., ‘00
r  Blind” recovery: Bresler et al., “96,'98

-- in_trace(PcR) R =measurements covariance

e Positions are implicitly assumed:
*» ¢ =q(z(t)) depends on band positions
. Recovery fails if incorrect value is used for ¢
e Result requires random signal model, and holds almost surely

Completely blind = Unknown carriers = not a subspace model !

Eldar, 2012



Short Summary

¥ Subspace models
¥ Linear, easy to treat mathematically
¥ Not necessarily bandlimited

¥ Generalized sampling theory
¥ Treat arbitrary subspace models
¥ Many classic approaches can be derived from theory
¥ Rate is proportional to actual information rate rather than Nyquist

But, what if...

® the input model is not linear ?
(for example, when carrier frequencies or times of arrivals are unknown)

B Answer: the rest of this tutorial

Eldar, 2012




Nonlinear Models — Motivation

¥ Encountered in practical applications:
¥ Cognitive radio mobiles utilize unused spectrum " "holes”,
spectral map is unknown a-priori

UNITED = =

STATES i -
FREQUENCY !-

ALLOCATIONS

frequency

\\Sp ectrum

“holes”

—

3 (N | Y

time

Eldar, 2012




Nonlinear Models — Motivation

Ultrasonic probe
¥ Encountered in practical applications: .

¥ Cognitive radio mobiles utilize unused spectr y 57,
spectral map is unknown a-priori -
¥ Ultrasound, reflections are intercepted at unkn t ays

frequency

Rx signal [ Unknowns |

Tlme - t;
Amphtude - d;
A

E Do not fit subspace modeling ... we can aj§

B Questions:

Eldar, 2012



— Part 3 -
Union of Subspaces

- QOutline
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\% [oYs ()|

Signal belongs to one out of (possibly infinitely-)many subspaces

xtyed U= ] A
AEA Lu and Do, ‘08
Eldar and Mishali, ‘09

Each A corresponds to a different subspace A

z(t) belongs to Ax+, for some \* € A & But, \* is unknown a-priori

U is a nonlinear model: =,y € I WPly. o 4y ¢ U

./4)\3 '/4)\2

A union is generally a true subset of its affine hull:

Ll B

The union tells us more about the signal!

UCX={z+ylz,yclU}

Eldar, 2012



Union Types

4 types:
P Number of subspaces
U Al =00 | |A| = finite
Individual — dim(Ay) = o
dimensions
dim(.Ay) = finite
¥ Legend:
B = General analog union models

Infiniteness enters in either dim(.Ay) or |A]

; = Discrete models, e.g., sparse trigonometric polynomials

p(t) = Zgzl cn,e!™ . with only k nonzero coefficients

continuous-time signals with finite parameterization

Eldar, 2012




Examples: Analog Unions (1)

L
¢ Pulses with unknown time delays  z(t) = Z dp,h(t —t,)
=\

Fading channel

h(t)
"/ DAY t
—> > >
-A—H \/_V
L t1 to ta T
Union over possible path delays t; € [0, 7] A
e Dimensions: oo | finite

e t; €1[0,7], A= {t;} } ;22 00
E A)\ = [dl,...,dL]T — dlm(/l)\) =L

g
= finite

e Aspecial case of a broader model: finite rate of innovation (FRI)
Here, innovation rate = 2L /7 Vetterli et al., "02-"11

e Sequences of innovation model has both dimensions infinite
Gedalyahu and Eldar, "09-'11

Eldar, 2012 51




Examples: Analog Unions (2)

¢ Multiband with unknown carrier frequencies A = { f;}

S

|
0 fl f2 fz fmax

Union over possible band positions f; € [0, fiax]

¢ Dimensions:
E fz S [07 fmax] }
¥ A, is a bandpass signal

B Another viewpoint with |A| =finite and dim(Ay) = oo is
described later on Mishali and Eldar '07-11
(efficient hardware and software implementation)

00 finite

0.0

dim(.A))

finite

Eldar, 2012




Examples: Discrete Unions

Al

o0 finite

¥ Signal model has underlying finite parameterization

0.9

dim(.Ay)

finite

¥ Continuous-time examples:

¥ Sparse trigonometric polynomials
Kunis and Rauhut, "08

N - . ;
p(t) = _, cpe?™, with only k nonzero coefficients Tropp et al., 09

¥ Sparse piece-wise constant with integer knots

> 1
0 1 2 3 eee L _J| N

e Discrete-time examples:

e Compressed sensing Donoho, Candés-Romberg-Tao, ‘06

# Block sparsity, tree-sparse models Baraniuk et al., Eldar et al., "09-"11

Eldar, 2012




Compressed Sensing = Union

Each U;is a subspace

[T W [ 7T]

2 - sparse i

)\

ST [ [T]

Sparsity models have been used successtully in many
applications such as:

¥ Denoising and deblurring , ,
Donoho, Johnstone, Mallat, Sapiro, Ma, Vidal, Starck, ...

e Tracking and classification

B Compressed Sensing Candes, Romberg, and Tao ‘06
Donoho ‘06

Eldar, 2012




Compressed Sensing

U Al =00 | |A| = finite

dim(Ay) = oo

dim(.A4,) = finite

“~

CS
¥ For sub-Nyquist sampling, our focus is on infinite unions

b We will start with compressed sensing (CS)
B easier to explain
¥ methods for infinite unions also rely on CS algorithms

e Following a short intro on CS - Xampling and analog systems

Eldar, 2012




Short Intro

“Can we not just directly measure the part that will not

end up being thrown away ?”
Donoho, ‘06

Original 2500 KB Compressed 148 KB
100% 6%

Eldar, 2012




In a Nutshell...

Donoho, ‘06
Candes-Romberg-Tao, “06

LIS

(T TTTITITINTT] 4

O
Short m X n, m<n
Entries ~ Gaussian /
Bernoulli /
Main ideas: partial DF'T ...
_ _ Long
B Sensing = inner products y; = (A;, X) K -sparse

B Random projections
B K non-zero values requires at least 2K measurements

B Recovery: brute-force, convex optimization, greedy algorithms

Eldar, 2012



Concept

Goal: Identity the bucket with fake coins.

Compressed Sensing:

Eldar, 2012

0 O
-‘% " ,—\% . -“*@ﬂ : ‘\‘s‘e-(.’ :
Weigh a coin . Bucket #

from each bucket » Compression >
N numbers 1 number
Weigh a linear combination Bucket #>

of coins from all buckets
1 number




Uniqueness of Sparse

Representations

¥ How many samples are needed to ensure uniqueness?

k Suppose there are two K-sparse vectors x; and xo satisfying
y = Ax, = Axs

e Then A(xy —22) =0

p In the worst case z = x1 — x9 is 2K sparse

¥ Require that there is no z with 2K non-zero elements in N'(A)

e Every 2K columns of A,,x, must be linearly independent = m > 2k

Problem: Condition hard to verify

Eldar, 2012




Coherence

Donoho et al., ‘01

¥ The coherence of A is defined by (assuming normalized columns) fropp o8

p=max | < a;,a; > |
17

¥ When n > m, \/%g,u§1
¥ Uniqueness of y=Ax can be expressed in terms of (| as
1 1
k < 5(1 =+ E)

» Under same condition we will see that efficient recovery is
possible as well

Eldar, 2012




Restricted Isometry Property (RIP)

Candeés and Tao, ‘05
¥ When noise is present uniqueness cannot be guaranteed

¥ Would like to ensure stability
¥ Can be guaranteed using RIP

¥ A has RIP of order § if
(1= d)l=lI* < [[Az]]* < (1 + )]l
for any k—sparse vector x
e In this case A is an approximate isometry

e If A has unit-columns and coherence [l then it has the RIP with
0 =ku

Eldar, 2012




Recovery of Sparse Vectors

¥ Reconstruction: Find the sparsest and consistent x

(Requires m = 2K) min |[z||p s.t. y = Ax  NP-Hard !!
Alternative recovery algorithms (Polynomial-time):

¥ Basis pursuit  min|z||; s.t. y = Az (Requires m = O(K log(N/K)))

Donoho, ‘06
Convex and tractable Candes et al., ‘06
RIP-0o < \/§ — 1 — exact recovery Candés, ‘08

or coherence guarantee K < % (1 + %) Donoho and Elad, ‘03

¥ Greedy algorithms

OMP, FOCUSS, etc.
OMP coherence guarantee K < % (1 + %) Tropp, Elad, Cotter et al.,

Chen et al., and many others...

Eldar, 2012 62




Greedy Methods: Matching Pursuit

¥ Essential algorithm: Mallat and Zhang, ‘93
1) Choose the first “active” column (maximally correlated withy )

arg max; (A;,y) S = supp(x) i

2) Subtract off to form a residual

3) Repeat with y’
e Very fast for small scale problems

e Not as accurate/robust for large signals in the presence of noise

Orthogonal MP:

Pati et al., “93
& Improve residual computation
y'=(I-Ps)y =y - AAly

Eldar, 2012



Recovery In the Presence of Noise

y = Ax +w

¥ {;-relaxation techniques (convex optimization problems)

¥ Basis pursuit denoising (BPDN) / Lasso:

min [zl st [ly = Az[3 <n or min]lzfli + Ally — Az|3

Tibshirani ‘96
Chen et al., 98

¥ Dantzig selector: mj}ﬂHﬂ?Hl st [|AT(y — Az)|IZ, <7

Candés and Tao, ‘07

e Greedy approaches: stop when data error is on the order of the noise

Eldar, 2012




Recovery Gurantees

y = Ax +w
Common settings:
¥ Random sensing matrix A, random noise w ~ N (0, c°1)
¥ RIP (and similar properties) can be approximated w.h.p.

r RIP-based guarantees for Dantzig selector and BPDN:
|z — 2[|5 < CoKo?log N assuming RIP

Candeés and Tao, '07
Bicket et al., 09

¥ Deterministic A and x, random w ~ N(0,c21)
e RIP typically unknown, coherence must be used

e Coherence-based results for BPDN, OMP, thresholding:
|z — 2[|3 < CoKo?log N assuming low p
Ben-Haim, Eldar and Elad, 10

e Deterministic “adversarial” noise w: ||w||5 < €

~ 112 2 Donoho et al., ’06
# Guarantees on order of ||z — Z||5 ~ €

Eldar, 2012




The Sensing Matrix A

¥ Random IID matrices ensure recovery with high probability for
sub-Gaussian distributions (Gaussian, Rademacher , Bernoulli,
bounded RVs ...) when m = O(K log(N/K))

Donoho, ‘06
¥ Random partial Fourier matrices (or more generally unitary
matrices) also ensure recovery with a slightly higher number of
measurements Candés et al., ‘06

B Some structured matrices work as well such as a Vandermonde
matrix

Tutorials on Compressed Sensing:

E R.G. Baraniuk, “Compressive sensing,” IEEE Signal Processing Mag., 24(4), 118-124, July 2007.

E E.J. Candes and M. B. Wakin, “An introduction to compressive sampling,” IEEE Sig. Proc. Mag., 25(3),
21-30, Mar. 2008.

B M. Duarte and Y. C. Eldar, “Structured Compressed Sensing: From Theory to Applications,” IEEE Trans.
On Signal Processing, 59(9), 4053-4085, Sept. 2011.

E Y. C. Eldar and G. Kutyniok, “Compressed Sensing: Theory and Applications,” Cambridge Press., 2012.
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Sub-Nyquist in a Union

zt)ed U= ] A

¥ Imposing subspace model z(t) € ¥ is inefficient, /max problems

¢ High-sampling rate
¥ Analog bandwidth issues
b Geheadlozethsangphing dhessiygf dnertu timséxcessive rate
Still developipg..

“wasted”

e Apply CS on discretized analog models?

...at the price of model sensitivity, high computational loads, and
loss of resolution
Rule of thumb: 1 MHz Nyquist = CS with 1 Million unknowns !

Eldar, 2012



Multiband: Discreti

zation ?

¥ Instead of analog multiband: ¥ Work with discrete multi-tone:

B = 50 MHz

® 060 .
TR, 1naneesnannnt

| | | |
fmax 0 fl
5 GHz

B Model size:

$ = N x fmax  ~ 40 x 200 P

Proportional to actual bandwidth Propo

Eldar, 2012

'Wrm . 'WWIW ,

f2 JN fmax

~ 107 x 1010

rtional to Nyquist rate

Mishali, Eldar and Elron, “10
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Multiband: Discretization ?

: Instead of analog multiband: ¥ Work with discrete multi-tone:
= 50 MHz
H /_\ *°° /\ WM’I’I’I’I’I‘T’T’T‘T’T‘T: {Mhm *° .???‘?'I'.WTWW
| | 1 I | r f
f max 0 f 1 f 2 JN f max
5 GHz
Advantages:
¥ Model size: & ~ 40 x 200 P ~ 107 x 101° huge-scale
¥ Sensitivity: Cannot avoid grid mismatch

0.005% grid mismatch

Negligible
(for a slight rate increase) Lf ﬁr}&{ ﬁ?\lz — 37%

Time (sec) ' Mishali, Eldar and Elron, ‘10
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Multiband: Discretization ?

: Instead of analog multiband: ¥ Work with discrete multi-tone:
= 50 MHz

H /_\ bt /\ WWWIW o ‘m{ﬁr

mmm,

| | 1
f max 0 f 1 f 2 In f max
5 GHz

Advantages:
¥ Model size: & = 40 x 200 ® ~ 107 x 10'°
B Sensitivity: Negligible Analog

y 515 [ Discretization ? = _
STy cxumow (1
¢ Computational load (100 MHz processer): s
~ 200 ~ 10° MIPS

Realtime processin
p g Mishali, Eldar and Elron, “10
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Discrete CS Radar

¥ A discrete version of the channel is being estimated Bajwa, Gedalyahu and Eldar, 11
r Leakage effect > fake targets
 Real channel P Discretized channel
C(r,v) = Z apd(T — 7)0(V — Vi) C(l,m) = Z o™ M= TV sine(m — Ty )sine(d — W)
k=1 k=1

-0.5

-0.4

-0.3

-0.2

-0.1

0

doppler [vmax]

0.1

doppler [Vmax]

0.2

0.3

0.4

0.5
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
delay [Tp]

delay [Tp]

» Limited resolution to 1/W, 1/T
e Sampling process in hardware is unclear
e Digital processing is complex and expensive

Eldar, 2012



ADCs: Why Not Standard CS?

¥ CSis for finite dimensional models (y=Ax)

¥ Loss in resolution when discretizing

¥ Sensitivity to grid, analog bandwidth issues

r Is not able to exploit structure in analog signals
¥ Results in large computation on the digital side

¥ Samples do not typically interface with standard processing methods

More elaborate signal models needed that exploit
structure to reduce sampling and processing rates

Eldar, 2012



Sub-Nyquist in a Union

zt)ed U= ] A

¥ Imposing subspace model z(t) € ¥ is inefficient, /max problems 66

¥ Generalized sampling theory for unions? a6
Still developing... ~
e Apply CS on discretized analog models?
Discretization issues... OO

Must combine ideas from Sampling theory and CS recovery algorithms

Eldar, 2012



— Part 4 -
Xampling

Functional approach to sub-Nyquist in a Union

¥ CS+Sampling = Xampling
» X prefix for compression, e.g. DivX = Outline

Eldar, 2012 74




Standard DSP Systems

High-rate

x(t) :\/ Angci x(fifT) : S z(nT) | 0Ac Z(t)

Compress

Y HW
| 4w ] ow-rate SV

¥ Sampling and processing at high rates = Nyquist of x(t)

r After compression, data has low rate

e Standard DSP software expects Nyquist-rate samples
rely on invariant properties z(t) <> x(nT)
(enables digital filtering / digital estimation for example)

Move compression to hardware before ADC !

Eldar, 2012




Xampling — Architecture

Low-rate Low-rate Low-rate

Reduce analog bandwidth Reduce digital complexity
prior to sampling Gaiflbackward compat@bility
i i n . L
:U(t) COHIIJPI?;ZOH ADC device y[ ]‘ Detection | Subspace |  Subspace :C(t)
i e N - | z(t) € Ay~ g g i
P-U—S P (1) A DSP reconstruction
]
\ Analog Commercial }E \ Nonlinear Lowrate, Standard J Lowrate, Standard
1
Y \ Y
X_ADC —‘—______________*:~ _____________ X_DSP Mishali, Eldar and Elron, “10
,// Compressed sensing algorithms / \\‘
“«._ MUSIC / ESPRIT 7

-
~ -
~~~~~~

__________
—————————————————

e Functional architecture: Both sampling and processing at low rate
¥ y|n] # x(nT) > Detection block outputs lowrate data that DSP can handle

e Built bottom-up: based on practical and pragmatic considerations

Eldar, 2012




Xampling: Main Idea

Principle #1 (X-ADCQ): Union
i Create several streams of data PilhosS
¥ Each stream is sampled at a low rate Analog

(overall rate much smaller than the Nyquist rate)
¥ Each stream contains a combination from different subspaces

New hardware design ideas

Principle #2 (X-DSP): N
¥ Identify subspaces involved (e.g., using CS) z(t) € Ay

B Recover using standard sampling results Nonlinear

New DSP algorithms

Eldar, 2012




Xampling Systems

¢ Modulated wideband converter Mishali and Eldar, “07-/09

¥ Periodic nonuniform sampling (fully-blind)  Mishali and Eidar, 07-09

r Sparse shift-invariant framework Eldar, ‘09

Vetterli et al., '02-07
r Finite rate of innovation sampling Dragotti ef al., 0207

Gedalyahu, Tur and Eldar, "10-"11

F Random demodulation Tropp et al., 09

Eldar, 2012




Multiband Union

B [xyq ~ 10’s GHz

J Y N

—%fNYQ 0 %fNYQ

1. Each band has an uncountable 2. Band locations lie on the continuum
number of non-zero elements

3. Band locations are unknown in advance

M = { z(t)| no more than N bands, max width B, bandlimited to[-3 fxvq, +3/xvQ) }

Mishali and Eldar, “07

Eldar, 2012 79




Optimal Blind Sampling Rate

Theorem (known spectral support)

Let R be a sampling set for B = {x(t) € L*(R) | supp X(f) C F}.

Then,
D™ (R) meas(F
Landau, ‘67

Average samphng rate

Theorem (unknown spectral support)

Let R be a sampling set for N, = {Br : meas(F) < c}.

Then,
(R) > min@fNYQ}

1. The minimal rate is doubled
2. N bands, individual widths < B, requires at least 2N B samples/sec

Mishali and Eldar, ‘07

Eldar, 2012




The Modulated Wideband Converter

| H(f) /\
i | 3 _. | > f
0
H(f)
niy
/.
1
2T,
°
a?(t) . m sequences
Pm(t) * l l
nTp : L
/)L\ / . [’I’L] /\/ 27T, 2T,

and many
more... Mishali and Eldar, 09
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Recovery From Xamples

Zpmn
B Cannotinvert a fat matrix! M | ]/

B Spectrum sparsity: Most of the z;|n| are identically zero
B For each n we have a small size CS problem

B Problem: CS algorithms for each n 2 many computations

Eldar, 2012




Reconstruction Approach

y[nl i Solve finite | S
' problem

— | Reconstruct

S = non-zero rows

CTF 4
(Support recovery)

Continuous Finite
yln| =Azn|, neZ - V =AU

The matrix V is any basis for the span of y|n]

Eldar, 2012




Underlying Theory

y(A) =Az(\), AeTl

Yy(I') |Constructa frame | V Solve MMV supp(U)

— > ——»

V for y(I) V =AU

Theorem [Exact Support Recovery, CTF]

Let Z(I") be a k-sparse solution set. If
o(A) > 2k — (rank(y (")) — 1)

then supp(z(I')) = supp(U).

Mishali and Eldar, ‘08

CTF = Continuous to Finite

Eldar, 2012




Insight into CTF

yln] = Az|n]
Run CS recovery Poly.-time / y|[n] nonlinear
for each time-instance n
Computationally heavy
1. Construct frame V O(k) snapshots easy
2. Solve CS systemV = AU Poly.-time once nonlinear
3. APPIYATS on y|n| 1 matrix-vector mult. / y[n] linear

for each time-instance n

Computationally light

Eldar, 2012



Reconstruction

. . Mishali and Eldar, “07-"10
High-level architecture

yin
"] , CTF \ 4 .
° (Support recovery) - ‘ nalog X
o 5P ] Back-end (1)
s ’ —
® > >
Ym [N Memory ‘(Baseband) (Realtime)
i s Detector | | ||[]]]]]
L Any other
A:fg O] standard baseband processing
— —* (denoising, signal separation, etc.)

Recover any desired spectrum slice at baseband

Eldar, 2012




Reconstruction

High-level architecture

Mishali and Eldar, “07-"10

y1(n]
AL CTF 4
U (Support recovery) ” Analog A
bSP J  Back-end ()
° + - L
¢ N Baseband)[™ .
Yo [12] Memory ‘( ) (Realtime)
m > Detector | | | ||| |||| =
 ——
[ I I
I si[n] I Balanced quadricorrelator
I N Carrier f;
z[n] : I NN S arrier Ji
I Align /stitch I j\
_ s(t) cos(wot) — va(t)
: g sin(wot) T jj—' Narrowband
' : informati
21+1[?’L] | —»@—» LPKF ; (5 ‘}—t —»w/><> wgn
I i Li(t), Qi(t)
|
1

Eldar, 2012




Reconstruction

. . Mishali and Eldar, “07-"10
High-level architecture

y1(n] CTFE C
— q
° (Support recovery) " | Analog X
o i ’ 5P ] Back-end (1)
+ > ’
> >
.[n] Memory ‘ (Baseband) (Realtime)
Im > Detector | | | ||| |||| =

Can reconstruct:

¥ The original analog input exactly #(t) = z(t) (without noise)

e Improve SNR for noisy inputs, due to rejection of out-of-band noise
e Any band of interest, modulated on any desired carrier frequency

Eldar, 2012




Sign-Flipping Periodic Waveforms

M alernations

e opi(t) = 1] — A=SF
0 T,

Theorem [Expected-RIP for MWC]

Periodic mixing with sign patterns gives A with ExRIP probability

(1 = C)pm (1 +(S) —2B(8)) — (Bx — Ci)pm (V(S) — B(S)) + CpMB(S) — 1

S = rectangular (signs)
F =square (DFT)

P Z 1 T 62
k
B
TABLE 1I: ExRIP guarantees for different sign patterns
«(S) = correlations energy
Dimensions Cuality = 100 ExRIP prob. p .
Family m M 2K| «fS) B(S) =(S) | Normal ’ Uniform B (S) - auto/ cross-correlations
Maximal 80 511 24 | 1.438 0.196 0.408 | [ 0.932 0.931 v(8) = reverse-correlations
Gold 80 511 24| 1.255 0198 0,199 || 0.939 0.939
Hadamard 80 512 24 1.25{].238 0.000 0.000
Random] 80 511 24| 1.439 0.198 0.202 | 0.927 0.927 |
Kasami 6 255 12 | 6.667 0392 0.294 | (0.689 0.675
Random2 40 195 24 | 3.025 0526 0.537 || 0.856 0.858 |

Mishali and Eldar, ‘09
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Time Appearance of Mixing Waveforms

EEES

L1
B Bad news: can't design nice sign patterns at GHz rates
B Good news: only the periodicity matters ! 06
00 . Nowzs
R
pi(t) = ) cue'® Ak AAAAAMA Eﬁemany
s 0 T, 0 T,

B Competing approaches (pure CS) struggle with time appearance

Eldar, 2012



Sub-Nyquist Demonstration

Carrier frequencies are chosen to create overlayed aliasing at baseband

FM@6312MHz AM@807.8 MHz  Sine @ 981.9 MHz MWC prototype aliasing around 6.171 MHz

10 kHz o 100 kHz

g

Reconstruction
(CTF)

N
AL
$z

Lo

>

FM @ 631.2 MHz AM @ 807.8 MHz
Mishali et al., “10

Eldar, 2012 91




Xampling Systems

¢ Modulated wideband converter Mishali and Eldar, “07-/09

# Periodic nonuniform sampling (fully-blind)  |Mishaliand Eidas, ‘0709

r Sparse shift-invariant framework Eldar, ‘09

Vetterli et al., '02-07
r Finite rate of innovation sampling Dragotti ef al., 0207

Gedalyahu, Tur and Eldar, "10-"11

F Random demodulation Tropp et al., 09

Eldar, 2012




Fully-Blind PNS Approach

p out of L
active cosets

Mishali and Eldar, ‘07

h
[

Eldar, 2012

DTFT [

e N
partial DFT matrix

A: pxL

~ 4




Can Avoid RF Front-end ?

C1

C2

[
»

Il -~

z(t) —

® YES! If the input bandwidth is not too high...

Eldar, 2012
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Practical ADC Devices

Analog bandwidth limitation b A)ﬂphng rate r
ANALOG 8-Bit 40 MSPS/60 MSPS/80 MSPS pr——
DEVICES A/D Converter lowpass P
sampler
\ AD9057 Analog X Digital
FE&URES 0 T > >
Q:;l;i'l'\ﬂll-lz A:alog Bandwiq(;‘trlil algypres! -1 1 — : : 1 t
- .and- ™M maxinlal rate

EI)l\l." pP-p Ar;alog Input Hangr; rackcand -2 \ I Cut()ff b
Single 5 V Supply Operation -3 AN T Samp]eS/SEC
5V or 3 V Logic Interface . ENCODE = 60MSPS \
Power-Down Mode: <10 mW % -4 AlIN = —0.5dBFS
3 Performance Grades {40 MSPS, 60 MSPS = _5 "
APPLICATIONS E \
Digital Communications (QAM Demodu 2 —&
RGB and YC/Composite Video Processir < "
Digital Data Storage Read Channels =7 '|
Medical Imaging 8
Digital Instrumentation \

-8

- 1 2 5 10 20 50 100 200 500

ANALOG FREQUENCY (MHz)
TPC 12. ADC Frequency Response

In non-uniform sampling:

e Both T/H and mux operate at the Nyquist rate

e Digital processing and recovery requires interpolation to the high Nyquist grid
¥ Accurate time-delays @; are needed

Eldar, 2012




Xampling Systems

¥ Modulated wideband converter Mishali and Eldar, ‘07-09

# Periodic nonuniform sampling (fully-blind)  |Mishaliand Eidas, ‘0709

® Sparse shift-invariant framework Eldar, ‘09

Vetterli et al., '02-07
r Finite rate of innovation sampling Dragotti ef al., 0207

Gedalyahu, Tur and Eldar, "10-"11

F Random demodulation Tropp et al., 09

Eldar, 2012




Sparse Shift-Invariant Framework

Eldar, ‘09

Sampling signals from a structured union of shift-invariant spaces (SI)

z(t)= > Y  dn]a(t—n)

\l|:l¢ n——o0

There is no prior knowledge on the exact |/| = £ indices in the sum

> 6(t —nT)

t=nT
ST (—t) V4 Y1 [TL] Reconstruction dl [,n] % a (t)

o Real-time .
) t =nT Y | )
() —"— wnl | B | dvh —oan(t)

Eldar, 2012

0
]

Sampling kernels Reconstruction kernels

97




Xampling Systems

¥ Modulated wideband converter Mishali and Eldar, 07-109
¥ Periodic nonuniform sampling (fully-blind)  Mishali and Eidar, 07-09

® Sparse shift-invariant framework Eldar, ‘09

Vetterli et al., '02-07
» Finite rate of innovation sampling Dragotti ef al., 0207

Gedalyahu, Tur and Eldar, "10-"11

F Random demodulation Tropp et al., 09

Eldar, 2012




Pulse Streams

x(t):;alh(t—tl) /\ /\ : j\/\ A /\ >

2L degre'es of freedom per unit time
¥ Delays and amplitudes are unknown

¥ Applications:
Communication
Radar
Bioimaging
Neuronal signals

e Special case of Finite Rate of Innovation (FRI) signals Vetterli et al., 02

.. : : : 2L
¥ Minimal sampling rate — the rate of innovation: 0 = 7

Eldar, 2012




Analog Sampling Stage

¥ Naive attempt: direct sampling at low rate
¥ Most samples do not contain information!!
| ¢ k ® >

Sampling rate reduction requires proper design of the analog front-end

Special cases:

¥ Periodic pulse streams JMLMM.LAMLN Vetterli et al., 0205
e Finite H”” Dragotti et al., "07-'10
- > Tur et al., "10-'11

E Infinite pUISe streams Gedalyahu ef al., "09
—JJJ—MMMLt

Eldar, 2012 100




Periodic Pulse Streams

F Periodic FRI signal model:

() —Zialh(t—tg—lm'), te €[0,7) AAMA M“A MMA ,t

keZ 0—1 0

Vetterli et al., '02-'05
The function h(t) and the period are known

B Since x(t) is periodic it has a Fourier series with coefficients

21k L
X = 1 (2 St

=1

/

B Spectral estimation: sum of complex exponentials problem

B Solved using 2L measurements Schmidt, ‘86
B Methods: annihilating filter, MUSIC, ESPRIT Roy and Kailath, 89

Stoica and Moses, '97

Eldar, 2012 101




General Approach

Analog domain Digital domain

Spectral Estimation

581________

/\ /\ c[n] mei Compressed
A, Sy Fourier X :
- — ( t) 4 | Coeffic > sensing,
z(t) t3nl oeticiens MUSIC, ESPRIT...
/\/ Sub-Nyquist x=Qlc
; |
7 L. 7L I
Mixing” filter : {t, al}lel

Samples linear combinations of

the Fourier coefficients t

Identify signal
subspace
(= X-DSP)

Eldar, 2012



Find Fourier Coefficients

E Fourier series of a periodic input: Find
S : c[n] Fourier X
— .. —
L ok & _ Coefficiens
x(t) = Z&zh(t —ty) — X[k|]=H (T) Zale—ﬂwktz/T = QTC
£l =1
x=[--X[k]---]T Unknown

E Sensing with lowpass:

cin] = (s(t — nt), 2(t)) = 3 XTK) |
k

oo
— 0

2k = ok
— ZX[k]ej%rknT/TS* (_) _ Z X[k_]ejQﬂk)nT/TS* (_) — = VS %
N~
J

k 4 — T
\ ) \ J\ Q
Y Y
S*(w) = CTFT{s(t)} V  diagonal S c=[--¢cn]---]T
lowpass —-# 0,—L < k < L Known
measurements

Eldar, 2012




Annihilating " Filter”

F Goal: design a digital filter A[k] with z—transform:

L L I
— A[ —k A[O jQﬂ'tg/T = {tlaal}lzl
> [I(r- )

k=0
E  Alk|has zeros at the " 'frequencies” t; — annihilates X|[k]
B Filter coefficients can be computed from the measurements:

o X[-1 - X[-L] (A[U

AlK] * X[k] =0 — i X[ -- X[=(L =1 A[l

Eldar, 2012




X-ADC: Filter Choice

x(t)__| (D) > c[n] X

Theorem [Sufficient Condition]
X[A]
A

If the filter s™(—t) satisfies : rcset

(0 w=2rk/T,k & K
S*(w) =< nonzero w=27rk/T, ke N
arbitrary otherwise,

\
and N > |K|,then the vector x can be obtained

from the samples ¢[n], n=1...N.

Tur, Eldar and Friedman, "11

Eldar, 2012



Special Cases

F Low paSS fllter Vetterli et al., ’02
B Sum of sincs (SoS) in the frequency domain Tur, Eldar and Friedman, '11

set
T w
| b:.si — k
\/%Z ’“S’l“c(zw/T )

o o vmlae, /\ A—.—\dezvxexv;-A'w. oo

—\-/ [ Compact support! ]

<
B In the time domain ¢(?) ZkeK by el 2Rt/
B For b, = 1: g(t) = rect (£) D,(27t/7), D,(t) is the Dirichlet kernel

05

04r 05r

03¢ 04

02r 03¢

[0]

The filter g(t)

01r 0z2r

01F

ot

-02 L -0.1
-05 0 0.5 -300 -200 100 0 100 200 300

time [units of 1] Frequency [Rad/sec]

(a) Time domain (b) Frequency domain

Eldar, 2012




Finite Pulse Streams

B SoS filter can be used for finite streams due to its finite support!
E  Not true for LPF or other filters with long support

T
=
T

E. 10 .% 10 1
g % —B—spline fitter
é 107 \ —B—-spline filker _§ 107" \
E ——ZFauasian filter E ==— E—spline filter
E - -‘_5—-3 - SoS filter = —(Zaussian filter |
Far more robust than z g
Spline based methods — 2 g
= 5 ) 15 2 25 3 s 5 ) 1 20 €l 5
works even for high L! YT awm Y R
(a) L =2 by L=23

T B-spline fitter

10° : : : , ,
—B—spline filter
1" \'_/XP—/\_

= ———F—spline filter

T Gaussian filte

—SaS filter

Time—delay estimation error [units of 1]

Time—delay estimation error [units of t]

0

25 20 35 5 10 15
[dB]

0

) 25 20 25
[dB]

SNR SNR

c) L=5 (dy L =20
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Multichannel Scheme

Proposed scheme: t =mT

1
r Mix & integrate '@ > T.[Im(‘)dt — —» c1lm]
k Take linear combinations LPF
. . f ¢
from which Fourier coeff. ) il
o TIL) —— > .
can be obtained (
C = Sx
. 1 o
¢ ¢ o T | e i
Samples  Fourier coeff. “T’l”
vector i Gedalyahu, Tur and Eldar, "11

e Supports general pulse shapes (time limited)
e Operates at the rate of innovation

e Stable in the presence of noise

e Practical implementation based on the MWC S = [s/]
¥ Single pulse generator can be used

_ — 2 Ikt
é_ > Sige o

Eldar, 2012




Filter Bank Approach

- —>
[
z(t) X o , .
3 M o W(ej""T)
. 27]}KT 2o K- { — T -ITI L]
0 TO QK‘,- E
) dp|n]
N| cr [72] S
¥ The analog sampling filter “smoothens” the input signal :  Gedalyahu and Eldar, 09

¥ Allows sampling of short-length pulses at low rate
e CS interpretation: each sample is a linear combination of the signal’s

values.
t=nT
. o ||~ [N
# The digital correction filter-bank:

r Removes the pulse and sampling kernel effects

B Samples at its output satlsfy: d[n] vV (Ti)a[n] \V (Tz) is Vandermonde

k The delays can be recovered using ESPRIT as long asW > 27K /1

Eldar, 2012




Noise Robustness

e MSE of the delays estimation, versus integrators approach  Kusumaand Goyal, 06

L=2 pulses, 5 samples L=10 pulses, 21 samples

40 40 A
A
RS \ I, \ I,\
%, /
20 e \\ ,/, \\\ T~ e 20 ==~ , / \\ /,s\\ ‘,a\ ,47 \‘ ,I \\\
‘\‘ ’,’ - = NN\N\ TN e 4 \\",l Feao? \\\ ’,l \\'I N e
\\ v
\
0 5 0
‘\
\\ \“
-20 N RS 20 m———
3 AN g N
— ‘\N\ —_
B -40 ™~ S B -40
= \ . 2 \
\ N
-60 \\ N \\
\
-80 ‘\ -80 N
proposed method proposed method \\
00} o N inte -100 | —mmmmm ;
grators integrators ~
r r r £ r r £ r r r L
0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90
SNR [dB] SNR [dB]

The proposed scheme is stable even for high rates of innovation!
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Application:

Multipath Medium Identification

Gedalyahu and Eldar, "09-"10

NS mee B
[, propagation paths : : —

:cT(t > h(t—nT) t)=> ah(t—t)

nez leZ

L pulses per period T°

¥ Medium identification:
® Recovery of the time delays
® Recovery of time-variant gain coefficients

The proposed method can recover the channel parameters from
sub-Nyquist samples

Eldar, 2012



Application: Radar

¥ Each target is defined by Bajwa, Gedalyahu and Eldar, "11
¥ Range - delay
¥ Velocity — doppler =

£4
[

¥ Targets can be identified with infinite Y
resolution as long as the time-bandwidth

product satisfies 7W > 2r(K + 1)? (

0.5 I :
& True Targets X True Targets
O Qur Method O MF peaks
:
z @
E OF- e
[=}
g ®
Q : ®
®
~ I I i I
0'50 0.2 0.4 0.6 0.8 1 ] ]
Delay (x Tmax) Delay (x tmax)
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Xampling of Radar Pulses

(Itzhak et. al. 2012 in collaboration with NI)
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Demo of real-time radar at NI week in August
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Application to Ultrasound

Wagner, Eldar, and Friedman, "11
¥ Ultrasonic pulse is transmitted into the tissue

¥ Pulse is conducted along a relatively narrow beam
¥ Echoes are scattered by density and propagation-velocity perturbations
¥ Reflections detected by multiple array elements.

¥ Beamforming is applied — digital processing , signals must first be
sampled at Nyquist rate (~20MHz)

Individual traces ©m (t)

7 _if W: Nyquist Sampling )
——— (~20MHz / element) Beamforming

000
l

Eldar, 2012



Standard Imaging - Beamforming

Non-linear scaling of the received signals | Beamformed Signal @ (t)
M |
1 1
@(t;8) = I Z Pm | 5 t + th — 4y, tsing + 4y.2
m=1

Vm - distance from m 'th element to origin , normalized by ¢ . T

!

Performed in the digital domain (after sampling at Nyquist-rate)

Individual traces ©m (t)

Nyquist Sampling

(~20MHz / element) Beamforming

Focusing along a certain axis — reflections originating from
off-axis are attenuated (destructive interference pattern)
* SNRis improved
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Sample Rate Reduction - Motivation

¥ Recent developments in medical treatment typically imply increasing
the number of transducer elements involved in each imaging cycle

¥ Amount of raw data that needs to be transmitted and processed grows
significantly, effecting machinery size and power consumption

¥ By reducing sampling and processing rate, we may achieve significant
reduction of data size - this implies potential reduction of machinery

size at Our Approach:
Integrate Xampling and beamforming

Reduction of sampling rate implies potential reduction of machinery
size and power consumption

Portable Low-End ~ Mid-Range  High-End
Systems Systems Systems Systems

Eldar, 2012




Ultrasound and Xampling

¥ Possible approach (does not work in practice....): Replace Nyquist rate sampling
by Xampling, then reconstruct signals and apply beamforming

¥ Problems:
¢ Low SNR: erroneous parameter extraction by sub-Nyquist scheme

e Reflections from a relatively wide region: complicated algorithm for
matching pulses across signals

¥ Proposed solution - Xample the beamformed signal

= == R OO OO IO WA MO Ao
Problem: beamformed signal may only be Xampled “conceptually”
in practice — we only have access to individual receivers!

Eldar, 2012



Compressed Beamforming Scheme

1D Xampling

A
4>©—> %_f;(:-)dtﬂ—» Cy
C1m

Distortion, m

> I

Conceptual beamforming

A
( \Y4

Distortion, -M

Beamformed
signal

? —jz—ﬂp‘\'t
s1(t) = XrexS1xe '

1, SR
- [y (dt|—> ¢,

Distortion, M

V2T
J—kt

Sp(:t) = ZRE}( Sp}ce_ g
Scheme combines signals from multiple elements for SNR improvement.
Similar to beamforming techniques used in standard ultrasound imaging.

Here, the beamforming is moved to the compressed domain — samples at
output corresponds to the beamformed signal.

Eldar, 2012



Compressed Beamforming Scheme

Samples from
the rest of the

active elebbXgmpling
\ A

LN
\@4’@*&*
Distortion, m

I 2
A _ '_‘.t
S1(1) = X er S1K€ o SISO S,
I

istortion, m
Samples gom |

2 \ ¢
the-rest ng{h)e: ZREKSME_.}_F N T I T T e
active elements

(ioiﬂ (I—)

\ 4

Applying receiver-dependent distortions to
two of the modulating kernels
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Digital Compressed Beamforming

F  Using some algebraic manipulations we can show that the same affect can
be obtained digitally

F Use existing schemes to extract extended set of Fourier series coefficients
(e.g. Sum of Sincs or multichannel bank) and then apply appropriate linear
transform on the coefficients

(ol(t) S:(_t) %T > Vl > (I)l Al é1
t=n—
Kl
( J ( J
. o« —{>) :
¢ Low rate sampling Low rate beamforming e
A A
( \ ( \
P (t) S:A (_t) VM (I)M 5 AM ﬁéM
T
t=n——
K

Eldar, 2012




Standard Imaging?‘

20
40
60
80

100

120

140

160 -
-80 60 40 20 20 40 0 80 -80 -60 -40 -20 -80 60 -40 -20 0 20 40 60 80

1662 real-valued samples, per sensor 200 real-valued samples, per sensor per 232 real-valued samples, per sensor
per image line image line (assume L=25 reflectors per line) per image line (average *)

Xampling results in an error in the peaks with standard deviation being
0.42mm.

We obtain a more than 7-fold reduction in sample rate.

* Applying 2nd scheme — Max. number of samples (for some line angles & sensor indexes) - 266
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Xampling Systems

¥ Modulated wideband converter Mishali and Eldar, 07-109
¥ Periodic nonuniform sampling (fully-blind)  Mishali and Eidar, 07-09

r Sparse shift-invariant framework Eldar, ‘09

Vetterli et al., '02-07
» Finite rate of innovation sampling Dragotti ef al., 0207

Gedalyahu, Tur and Eldar, "10-"11

F Random demodulation Tropp et al., 09

Eldar, 2012




Random Demodulation

¥ Model: sparse sum of harmonic tones

» freq.

Tropp et al., “09

%%
WaRaf

are integers

1
<>
1) = 3 agetmt
oen . oo o . . o0
| | |
K active tones, | < K —55 -10 1 Ty
r Sampling: "
— R
7
f(2) —»@T@—» f_ > y[n
Pe(t)
+1 at rate W
7 t=w
“X | Multiply by +1

() /’5&/ | Sum every R values | yln]

Nyquist-rate

Eldar, 2012




Random Demodulation

Reconstruction: . / t X% x[k] | Multiply by +1
f(t) i— Sum every R values

L
W

Nyquist-rate

v Integers W, R, % + multitone input (af, = c,ay):

1---1 % +1 2[HRT : k-sparse
1.1 1) [z W ¢

H D x F a

Use CS solvers to recover a, then reconstruct f(¢)

Numerical simulations: 32 kHz AM signal recovered from sampling
at 10% NquISt rate Tropp et al., “09

e Similar to MWC? Next part describes the differences...

Eldar, 2012




Summary: Xampling Systems

£y AN

Mishali-Eldar 09
PNS

Periodic mixing

Multiband finite Mishali-Eldar 08 time shifts CTF
Nyquist-folding . :
Fudge et al. 08 Jittered undersampling
Sparse shift-invariant finite Eldar 08 Filter-bank CTF
Periodic L o Annihilating
Vetterli et al. 02-05 owpa filter
. One-shot Moments
ime- oo finite i
FRI (time-delays) Dragotti et al. 07 Splines factoring
Periodic/one-shot Sum-of-Sincs filterin Annihilating
Gedlyahu-Tur-Eldar 09-10 & filter
Sequences of Lowpass or MUSIC or
innovation o0 Gadlyahu-Eldar 09 periodic mixing + integration ESPRIT
Harmonic tones finite RD Sign flipping + integration CS

Tropp et al. 09

“"Xampling: Signal Acquisition and Processing in Union of Subspaces”, Mishali, Eldar and Elron, TSP ‘11

Eldar, 2012
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Nonlinear Sampling

Michaeli & Eldar, "12

¥ Results can be extended to include many classes of nonlinear
sampling

Ex ample: Nonlinear Sampling

S n
z(t) e /T

cln]

¥ In particular we have extended these ideas to phase retrieval
problems where we recover signals from samples of the Fourier
transform magnitude (Candes et. al., Szameit et. al., Shechtman et. al.)

¥ Many applications in optics: recovery from partially coherent light,
crystallography, subwavelength imaging and more

Eldar, 2012




Quadratic Measurements in Optics

Shechtman, Eldar, Szameit, Segev 11 I . t
maging system
i) .
- |l Do) oV
> > >
8(7711772) J (771'772)
Field at object plane: A(5) Intensity at image plane: !(v)

Input/output relation:|i (u) = [[h(u=n)h"(u=n,)A(n,) A" (n,) B (|r, = n,|)dn,dn,

Coherence of light is expressed by the mutual coherence function:

B (n,7,) = (U (n, ) U (7,.0)]
For “fully coherent” light (~Laser) :B (7,.7,):=1

For “fully incoherent” light (~ Sun) :B (»,.7,):= 6 (n,.n,)

The interesting part is in between!

Eldar, 2012




Semi-Definite Relaxation

min ||a|lp  subject to |a*Mya —y,| <€
a

*

B Define a matrix X := aa

E Look for X thatis:
E Rank1
Row sparse

I
B Consistent with the measurements
E PSD

argmin Rank (X ) s.t.

X >0 Fazel, Hindi, Boyd 03

B In practice we replace Rank(X) with log det (X+b I) and solve iteratively
B Can generalize the approach to more general nonlinearities and use efficient
greedy methods (Beck and Eldar 2012)
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Phase Retrieval

Szameit et al., Nature Photonics, ‘12

¥ Subwavelength Coherent Diffractive Imaging:
Sub-wavelength image recovery from highly truncated Fourier spectrum
¥ Quadratic CS: based on SDP-relaxation and log-det approximation

Eldar, 2012



— Part 5 -
From Theory to Hardware

- QOutline
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Theory vs. Practice

¥ Practical considerations affect the choice of a sampling solution

¢ Example 1: Multiband sampling (known carriers f;) ADC device
_ RF demodulation Nonuniform methods — L
Minimal analog /
preprocessing
ADC with low analog
bandwidth ‘/

e Example 1: Pulse streams (known delays ¢,)

Digital match filter

Low sampling rate /

Robustness to model /

mismatch

Eldar, 2012




ADC Market

+ Analog Devices m National Instruments » Maxim < Texas Instruments
32 -
X
28 A
24 - HOXO 0 MR S T M KD #X
)
= * X
0
5 20 - * X e * X
g X * semze
S 16 1 ¢ ees @< exee KR DRSPS X
g X X & HEIeEK e i 1 HPREC
*e K
S 12 *«e X b PR e e
o * *
L K K B X0
c% 8 1 I OBEEOC DTS /. I
44~ State-of-the-art
Nyquist ADCs
0 T T T 1
o o Q¥ ¥
N x@ RS N

Sampling rate (samples/sec)

® State-of-the-art ADCs generate Nyquist samples
» Today’s challenges:
# Increase sampling rate (Giga-samples/sec)
e Increase front-end bandwidth
® Increase (effective) number of bits

Eldar, 2012



Sub-Nyquist: Practical Challenges

Goal: Shift f,,,x challenge away from ADC technology

No free lunches ! Signal has frequencies until fi,ax
Nyquist will enter elsewhere into system design

Practical design metrics:

B robustness to model mismatches -~
flexible hardware design
light computational loads
imaging: high resolution )
noise performance
power, area, size, cost, ...

> Focus of this part

Next slides:
® Study practical metrics of example sub-Nyquist systems (RD/MWC)
® Glance into sub-Nyquist circuit challenges
B Sub-Nyquist imaging: analog vs. discrete CS

Eldar, 2012




Random Demodulator

t=2
¢ Robustness: ! :
= F(t) —(X)— /t 1 > y[n]
== = QOriginal R
|| ’I Reconstructed 0.005% grid mismatCh T
LFO=FOI2 _ g0, pe(t)
: 112 — 0 T L,*
: Q)| +1 at rate W froppetat,

A

-50
0.4 0.42 0.44 0.46 0.48

— W, R must be integer multiplies of tones grid spacing

® Required hardware accuracy (so that y = HDFa): N
/W “"Nice”
=~ > time-domain

Accurate integrator: /R pe(t) = +1
_ ||| | || > appearance

~/
®# Computational load: W = 1MHz — CS on 1 million unknowns

e Reported hardware: W = 800 kHz, R = 100 kHz Ragheb ef al., ‘08
DSP processor 160 MHz Yu et al., ‘10
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Modulated Wideband Converter

h(t) = lowpass

¥ Robustness: pi(t) nT,
m > 2N, 1/T, > B (basic setup) —é()— h(t) = gl
Inequalities allow model mismatches z(t) | .
Pm(t) o nT,
k Required hardware accuracy: j
: . "“Nice”’ h(t) — Ym [n]
p;(t) = periodic Wa,veforms]> ,
freq.-domain Mishali and Eldar, ‘09

appearance
Nonideal lowpass response can be compensated digitally Chen et al., ‘10

¥ Computational load: fnyg =5 GHz, N =6, B = 50 MHz

CS system size: 40 x 200
linear real-time reconstruction

® Reported hardware: fNyQ = 2.2 GHz, sampling rate 280 MHz
10msec recovery (on PC-MATLAB) Mishali et al., ‘11
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Hardware Accuracy

¥ Sign alternating functions at 2 GHz rate

Time appearance Frequency appearance

File Control Setup Measure Analyze Utilities Help 3:24 PM

ATTEN 1O0d4d8
RL Od4d8™m

il !-
TR ¢
|| mm.liu

I
fices |

CENTER SOOMH=z SFPAN 1 .0000GHzZz
REBwW 1. .0MH2z vEew 1. 0MHZz SWFP S0O.0ms
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Comparison

¢ Visually-similar systems — major ditferences in practical metrics

pa(t) ni,
=% T
7 h(¢) — y1[n]
f2) _>6T<>_’ /t}z 2= vl z(t) *
Tropp et al.,’
+1 at rate W pp ettt <> h(t) ﬁ&_, Y 7]
Mishali and Eldar, ‘09

r No free lunches... Nyquist enters in:

¥ Time-domain accuracy ¥ Freq.-domain accuracy
¢ Computational loads (handled by RF front-end)

e Similar conclusions in other applications?

Eldar, 2012




CS Radar

¥ A discrete version of the channel is being estimated

r Leakage effect > fake targets
 Real channel e

C(r,v) = Z aRd(T — 7% )0 (v — Vi) C(l,m) = Z aped ™M= TVR) sine(m — Ty )sinc(d — Wry,)
=1

Discretized channel

k=1

-0.5
-0.4
-0.3
-0.2

-0.1

0

doppler [vmax]

0.1

doppler [Vmax]

0.2

0.3

0.4

0.5
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
delay [Tp]

delay [Tp]

» Limited resolution to 1/W, 1/T
e Sampling process in hardware is unclear
e Digital processing is complex and expensive

Eldar, 2012



ADCs: Why Not Standard CS?

¥ CSis for finite dimensional models (y=Ax)

¥ Loss in resolution when discretizing

¥ Sensitivity to grid, analog bandwidth issues

r Is not able to exploit structure in analog signals
¥ Results in large computation on the digital side

¥ Samples do not typically interface with standard processing methods

More details in: M. Mishali, Y. C. Eldar, and A. Elron, “Xampling:
Signal acquisition and processing in union of subspaces”

Besides union models and Xampling there are
many more challenges !

Eldar, 2012



Stepping CS to Practice

¥ Address wideband noise and dynamic range:
¥ Since x is noisy: y=A(x+e)+w, e=wideband noise
r MWC/PNS: Nyquist-bandwidth noise is aliased
¥ RD: noise is folded from all possible tone locations
¥ Large interference will swamp ADC
P Integrate into existing systems
¥ Minimal (preferably no) modification to hardware
B e.g., reprogramming firmware, rewiring, etc.
# Deal with large analog BW and wide dynamic range
e Prove cost-effective
# Rate is only one factor! Digital complexity is not less important
® Improve effective number of bits / Xample

e Next slides: quick glance at circuit challenges + applications

Eldar, 2012




A 2.4 GHz Prototype

B 2.3 GHz Nyquist-rate, 120 MHz occupancy
B 280 MHz sampling rate

E Wideband receiver mode:

B 49 dB dynamic range
B SNDR> 30 dB over all input range

B ADC mode:
B 1.2 volt peak-to-peak full-scale
E 42 dB SNDR =6.7 ENOB

B Off-the-shelf devices, ~5k$, standard PCB production Mishali and Eldar, "08-10
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Circuit Design (2)

B Analog board B Digital board: sign alternating
F m=4 channels sequences
E 1:4 Split + mixing + filtering E 2.075GHz VCO
B Filter cutotf 33 MHz B Discrete ECL shift-register
B Sampling rate 70 MHz per B M=108 bits
channel (scope) B 4 Outputs (taps of the register)

Mishali and Eldar, '08-10
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Circuit Design (3)

. . 40
B Wideband receiver mode: *
. . | Distorti
B Gain control on the input 40 dominate . |
B Design specifications: 0] Thermat-noise 20 g
= ominates =
Power out > -7 dBm S 20f Req. SNDR 03
0 ——
SNDR > 30 dB S 4o =
. e
over all input range 0 e Am T —1108
E Gives 49 dB dynamic range ol | 20
Dynamic range —m-
—20 -30

-80 -60 -40 - =20 0
Input power (dBm) Mishali and Eldar, '08-10
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Analog Design

Wideband Passive Power control
equalizer mixer + reshaping

Tunable
amplification
_|_

Split 1—4

Elliptic filter
up to order 14

Mishali et al., “10
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Digital Design

ECL < RF Configurable
interface bit pattern

xamp q rev'o T e A IS L, k
__Daughter Boa:_l AA

96-tap ring
(ECL)

Lowskew
clock split

2 GHz
oscillator

Mishali et al., “10

Eldar, 2012 145



Mixing with Periodic Functions

(TTEH T Gwtr - 1)

Eldar, 2012

(conversion loss, IP3, required power) !

support wideband LO

Datasheet specifications are for single LO mixing

Fine biasing due to sinusoids power split
Adjustable LO power - Without Equalizer i
V (._(r_‘I\ Qs Cl 40.00 6.00
& o - ] -__‘—-__\ L
L g With Equalizer i
N N RI R2 - 3 i g
R3 2NB906 2R R é 30.00 7’-00 ?
0 I 5
c2 3 r >
'k cé‘ /_ 8
c 20.00 2.00 ©
CTRL_UP R4 Q6 100pF = : :‘I
‘Ak/\’ 2N3904 L1 - 2 Equalizer
10! 330nH [
c4 10.00 6.00
= ] —/ L
18pF — L
12 - oo0fi | | . +-10.00
- 0.00 0.50 1.00 1.50 2.00
o = g}.\ﬂnll EicHzl
(&Y CR ’I\ Cc9
[ | | I
11 11 OGALTSa 1
OR Ink InF - -
RI1 L7 ol _gain 18db Passive mixer
300R NC P1db: 23dBm ——
L8 I
100nk 5
In 1 C I" H(N L1s Out
L | » 1 3 - —ETT——
100pk GALLSA ]m U 120nH l 120nH
;
gain: 20db o Z| sym25-DHW Cis
- = " conv. loss: 6db 82pF
Cannot equalize Pldb:21atm Aduted 6db
entire path =
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Highly-Transient Periodic Waveforms

ATTEN 104dB
RL OdBm

Package 1 Package i + 1
Clock network ‘ ‘ ‘ /\/\/\/\ ‘ ‘ ‘
480 ps on-board clock skew
-
Clock signal
CENTER SO00OMH2z SPAN 1.000GHz Data propagation 670 ps
RBW 1,0MHz VBW 1.0MHz SWP S50.0ms

Delay variations

B We selected the sign pattern which gives about the
same harmonic levels

B Tap locations: 5% bit in every consecutive 24 bits
(layout considerations only)

Mishali et al., “10
Eldar, 2012
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Sub-Nyquist Demonstration

Carrier frequencies are chosen to create overlayed aliasing at baseband

FM@6312MHz AM@807.8 MHz  Sine @ 981.9 MHz MWC prototype aliasing around 6.171 MHz

10 kHz o 100 kHz

g

Reconstruction
(CTF)

N
AL
$z

Lo

>

FM @ 631.2 MHz AM @ 807.8 MHz
Mishali et al., “10
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Application: Cognitive Radio

I hole _Ahole
>) > f

0 fmax

Xampling for Spectrum Sensing

Sub-Nyquist sampling

t n
pl() Hf)—‘h //x— yi[n]

»

N Detect active | Fine support [CL%’, bi]
. » . ——p
spectrum slices detection
alll o vl
N

[
»

pm(t)

_®_H

(
(

f)

. For example:
- m = 4 channels, sampling rate = 70 MHz/channel

Covers 2 GHz spectrum bandwidth

Holes detection up to tens of kHz resolution

Mishali and Eldar, '11
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Simulations

¥ 3 QPSK transmissions, Symbol rate = 30 MHz, fmax =5 GHz
¥ Quality measure, CFO = Carrier frequency offset

¢ Satisfies IEEE 802.11 40ppm specifications of standard transmissions

around 3.75 GHz

035 o
= U g = o o T
i
= Lar
5 £
=1 ) = LB
2 03r S0 % in B
= 150 kHz =
g oar < - E.: (ENE]
= 045} 3 |CFO| within
2 & 0dr J
> = g 2001 kHz
% (K [ ; 100 kHz
o 0.2 — 70 kHZ
5 005
wl 30 kHz

':l L L L L I:'
=000 =50 o 00 1000 o 5 10 15 20 25 S0
CFD kHe) SNR [dB]

Mishali and Eldar, '11

Eldar, 2012 150




Experiments

Spectrum sensing + carrier recovery
of a single sinusoid transmission
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Take-Home Message

Compressed sensing uses finite models

Xampling works for analog signals

Compression L Sampling :U(t)

Must combine ideas from Sampling theory and algorithms from CS

B CS+Sampling = Xampling
¥ X prefix for compression, e.g. DivX

Eldar, 2012




Summary: Next Big Challenge

Develop cost-effective CS hardware solutions

Address wideband noise and dynamic range

Integrate into existing hardware solutions

Innovate at the circuit level: wideband input and large dynamic range

e Design provable hardware
# atlab
E on-board
B on-chip

# Become a mature technology !

Eldar, 2012
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Conclusions

Union of subspaces: broad and flexible model

Can lead to simple and efficient algorithms

Includes analog signal models

Sub-Nyquist sampler in hardware

Compressed sensing of many classes of analog signals

Many research opportunities: extensions, robustness, hardware,
mathematical ...

Compressed sensing can be extended
practically to the infinite analog domain!

Eldar, 2012



Burst of innovative publications

Theory is still developing, yet the basic principles are understood

Next frontier: Hardware implementations

Become a mature technology !

More details in:
E M. Mishali and Y. C. Eldar, “Sub-Nyquist Sampling: Bridging Theory and Practice,”” Sig. Proc. Mag.
E M. Duarte and Y. C. Eldar, “Structured Compressed Sensing: From Theory to Applications,” TSP.

E M. Mishali and Y. C. Eldar, “Xampling: Compressed Sensing of Analog Signals,” in book,
Cambridge press.
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Online Demonstrations

¥ GUI package of the MWC

Xampling: Sub-Nyquist Sampling

Graphical user interface
for simulating the
Modulated Wideband Converter
Version 1.0

Moshe Mishali and Yonina Eldar
Technion, Israel
© All rights reserved, 2009

Ok

'S52010

2010 IEEE Worksh(‘;p on
Signal Processing Systems

You{ [T

» | @ 1 00:00410:55 o8 | 52 | ES

on Acoustics, Speech and Signal Processing
March 14 - 19, 2010 * Sheraton Dallas Hotel ® Dallas, Texas, U.S.A.
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Xampling Website

webee.technion.ac.il/people/YoninaFEldar/xampling top.html

/ T

= The Big Picture

ibspaces

and processin
- g of analog n
puts at o
o subspaces This website proy \dratea
=2 (‘ eS a

Imples
o ations brief Introduction tq union

far below the Nyquist rate
ofengmeenng applic ~

e ’3d'°’ff9quency

Multibap (RF) transm;
N ‘ SPectra With engy vt s bu
T Maximg| frequency ¢ ~9Y that Concent

M a5 pe de Y Tmay

Compressed
Sensing

Theory and Applications

Amplitude

Such
a recaiy
eMody|at “Celve)
am Ion
Pling at the Wi or bandpaSS .
St rate

na Yonina C. Eldar and Gitta Kutyniok
mely twic

time {units of 7]

Y.|C. Eldar and G. Kutyniek;"'Compressed Sensing: Theory and Applications",

Cambridge University Press, to appear in 2012

CAMBRIDGE

Eldar, 2012



http://webee.technion.ac.il/people/YoninaEldar/xampling_top.html
http://webee.technion.ac.il/people/YoninaEldar/xampling_top.html
http://webee.technion.ac.il/people/YoninaEldar/xampling_top.html

Acknowledgements

Students: P
fou £ £
- ~2} el o ,‘ 2
Moshe.Mishali Kfir Gedalyahu Ronen Tur Noam Wagner
Collaborators:

B General Electric Israel
B National Instruments Corp. — Ahsan Aziz, Sam Shearman, Eran Castiel
Sponsors:
E Israel Science Foundation
B Binational Science Foundation
E Magneton
Thank you!

We'll be happy to hear your comments, ideas for future work etc:

yonina@ee.technion.ac.il

Eldar, 2012




References

Tutorial:

F M. Mishali and Y. C. Eldar, “Sub-Nyquist Sampling: Bridging Theory and Practice,” IEEE Sig. Proc. Mag.
E M. Duarte and Y. C. Eldar, “Structured Compressed Sensing: From Theory to Applications,” TSP

F M. Mishali and Y. C. Eldar, “Xampling: Compressed Sensing of Analog Signals,” in book, Cambridge press
F Y. C. Eldar and G. Kutyniok, “Compressed Sensing: Theory and Applications,” Cambridge Press

Other Tutorials and Summaries:
E  R.G. Baraniuk, “Compressive sensing,” IEEE Sig. Proc. Mag., vol. 24, no. 4, pp. 118-120, 124, July 2007

B E.J. Candes and M. B. Wakin, “An introduction to compressive sampling,” IEEE Sig. Proc. Mag., vol. 25,
pp- 21-30, Mar. 2008

B J. Uriguen, Y. C. Eldar, P. L. Dragotti and Z. Ben-Haim, "Sampling at the Rate of Innovation: Theory and
Applications,” in book, Cambridge press

Eldar, 2012




References

Generalized Sampling Theory:

A.J. Jerry, “The Shannon sampling theorem-Its various extensions and applications: A tutorial review,”
Proc. Of the IEEE, vol. 65, no. 11, pp. 1565-1596, Nov. 1977

A. Aldroubi and M. Unser, “Sampling procedures in function spaces and asymptotic equivalence with
Shannon’s sampling theory,” Numer. Funct. Anal. Optimiz., vol. 15, pp. 1-21, Feb. 1994

M. Unser and A. Aldroubi, “A general sampling theory for nonideal acquisition devices, “IEEE Trans. Signal
Process., vol. 42, no. 11, pp. 2915-2925, Nov. 1994

C. de Boor, R. DeVore and A. Ron, “The structure of finitely generated shift-invariant spaces in Ly (R, J.
Funct. Anal, vol. 119, no. 1, pp. 37-78, 1994

A. Aldroubi, “Oblique projections in atomic spaces,” Proc. Amer. Math. Soc. , vol. 124, no. 7, pp. 2051-2060,
1996

M. Unser, “Sampling — 50 years after Shannon,” IEEE Proc., vol. 88, pp. 569-587, Apr. 2000

P. P. Vaidyanathan, “Generalizations of the sampling theorem: Seven decades after Nyquist,” IEEE Trans.
Circuit Syst. I, vol. 48, no. 9, pp. 1094-1109, Sep. 2001

Y. C. Eldar and T. Michaeli, “Beyond bandlimited sampling,” IEEE Signal Process. Mag., vol. 26, no. 3, pp.
48-68, May 2009.

T. Michaeli and Y. C. Eldar, “Optimization Techniques in Modern Sampling Theory, ” in book
Cambridge Univ. Press, ch., pp. 266-314, 2010

Eldar, 2012




References

Subspace Sampling:

I. Djokovic and P. P. Vaidyanathan, “Generalized sampling theorem in multiresolution subspaces,” IEEE
Trans. Signal Process. , vol. 45, pp. 583-599, Mar. 1997

M. Unser, “Splines: A perfect fit for signal and image processing,” IEEE Signal Process. Mag., pp. 22-38,
Nov. 1999

Y. C. Eldar and A. V. Oppenheim, “Filter bank reconstruction of bandlimited signals from nonuniform
and generalized samples,” IEEE Trans. Signal Processing, vol. 48, no. 10, pp. 2864-2875, 2000

A. Aldroubi and K. Grochenig, “Non-uniform sampling and reconstruction in shift-invariant spaces,”
SIAM Review, vol. 43, pp. 585-620, 2001

Y. C. Eldar, “Sampling and reconstruction in arbitrary spaces and oblique dual frame vectors,” J. Fourier
Analys. Appl., vol. 1, no. 9, pp. 77-96, Jan. 2003

O. Christensen and Y. C. Eldar, “Oblique dual frames and shift-invariant spaces,” Applied and
Computational Harmonic Analysis, vol. 17, no. 1, pp. 48-68, Jul. 2004

O. Christensen and Y. C. Eldar, “Generalized shift-invariant systems and frames for subspaces,” J.
Fourier Analys. Appl., vol. 11, pp. 299-313, 2005

Y. C. Eldar and T. Werther, “General framework for consistent sampling in Hilbert spaces,” International
Journal of Wavelets, Multiresolution, and Information Processing, vol. 3, no. 3, pp. 347-359, Sep. 2005

Y. C. Eldar and O. Christensen, “Caracterization of Oblique Dual Frame Pairs,” |. Applied Signal
Processing, vol. 2006, Article ID 92674, pp. 1-11

T. G. Dvorkind, Y. C. Eldar and E. Matusiak, “Nonlinear and non-ideal sampling: Theory and methods,”
IEEE Trans. Signal Processing, vol. 56, no. 12, pp. 5874-5890, Dec. 2008

Eldar, 2012




References

Multiband subspaces:

H.J. Landau, “Necessary density conditions for sampling and interpolation of certain entire functions,” Acta
Math., vol. 117, pp. 37-52, Feb. 1967

A. Kohlenberg, “Exact interpolation of band-limited functions,” J. Appl. Phys., pp. 1432-1435, Dec. 1953

R. G. Vaughan, N. L. Scott, and D. R. White, “The theory of bandpass sampling,” IEEE Trans. Signal Process.,
vol. 39, no. 9, pp. 1973-1984, Sep. 1991

Y.-P. Lin and P. P. Vaidyanathan, “Periodically nonuniform sampling of bandpass signals,” IEEE Trans.
Circuits Syst. I, vol. 45, no. 3, pp. 340-351, Mar. 1998

C. Herley and P. W. Wong, “Minimum rate sampling and reconstruction of signals with arbitrary frequency
support,” IEEE Trans. Inform. Theory, vol. 45, no. 5, pp. 1555-1564, Jul. 1999
R. Venkataramani and Y. Bresler, “Perfect reconstruction formulas and bounds on aliasing error in sub-

Nyquist nonuniform sampling of multiband signals,” IEEE Trans. Inf. Theory, vol. 46, no. 6, pp. 2173-2183,
Sep. 2000

Eldar, 2012




References

Union of Subspaces:

+  Y.M. Luand M. N. Do, “A theory for sampling signals from a union of subspaces,” IEEE Trans. Signal
Processing, vol. 56, no. 6, pp. 2334-2345, 2008

» Y. C. Eldar and M. Mishali, “Robust recovery of signals from a structured union of subspaces,” IEEE Trans.
Info. Theory, vol. 55, no. 11, pp. 5302-5316, 2009

+  T.Blumensath and M. E. Davies, “Sampling theorems for signals from the union of finite-dimensional linear
subspaces,” IEEE Trans. Inf. Theory, vol. 55, no. 4, pp. 1872-1882, Apr. 2009

' T. Michaeli and Y. C. Eldar, "Xampling at the Rate of Innovation", IEEE Transactions on Signal Processing, vol.
60, no. 3, pp. 1121-1133, March 2012.

Xampling Framework:

» Y. C. Eldar, “Compressed sensing of analog signals in shift-invariant spaces”, IEEE Trans. Signal Processing,
vol. 57, no. 8, pp. 2986-2997, August 2009

+ Y. C. Eldar, “Uncertainty relations for analog signals,” IEEE Trans. Inform. Theory, vol. 55, no. 12, pp. 5742 -
5757, Dec. 2009

» M. Mishali, Y. C. Eldar, and A. Elron, “Xampling: Signal acquisition and processing in union of subspaces,”
IEEE Transactions on Signal Processing, vol.59, issue 10, pp.4719-4734, Oct. 2011

» M. Mishali, Y. C. Eldar, O. Dounaevsky, and E. Shoshan, “Xampling: Analog to digital at sub-Nyquist rates,”
IET Circuits, Devices & Systems, vol. 5, no. 1, pp. 8-20, Jan. 2011

Eldar, 2012




References

Modulated Wideband Converter / Fully-blind Multi-Coset:

+ M. Mishali and Y. C. Eldar, “Blind multiband signal reconstruction: Compressed sensing for analog
signals,” IEEE Trans. Signal Processing, vol. 57, pp. 993-1009, Mar. 2009

» M. Mishali and Y. C. Eldar, “From theory to practice: Sub-Nyquist sampling of sparse wideband analog
signals,” IEEE Journal of Selected Topics on Signal Processing, vol. 4, pp. 375-391, April 2010

/4

» M. Mishali, Y. C. Eldar, O. Dounaevsky, and E. Shoshan, “Xampling: Analog to digital at sub-nyquist rates,’
IET Circuits, Devices and Systems, vol. 5, no. 1, pp. 8-20, Jan. 2011

- M. Mishali and Y. C. Eldar, “Reduce and boost: Recovering arbitrary sets of jointly sparse vectors,” IEEE
Trans. Signal Processing, vol. 56, no. 10, pp. 4692-4702, Oct. 2008

» M. Mishali and Y. C. Eldar, “Wideband spectrum sensing at sub-Nyquist rates,” to appear in IEEE Signal
Process. Mag, vol. 28, no. 4, pp. 102-135, July 2011

Random Demodulator:

«  J.A.Tropp, J. N. Laska, M. F. Duarte, J. K. Romberg, and R. G. Baraniuk, “Beyond Nyquist: Efficient
sampling of sparse bandlimited signals,” IEEE Trans. Inf. Theory, vol. 56, no. 1, pp. 520-544, Jan. 2010

+ Z.Yu, S. Hoyos, and B. M. Sadler, “Mixed-signal parallel compressed sensing and reception for cognitive
radio,” in ICASSP, 2008, pp. 3861-3864

' T. Ragheb, J. N. Laska, H. Nejati, S. Kirolos, R. G. Baraniuk, and Y. Massoud, “A prototype hardware for
random demodulation based compressive analog-to-digital conversion,” in Circuits and Systems, 2008.
MWSCAS 2008. 515t Midwest Symposium on, 2008, pp. 3740

«  Z.Yu, X. Chen, S. Hoyos, B. M. Sadler, J. Gong, and C. Qian, “Mixed-signal parallel compressive spectrum
sensing for cognitive radios,” International Journal of Digital Multimedia Broadcasting, 2010

Eldar, 2012 166




References

Pulse streams:

M. Vetterli, P. Marziliano, and T. Blu, “Sampling signals with finite rate of innovation,” IEEE Trans. Signal
Process., vol. 50, no. 6, pp. 1417-1428, 2002

P. L. Dragotti, M. Vetterli, and T. Blu, “Sampling moments and reconstructing signals of finite rate of
innovation: Shannon meets Strang Fix,” IEEE Trans. Signal Process., vol. 55, no. 5, pp. 1741-1757, May 2007

C. Seelamantula and M. Unser, “A generalized sampling method for finite-rate-of-innovation-signal
reconstruction,” IEEE Signal Process. Lett., vol. 15, pp. 813-816, 2008

E. Matusiak and Y. C. Eldar, “Sub-Nyquist sampling of short pulses,” IEEE Trans. Signal Processing, vol.60,
issue 3, pp.1134-1148, March 2012.

Z.Ben-Haim, T. Michaeli, and Y. C. Eldar, “Performance bounds and design criteria for estimating finite
rate of innovation signals,” to appear in IEEE Trans. on Info Theory

K. Gedalyahu and Y. C. Eldar, "Time-delay estimation from low-rate samples: A union of subspaces
approach," IEEE Trans. Signal Processing, vol. 58, no. 6, pp. 3017-3031, June 2010

N. Wagner, Y. C. Eldar and Z. Friedman, "Compressed Beamforming in Ultrasound Imaging", to appear in
IEEE Transactions on Signal Processing.

R. Tur, Y. C. Eldar, and Z. Friedman, “Innovation rate sampling of pulse streams with application to
ultrasound imaging,” IEEE Trans. Signal Process., vol. 59, no. 4, pp. 1827-1842, Apr. 2011

K. Gedalyahu, R. Tur, and Y. C. Eldar, “Multichannel sampling of pulse streams at the rate of innovation,”
IEEE Trans. Signal Process., vol. 59, no. 4, pp. 1491-1504, Apr. 2011

W. U. Bajwa, K. Gedalyahu, and Y. C. Eldar, “Identification of underspread linear systems with application
to super-resolution radar,” IEEE Transactions on Signal Processing, vol. 59, no. 6, pp. 2548-2561, June 2011

Eldar, 2012




References

Compressed sensing (#1):

D. L. Donoho, “Compressed sensing,” IEEE Trans. Info. Theory, vol. 52, no. 4, pp. 1289-1306, Sep. 2006

E.]J. Candes, J. K. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from
highly incomplete frequency information,” IEEE Trans. Info. Theory, vol. 52, no. 2, pp. 489-509, 2006

E.J. Candes and T. Tao, “Near optimal signal recovery from random projections: Universal encoding
strategies?,” IEEE Trans. Info. Theory, vol. 52, no. 12, pp. 5406-5425, Dec. 2006

J. A. Tropp, “Greed is good: Algorithmic results for sparse approximation,” IEEE Trans. Info. Theory, vol. 50,
no. 10, pp. 22312242, Oct. 2004

D. Needell and J. A. Tropp, “CoSaMP: Iterative signal recovery from incomplete and inaccurate samples,”
Appl. Comput. Harmon. Anal., vol. 26, no. 3, pp. 301-321, May 2008

J. A. Tropp, A. C. Gilbert, and M. J. Strauss, “Algorithms for simultaneous sparse approximation. Part I:
Greedy pursuit,” Signal Processing, vol. 86, pp. 572-588, Apr. 2006

J. A. Tropp, “Algorithms for simultaneous sparse approximation. Part II: Convex relaxation,” Signal
Processing, vol. 86, Apr. 2006

D. L. Donoho and M. Elad, “Optimally sparse representation in general (nonorthogonal) dictionaries via '1
minimization,” Proc. Nat. Acad. Sci., vol. 100, no. 5, pp. 2197-2202, Mar. 2003

Z.Ben-Haim and Y. C. Eldar, "The Cramér—Rao bound for estimating a sparse parameter vector," IEEE
Trans. Signal Processing, vol. 58, no. 6, pp. 3384-3389, June 2010

I. F. Gorodnitsky and B. D. Rao, “Sparse signal reconstruction from limited data using FOCUSS: A re-
weighted minimum norm algorithm,” IEEE Trans. Signal Processing, vol. 45, no. 3, pp. 600-616, Mar. 1997

Eldar, 2012 168




References

Compressed sensing (#2):

Z.Ben-Haim, Y. C. Eldar, and M. Elad, “Coherence-based performance guarantees for estimating a sparse
vector under random noise,” IEEE Trans. Signal Processing, vol. 58, no. 10, pp. 5030-5043, Oct. 2010

S. F. Cotter, B. D. Rao, K. Engan, and K. Kreutz-Delgado, “Sparse solutions to linear inverse problems with
multiple measurement vectors,” IEEE Trans. Signal Processing, vol. 53, no. 7, pp. 2477-2488, July 2005

J. Chen and X. Huo, “Theoretical results on sparse representations of multiple-measurement vectors,” IEEE
Trans. Signal Processing, vol. 54, no. 12, pp. 4634-4643, Dec. 2006

M. Mishali and Y. C. Eldar, “Reduce and boost: Recovering arbitrary sets of jointly sparse vectors,” IEEE
Trans. Signal Processing, vol. 56, no. 10, pp. 4692-4702, Oct. 2008

S. Mallat and Z. Zhang, “Matching pursuit with time-frequency dictionaries,” IEEE Trans. Signal Processing,
vol. 41, no. 12, pp. 3397-3415, Dec. 1993

Y. Pati, R. Rezaifar, and P. Krishnaprasad, “Orthogonal matching pursuit: Recursive function
approximation with applications to wavelet decomposition,” in Asilomar Conf. Signals, Systems, and
Computers, Pacific Grove, CA, Nov. 1993

M. E. Davies and Y. C. Eldar, “Rank awareness in joint sparse recovery,” IEEE Trans. on Info. Theory, vol.58,
issue 2, pp.1135 - 1146, Feb. 2012

A.Beck and Y. C. Eldar, "Sparsity Constrained Nonlinear Optimization: Optimality Conditions and
Algorithms", submitted to SIAM Optimization, arXiv:1203.4580v1, March 2012.

S. Gleichman and Y. C. Eldar, "Blind Compressed Sensing", IEEE Trans. on Information Theory, vol. 57, issue
10, pp. 6958-6975, Oct. 2011

Eldar, 2012




SO

\

-

<\ ¢
L SRY
. i,

!
SREIRE
e

G Ve Ve Vo \

Eldar, 2012



