

Xampling

From Theory to Hardware of Sub-Nyquist Sampling

Yonina Eldar

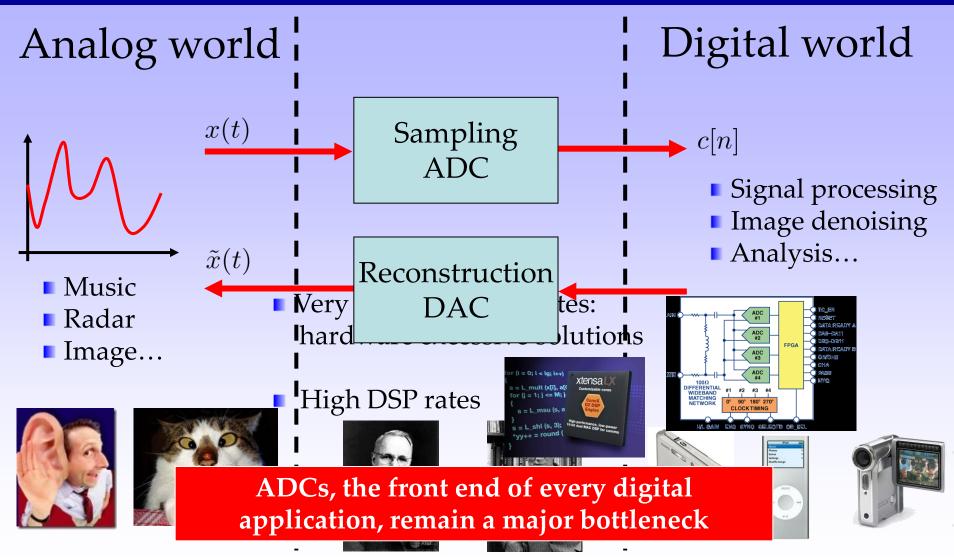
Department of Electrical Engineering Technion – Israel Institute of Technology

http://www.ee.technion.ac.il/people/YoninaEldar/

yonina@ee.technion.ac.il

Summer School on Compressive Sensing and MIMO Signal Processing July 5, 2012

Sampling: "Analog Girl in a Digital World..." Judy Gorman 99



Today's Paradigm

The Separation Theorem:

Circuit designer experts design samplers at Nyquist rate or higher

- DSP/machine learning experts process the data
 - Typical first step: Throw away (or combine in a "smart" way e.g. dimensionality reduction) much of the data ...
 - Logic: Exploit structure prevalent in most applications to reduce DSP processing rates
 - However, the analog step is one of the costly steps

Can we use the structure to reduce sampling rate + first DSP rate (data transfer, bus ...) as well?

Key Idea

Exploit structure to improve data processing performance:

- Reduce storage/reduce sampling rates
- Reduce processing rates
- Increase imaging resolution
- Reduce power, size, cost...

Goal:

- Survey sampling strategies that exploit signal structure to reduce rate
- Present a unified framework for sub-Nyquist sampling
- Provide a variety of different applications and benefits

Outline

- Part 1: Introduction
- Part 2: Sub-Nyquist in a subspace
 - Generalized sampling framework
 - Examples
- Part 3: Union of subspaces
 - Model, analog and discrete applications
 - Short intro to compressed sensing
- Part 4: Xampling, Sub-Nyquist in a union
 - Functional framework
 - Modulated wideband conversion
 - Sparse shift-invariant sampling
 - Finite-rate/sequences of innovation methods
 - Random demodulation
- Part 5: From theory to hardware
 - Practical design metrics
 - Circuit challenges

Tutorial Goal

To be as interactive as possible!

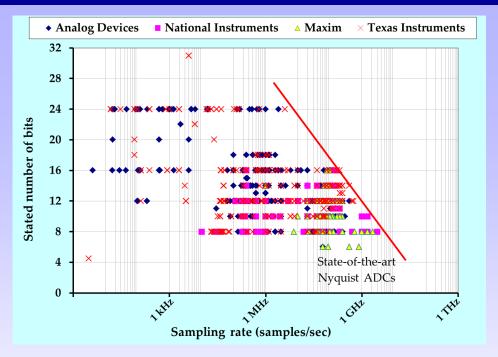
- Feel free to ask questions
- Raise ideas
- Slow me down if things are too fast ...

Hope you learn and enjoy!

- Part 1 - Introduction

→ Outline

ADC Market



- State-of-the-art ADCs generate uniform samples at the input's Nyquist rate
- Continuous effort to:
 - increase sampling rate (Giga-samples/sec)
 - increase front-end bandwidth
 - increase (effective) number of bits

Working in digital becomes difficult

Nyquist Rate Sampling

- Standard processing techniques require sampling at the Nyquist rate = twice the highest frequency
- Narrow pulse, wide sensing range = high Nyquist rate
- Results in hardware excessive solutions and high DSP rates
- Too difficult to process, store and transmit

Main Idea:

Exploit structure to reduce sampling and processing rates

The Key – Structure

- Sampling reduces ``dimenions''
- Must have some prior on x(t)
- Model too narrow (e.g. pure sine)
- Model too wide (e.g. bandlimited)

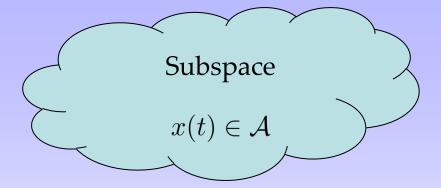
x(tt)tpidcentdiscolingar

→ not widely applicable → no rate reduction

Key: Treat signal models that are sufficiently wide and structured at the same time Prior (= Signal Model) Necessary for Recovery

Structure Types

In this tutorial we treat 2 main structures:



Union of subspaces

$$x(t) \in \underbrace{\mathcal{A}_1 \cup \mathcal{A}_2 \cup \cdots}_{\mathcal{U}}$$

- **Linear:** $x, y \in \mathcal{A} \rightarrow \alpha x + \beta y \in \mathcal{A}$
- Generalized sampling theory

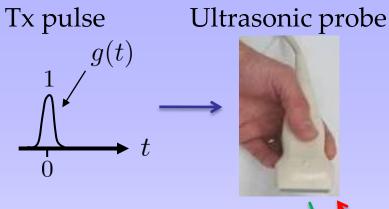
- Nonlinear: $x + y \notin \mathcal{U}$ (typically)
- Xampling (functional framework)

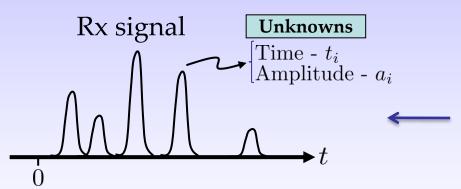
 \mathcal{A}

- Subspace motheling is used in many practical applications
- BUT, can result in unnecessary-high sampling and processing rates
- Union modeling paves the way to innovative sampling methods, at rates as low as the actual information rate

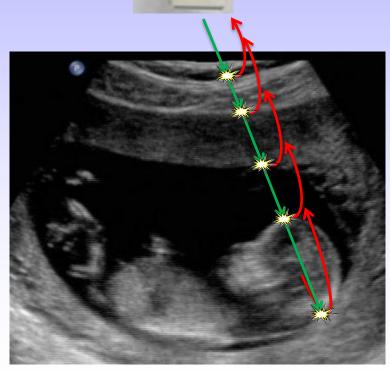
Ultrasound

(Collaboration with General Electric, Israel)



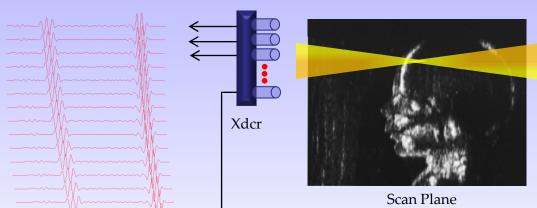


- Echoes result from scattering in the tissue
- The image is formed by identifying the scatterers



Processing Rates

- To increase SNR the reflections are viewed by an antenna array
- SNR is improved through beamforming by introducing appropriate time shifts to the received signals



Focusing the received beam by applying delays

- Requires high sampling rates and large data processing rates
- One image trace requires 128 samplers @ 20M, beamforming to 150 points, a total of 6.3x10⁶ sums/frame

Compressed Beamforming

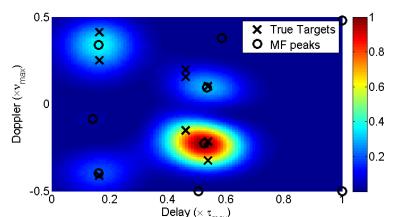
Resolution (1): Radar

Principle:

- A known pulse is transmitted
- Reflections from targets are received
- Target's ranges and velocities are identified

- Challenge:
 - All processing is done digitally
 - Targets can lie on an arbitrary grid
 - Process of digitizing
 - → loss of resolution in range-velocity domain

Subspace methods:



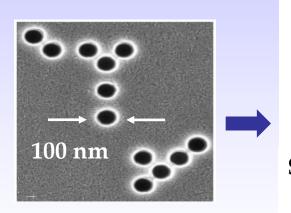
Eldar, 2012

Resolution: Subwavelength Imaging

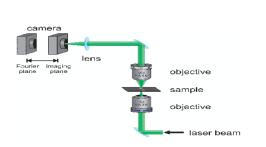
(Collaboration with the groups of Segev and Cohen)

Diffraction limit: Even a perfect optical imaging system has a resolution limit determined by the wavelength λ

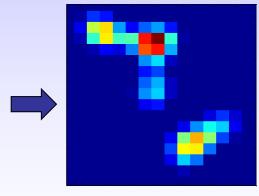
- The smallest observable detail is larger than $\sim \lambda/2$
- This results in image smearing
- Equivalent to viewing the image through a LPF



Nano-holes as seen in electronic microscope



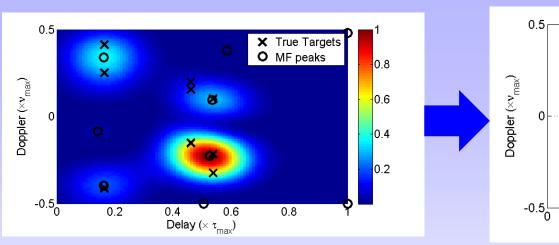
Sketch of an optical microscope: the physics of EM waves acts as an ideal low-pass filter

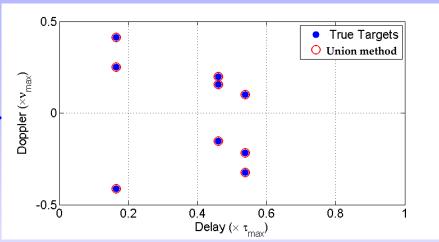


Blurred image seen in optical microscope

Imaging via Union Modeling

Radar:



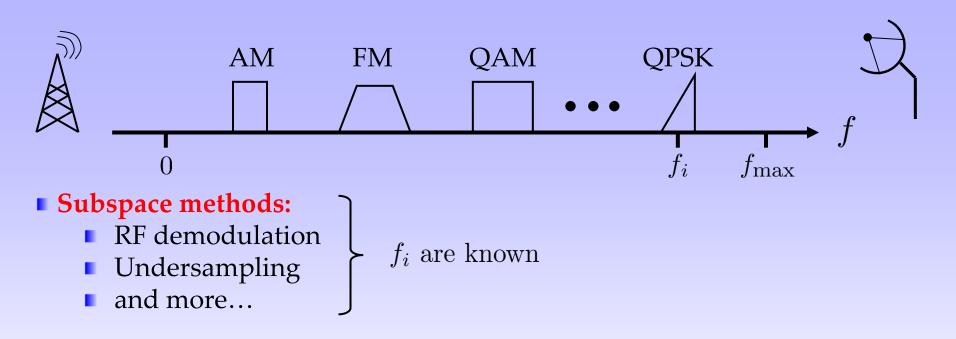


Subwavelength:

Gazit et al., '11

Eldar, 2012 16

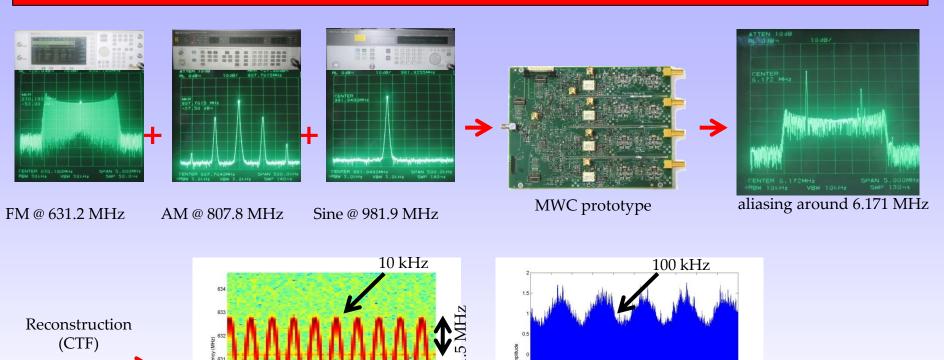
Wideband Communication



- Unknown f_i , e.g. cognitive radio. Should we sample at $2f_{\max}$?
- Union modeling:
 - Can sample at the actual information bandwidth, even though f_i are unknown
 - Can process at low rate (no need to reconstruct Nyquist-rate samples)

Sub-Nyquist Demonstration

Carrier frequencies are chosen to create overlayed aliasing at baseband

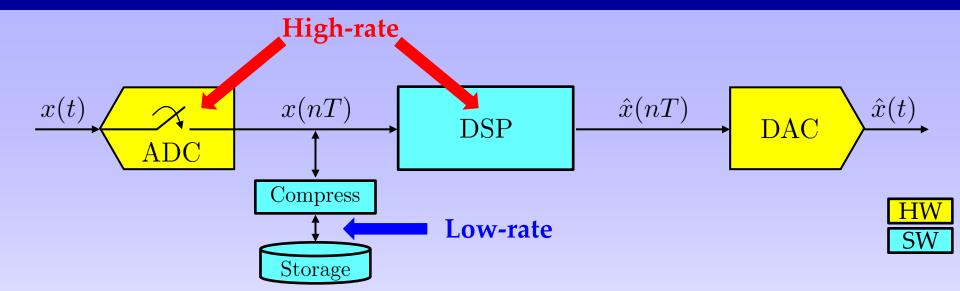


FM @ 631.2 MHz

AM @ 807.8 MHz

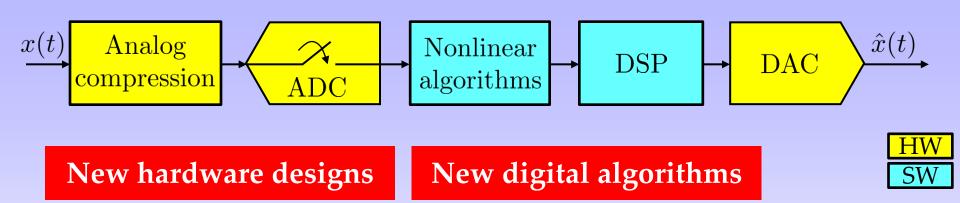
Mishali et al., '10

Xampling



- Main idea:
 - Move compression before ADC
 - Use nonlinear algorithms to interface with standard DSP and signal reconstruction

Xampling



- Main idea:
 - Move compression before ADC
 - Use nonlinear algorithms to interface with standard DSP and signal reconstruction

■ Follow a set of design principles → step from theory to hardware

From Theory to Hardware

- 2.4 GHz Nyquist-rate, 120 MHz occupancy
- 280 MHz sampling rate
- 49 dB dynamic range
- SNDR > 30 dB over input range

Mishali et al., 10

RICE 1-pixel camera

DARPA A2I Project

- See many more contributors in <u>compressive sensing hardware</u>
- Tutorial briefly covers circuit challenges in sub-Nyquist systems

Sub-Nyquist technology becomes feasible!

Can gain significant advantages in practical applications

Tutorial Goal

- Instead of a single subspace modeling use union of subspaces framework
- Adopt a new design methodology Xampling
 - Compression+Sampling = Xampling
 - X prefix for compression, e.g. DivX
- Result: Simple hardware and low computational cost on the DSP

Theory, Algorithms, Hardware

What's next:

- Part 2: Sub-Nyquist in a subspace
- Parts 3-5: Sub-Nyquist in union models

– Part 2 – Sub-Nyquist in a Subspace

→ Outline

Shannon-Nyquist Sampling

Theorem [Bandlimited Sampling]

If a function x(t) contains no frequencies higher than W cycles-per-second, it is completely determined by giving its ordinates at a series of points spaced 1/2W seconds apart

$$x(t) = \sum_{n} x\left(\frac{n}{2W}\right) \operatorname{sinc}(2Wt - n), \quad \operatorname{sinc}(\alpha) = \frac{\sin(\pi\alpha)}{\pi\alpha}$$

Shannon, '49

$$t = nT$$

$$x(t) \xrightarrow{\sum_{n} \delta(t - nT)} h(t) \xrightarrow{\hat{x}(t)} \hat{x}(t)$$

■ **Model:** W-Bandlimited signals

Sampling: Pointwise at rate $1/T \ge 2W$

Reconstruction: Interpolation by h(t) = sinc(2Wt)

Avoiding High-Rate ADC

- Use several samplers:
 - Papoulis' theorem
 - Time-interleaved ADC (special case)

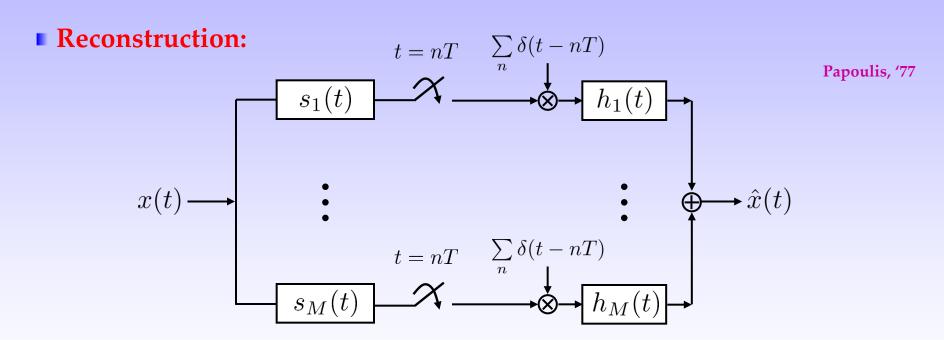
Overall rate = Nyquist

- Exploit signal structure (subspace):
 - Pulse streams
 - Multiband sampling

Can approach information rate

Papoulis' Theorem

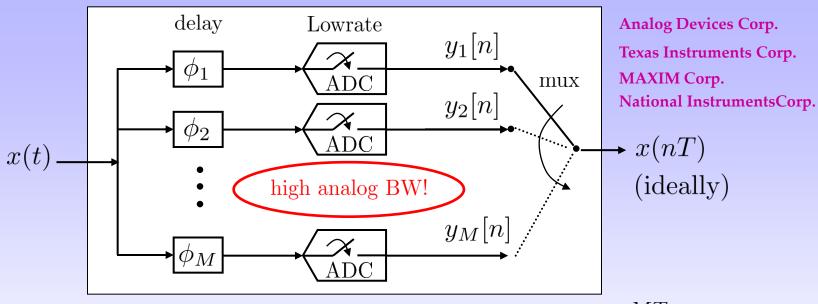
- **Model:** W-bandlimited (same)
- Sampling: M branches sampled at 1/M the Nyquist rate, $\frac{1}{T} \geq \frac{2W}{M}$ Flexible constraints on $s_i(t), h_j(t)$



ightharpoonup Overall rate is 2W (same)

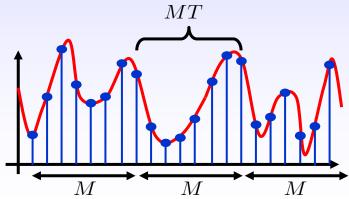
Time-Interleaved ADCs

A high-rate ADC comprised of a bank of lowrate devices

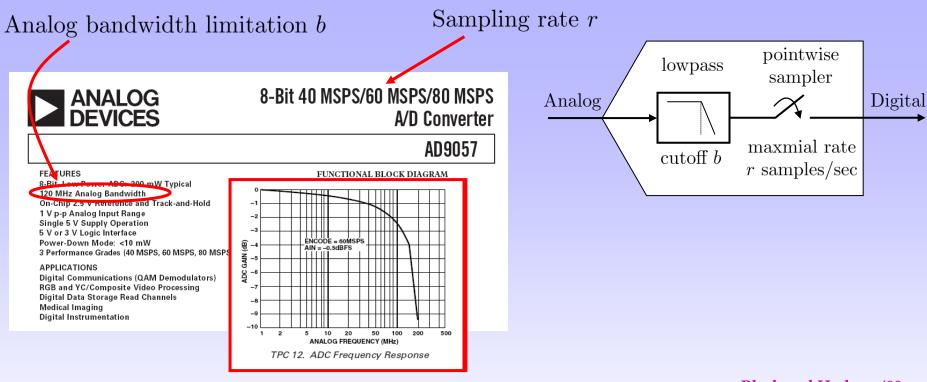


- Each branch (coset) undersamples at 1/M of the Nyquist-rate
- Widely-researched

Yen, '56 Eldar and Oppenheim, '00 Johansson and Lowenborg, '02 Levy and Hurst, '04 ...and more



Practical ADC Devices



In time-interleaved architectures:

- The overall rate is Nyquist
- Each branch needs front-end with Nyquist bandwidth (will be important later)
- Accurate time delay are required ϕ_i

Black and Hodges, '80 Jenq, '90 Elbornsson et al., '05 Divi and Wornell, '09 Murmann et al., '09 Goodman et al., '09 ...and more

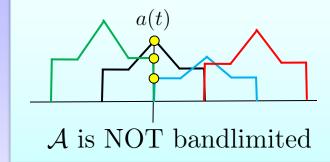
Generalized Sampling in a Subspace

■ **Model:** Shift-invariant (SI) subspace of possible inputs

$$\mathcal{A} = \left\{ x(t) = \sum_{n} d[n]a(t - nT), \quad d[n] \in \ell_2(\mathbb{R}) \right\}$$

$$a_n(t) = \operatorname{sinc}(2Wt - n)$$

A = W-bandlimited



t = nT

- e.g., splines, pulse amplitude modulation (PAM), and more...
- **Sampling:** Inner products, $c[n] = \langle x(t), s_n(t) \rangle$
 - $s_n(t) = \delta(t nT) \longrightarrow \text{ pointwise sampling } c[n] = x(nT)$

$$s_n(t) = s(t - nT) \longrightarrow x(t) \longrightarrow s(t) \longrightarrow c[n]$$

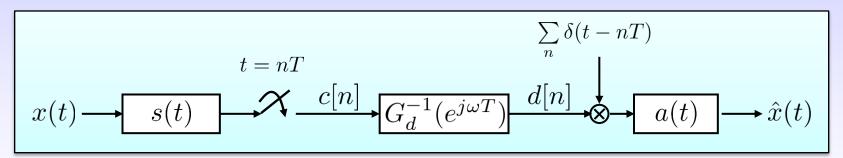
Eldar, 2012 29

Reconstruction from Generalized Samples

- Shift-invariant case
 - Model: $x(t) = \sum_{n} d[n]a(t nT)$ $X(\omega) = D(e^{j\omega T})A(\omega)$
 - **Sampling:** $c[n] = \langle x(t), s(t-nT) \rangle$

$$c(e^{j\omega T}) = \sum_{k} X(\omega + 2\pi k) S^*(\omega + 2\pi k) = D(e^{j\omega T}) G_d(e^{j\omega T})$$

Recovery: Filter by $G_d^{-1}(e^{j\omega T})$ to obtain d[n], then interpolate $\hat{x}(t)$



- Sampling rate is $\frac{1}{T}$ rather than the Nyquist rate of x(t)
- lacksquare Approach does not depend on $f_{
 m max}$

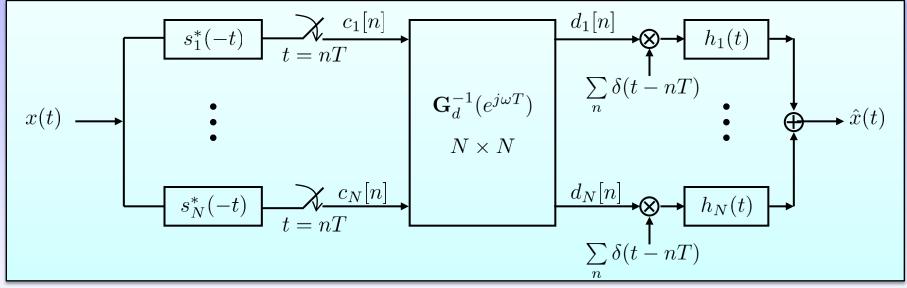
Aldroubi and Unser, '94 Christensen and Eldar, '05

Multiple Shift-Invariant Generators

Model:

$$x(t) = \sum_{l=1}^{N} \sum_{n} d_{l}[n]a_{l}(t - nT)$$

Sampling / Reconstruction:

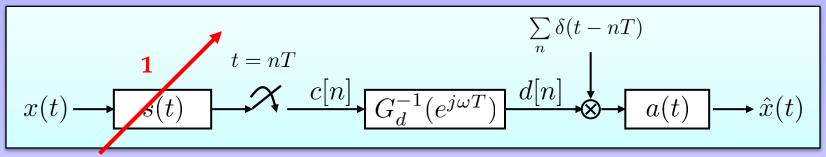


$$\left[\mathbf{G}_d(e^{j\omega T})\right]_{i\ell} = \frac{1}{T} \sum_{k \in \mathbb{Z}} S_i^* \left(\frac{\omega}{T} - \frac{2\pi}{T}k\right) H_\ell^* \left(\frac{\omega}{T} - \frac{2\pi}{T}k\right)$$

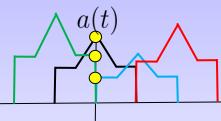
■ Sampling rate is $\frac{N}{T}$ → independent of f_{max}

de Boor, DeVore and Ron, '94 Christensen and Eldar, '05

Toy-Example (1)



Model:
$$x(t) = \sum d[n]a(t - nT)$$



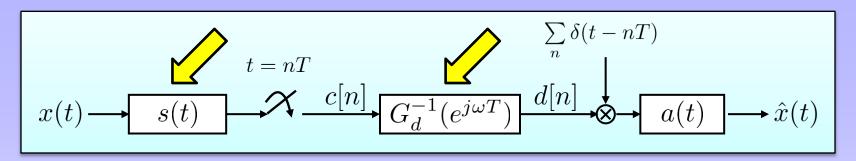
• Sampling: choose $s(t) = \delta(t)$

3 adjacent shifts contributes to each sample Subspace

$$G_d^{-1}(e^{j\omega T}) = \frac{1}{\sum_k A(\omega - 2\pi k/T)}$$

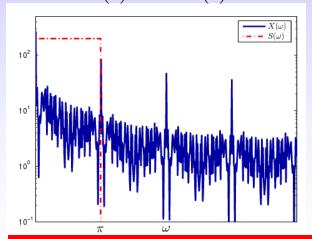
- Rate: $\frac{1}{T}$
- f_{max} can be very high, since x(t) is not bandlimited

Toy-Example (2)



 $a(t) = \frac{1}{\tau} e^{-t/\tau} u(t) - \frac{1}{\tau} u(t) - \frac{1$ Model:

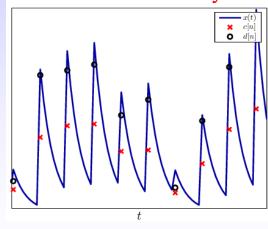
 $s(t) = \operatorname{sinc}(t)$



Rate: $\frac{1}{T}$

 f_{max} is high...

Perfect recovery!



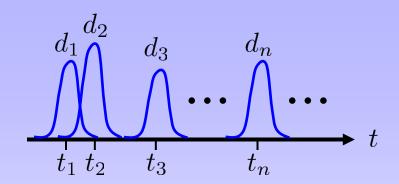
Lowpass data can contain all relevant information!

Eldar, 2012 33

Pulse-streams (known locations)

Model: fixed delays t_n , unknown d_n

$$x(t) = \sum_{n} d_n h(t - t_n)$$

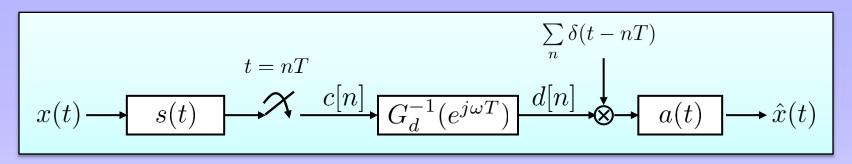


- Sampling: design $s_n(t) = h(t-t_n)$ and sample $c[n] = \langle x(t), s_n(t) \rangle$ $t_n \text{ and } h(t) \text{ are known}$
- **Recovery:** $\{d_n\}, \{c[n]\}$ satisfy a linear system, with coefficients depending on t_n and h(t)

$$c[n] = d_n ||h(t)||^2$$
 (for the easiest case with no overlaps)

- **Rate:** information rate = #pulses/second
- f_{max} is high, since x(t) is not bandlimited

Generalized Sampling in Practice



So far:

- Toy-examples: perfect recovery of nonbandlimited inputs! ($\mathcal{A} = SI$)
- Pulse streams, A = known pulse shape and fixed delays

A common denominator

Design assumption

 f_{max} -bandlimited

exact knowledge $x(t) \in \mathcal{A}$

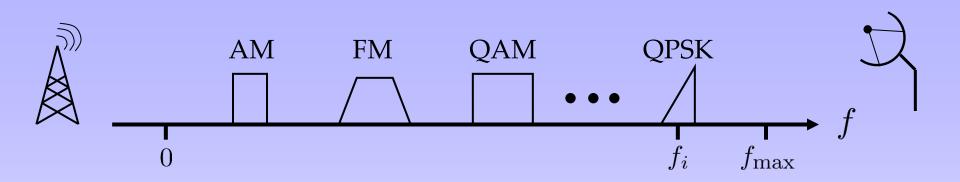
Sampling & processing rates

High

Approach minimal

■ Next slides: Multiband signals, A = known carrier frequencies

Mutliband (known carriers)



- Model: narrowband transmissions in wideband range, modulated on carrier frequencies $f_i \leq f_{\text{max}}$
- Sampling:
 - RF demodulation
 - Undesampling
 - Nonuniform strategies

Utilize knowledge $x(t) \in \mathcal{A}$

Sampling and processing at rate f_{\max} are often impractical

Landau's Theorem

States the minimal sampling rate for any (pointwise) sampling strategy that utilizes frequency support knowledge

Theorem (known spectral support)

Let R be a sampling set for $\mathcal{B}_{\mathcal{F}} = \{x(t) \in L^2(\mathbb{R}) \mid \text{supp } X(f) \subseteq \mathcal{F}\}.$ Then,

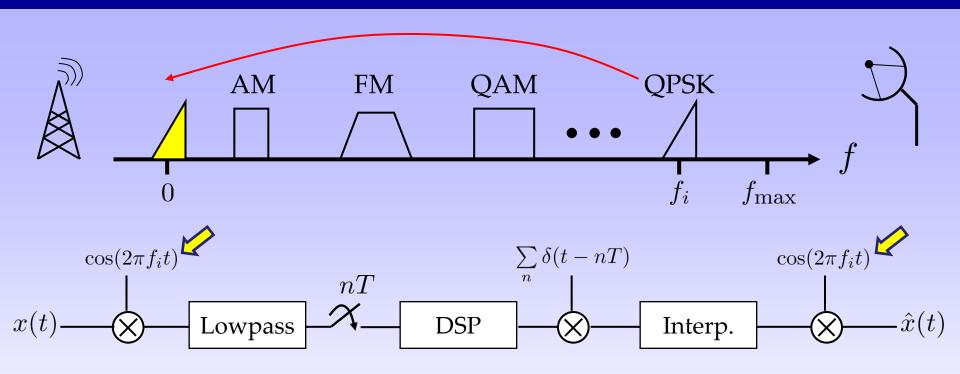
$$D^-(R) \ge \operatorname{meas}(\mathcal{F})$$

Landau, '67

Average sampling rate

- N bands, individual widths $\leq B$, requires at least NB samples/sec
- Note: \rightarrow bandpass with single-side width B requires 2B samples/sec \rightarrow k transmissions result in N=2k bands (conjugate symmetry)

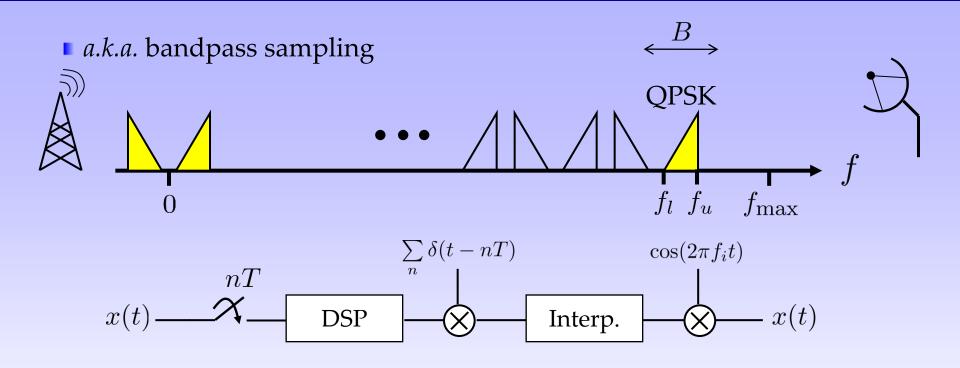
RF Demodulation



- f_i value is used in sampling and reconstruction
- Analog preprocessing with RF devices (1 branch/transmission)
- Minimal rate: *NB*
- Zero-IF, low-IF topologies

Crols and Steyaert, '98

Undersampling



Sampling:

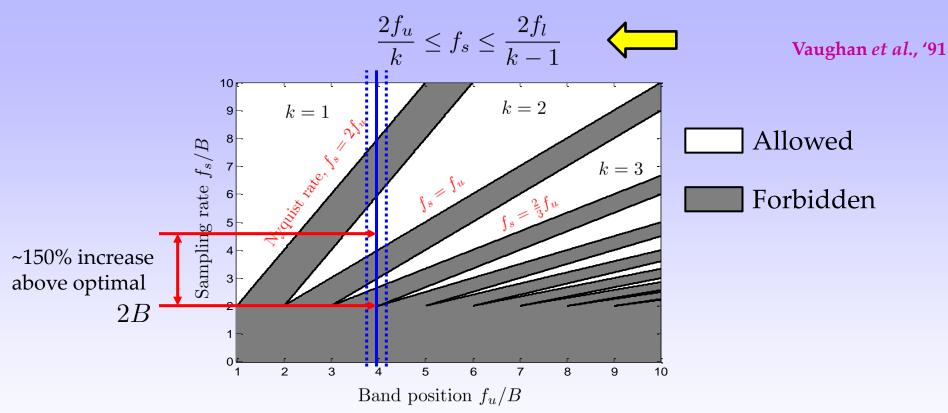
Select rate to satisfy ``alias free condition''

■ **Reconstruction:** Same as in RF demodulation

No analog preprocessing

Allowed Undersampling Rates

Sampling rate must be chosen in accordance to band location:

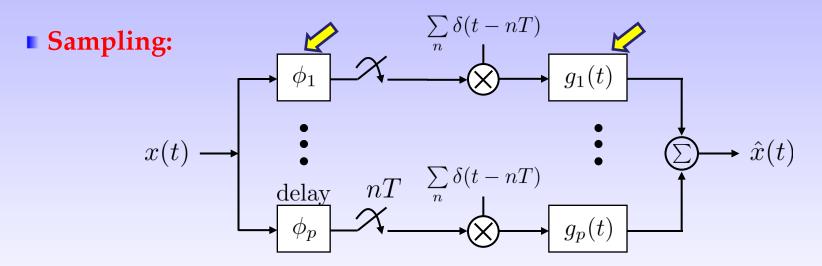


Robustness to model mismatch requires significant rate increase

• Multiband alias-free conditions are complicated and generally do not result in significant rate reduction

Periodic Nonuniform Sampling

- Advantages:
 - No analog preprocessing
 - No ``alias-free'' conditions, work for multiband
 - Approach minimal rate NB

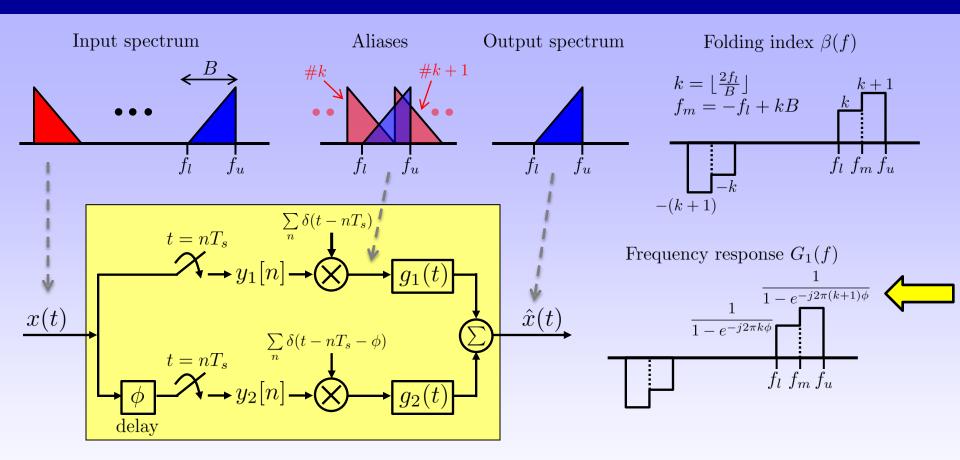


- In general, a *p*′th-order PNS can resolve up to *p* aliases:
 - Bandpass sampling at average rate 2*B*
 - Multiband sampling at rate approaching minimal

Kohlenberg, '53

Lin and Vaidyanathan, '98

Reconstruction from 2nd order PNS



Delays result in different linear combinations of the bands

$$T_s Y_1(f) = X(f) + X(f - \beta(f)B)$$

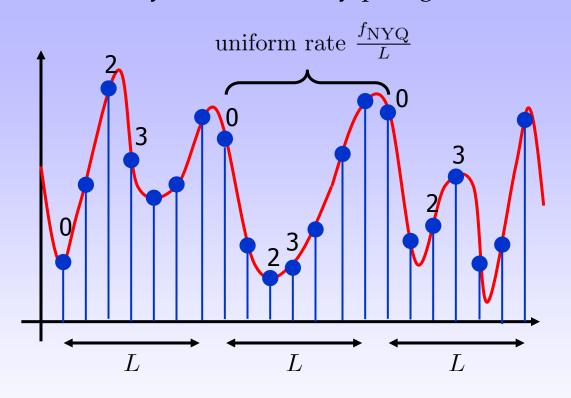
$$T_s Y_2(f) = X(f) + X(f - \beta(f)B)e^{-j2\pi\beta(f)\phi B}$$
Choose ϕ such the equation $e^{-j2\pi\beta(f)\phi B} \neq 0$

Choose ϕ such that $e^{-j2\pi\beta(f)\phi B} \neq 1$

Eldar, 2012

Multi-Coset Sampling

▶ PNS with delays $\{\phi_i\}$ on the Nyquist grid



Analog signalPoint-wise samples

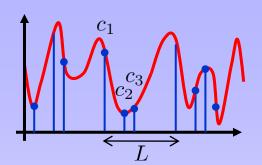
$$L = 7$$

$$p = 3$$

$$C = \{0, 2, 3\}$$

Multi-Coset Sampling

■ PNS with delays $\{\phi_i\}$ on the Nyquist grid



- Semi-blind approaches:
 - Choose $\{\phi_i\}$ universally (or at random)
 - Design reconstruction filters $g_1(t), \ldots, g_p(t)$

Herley et. al., '99 Bresler et al., '00

Bresler et al., '96,'98

■ ``Blind'' recovery:

$$\min_{|\mathcal{K}|=q} \operatorname{trace}(P_{\mathcal{K}}\mathbf{R}) \qquad \mathbf{R} = \text{measurements covariance}$$

- Positions are implicitly assumed:
 - q = q(x(t)) depends on band positions
 - Recovery fails if incorrect value is used for *q*
 - Result requires random signal model, and holds almost surely

Completely blind = Unknown carriers = not a subspace model!

Eldar, 2012

Short Summary

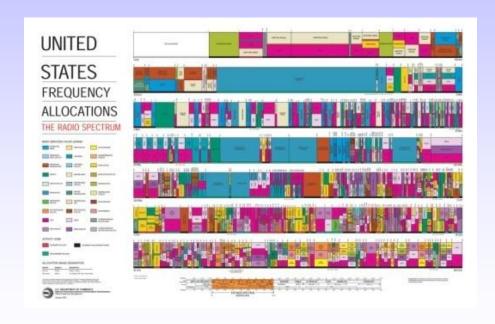
- Subspace models
 - Linear, easy to treat mathematically
 - Not necessarily bandlimited
- Generalized sampling theory
 - Treat arbitrary subspace models
 - Many classic approaches can be derived from theory
 - Rate is proportional to actual information rate rather than Nyquist

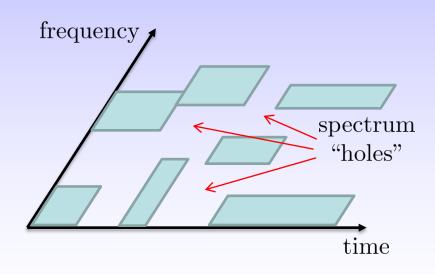
But, what if...

- the input model is not linear? (for example, when carrier frequencies or times of arrivals are unknown)
- Answer: the rest of this tutorial

Nonlinear Models - Motivation

- Encountered in practical applications:
 - Cognitive radio mobiles utilize unused spectrum `holes', spectral map is unknown a-priori





Nonlinear Models – Motivation

Ultrasonic probe

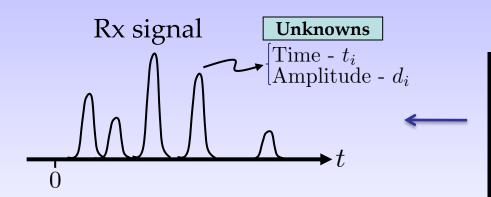
frequency *

ays

Encountered in practical applications:

Cognitive radio mobiles utilize unused spectru spectral map is unknown a-priori

Ultrasound, reflections are intercepted at unkn



Do not fit subspace modeling ... we can alw

- Questions:
 - Better modeling? Subspace up to some uncertainty?
 - Can we sample and process at rates below $2f_{\text{max}}$ with proper modeling?

- Part 3 -Union of Subspaces

→ Outline

Model

Signal belongs to one out of (possibly infinitely-)many subspaces

$$x(t) \in \mathcal{U}$$
 $\mathcal{U} = \bigcup_{\lambda \in \Lambda} \mathcal{A}_{\lambda}$

Lu and Do, '08 Eldar and Mishali, '09

- **Each** λ corresponds to a different subspace A_{λ}
- x(t) belongs to A_{λ^*} , for some $\lambda^* \in \Lambda \rightarrow But$, λ^* is unknown a-priori
- \mathcal{U} is a nonlinear model: $x, y \in \mathcal{U} \xrightarrow{\text{typically}} x + y \notin \mathcal{U}$

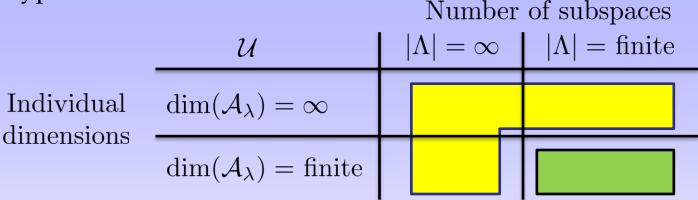
A union is generally a true subset of its affine hull:

$$\mathcal{U} \subsetneq \Sigma = \{x + y \mid x, y \in \mathcal{U}\}\$$

The union tells us more about the signal!

Union Types

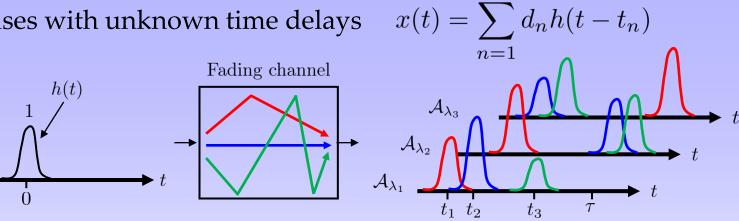
4 types:



- Legend:
 - = General analog union models Infiniteness enters in either $\dim(\mathcal{A}_{\lambda})$ or $|\Lambda|$
 - Discrete models, e.g., sparse trigonometric polynomials $p(t) = \sum_{n=1}^{N} c_n e^{jnt}$, with only k nonzero coefficients continuous-time signals with finite parameterization

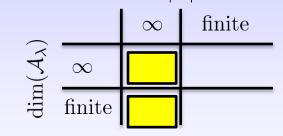
Examples: Analog Unions (1)

Pulses with unknown time delays



Union over possible path delays $t_i \in [0, \tau]$

- **Dimensions:**
 - $t_i \in [0, \tau], \ \lambda = \{t_i\}$
 - $t_i \in [0, \tau], \ \lambda = \{t_i\}$ $\mathcal{A}_{\lambda} = [d_1, \dots, d_L]^T \to \dim(\mathcal{A}_{\lambda}) = L$



 $|\Lambda|$

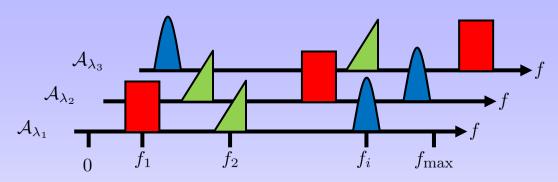
- A special case of a broader model: finite rate of innovation (FRI) Here, innovation rate = $2L/\tau$ Vetterli et al., '02-'11
- Sequences of innovation model has both dimensions infinite

Gedalyahu and Eldar, '09-'11

Eldar, 2012 51

Examples: Analog Unions (2)

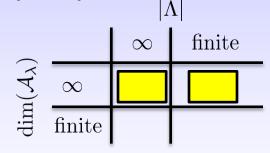
■ Multiband with unknown carrier frequencies $\lambda = \{f_i\}$



Union over possible band positions $f_i \in [0, f_{\text{max}}]$

Dimensions:

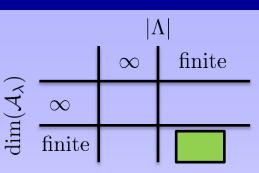
- $f_i \in [0, f_{\max}]$
- \mathcal{A}_{λ} is a bandpass signal



Another viewpoint with $|\Lambda|$ =finite and dim $(A_{\lambda}) = \infty$ is described later on Mishali and Eldar '07-'11 (efficient hardware and software implementation)

Examples: Discrete Unions

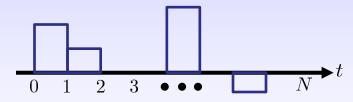
Signal model has underlying finite parameterization



- Continuous-time examples:
 - Sparse trigonometric polynomials $p(t) = \sum_{n=1}^{N} c_n e^{jnt}$, with only k nonzero coefficients

Kunis and Rauhut, '08 Tropp et al., '09

Sparse piece-wise constant with integer knots

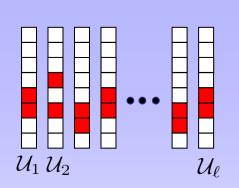


- Discrete-time examples:
 - Compressed sensing
 - Block sparsity, tree-sparse models

Donoho, Candès-Romberg-Tao, '06 Baraniuk *et al.*, Eldar *et al.*, '09-'11

Compressed Sensing = Union

2 - sparse



Each \mathcal{U}_i is a subspace

$$\ell = \left(\begin{array}{c} 8 \\ 2 \end{array} \right)$$

 \mathcal{U}_1

Sparsity models have been used successfully in many applications such as:

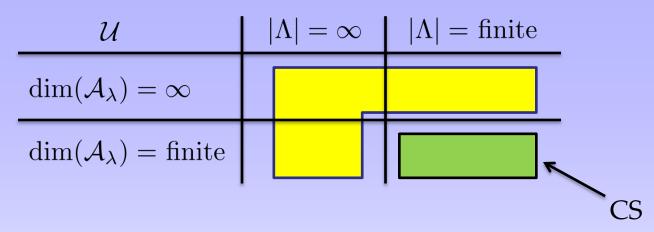
- Denoising and deblurring
- Tracking and classification
- Compressed sensing

Donoho, Johnstone, Mallat, Sapiro, Ma, Vidal, Starck, ...

 \mathcal{U}_2

Candès, Romberg, and Tao '06 Donoho '06

Compressed Sensing



- For sub-Nyquist sampling, our focus is on infinite unions
- We will start with compressed sensing (CS)
 - easier to explain
 - methods for infinite unions also rely on CS algorithms
- Following a short intro on CS \rightarrow Xampling and analog systems

Short Intro

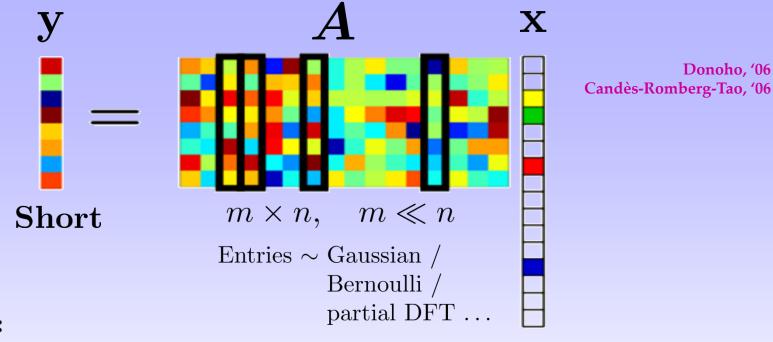
"Can we not just **directly measure** the part that will not end up being thrown away?"

Donoho, '06

Original 2500 KB 100%

Compressed 148 KB 6%

In a Nutshell...



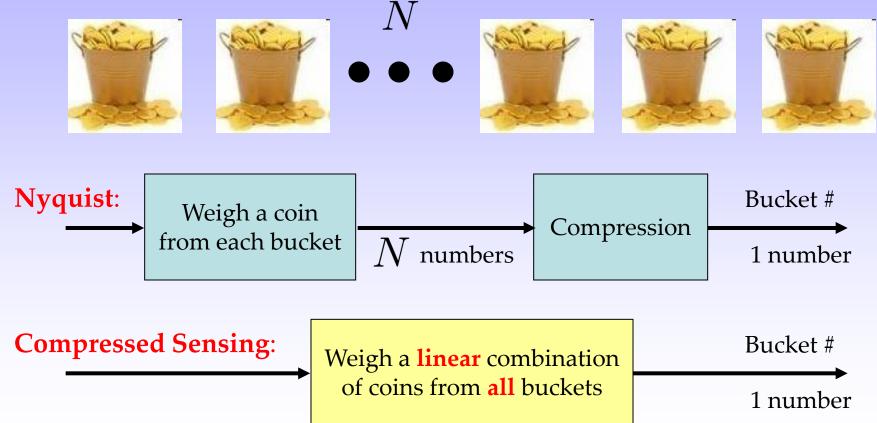
Main ideas:

Sensing = inner products $\mathbf{y}_i = \langle \mathbf{A}_i, \mathbf{x} \rangle$

- Random projections
- lacktriangleq K non-zero values requires at least 2K measurements
- Recovery: brute-force, convex optimization, greedy algorithms

Concept

Goal: Identify the bucket with fake coins.



Uniqueness of Sparse Representations

- How many samples are needed to ensure uniqueness?
- Suppose there are two K-sparse vectors x_1 and x_2 satisfying

$$y = Ax_1 = Ax_2$$

- Then $A(x_1 x_2) = 0$
- In the worst case $z = x_1 x_2$ is 2K sparse
- Require that there is no z with 2K non-zero elements in $\mathcal{N}(A)$
- Every 2K columns of $A_{m \times n}$ must be linearly independent $\Rightarrow m \geq 2k$

Problem: Condition hard to verify

Coherence

Donoho et al., '01 Tropp, '04

■ The coherence of A is defined by (assuming normalized columns) $\frac{\text{Tropp}}{\text{result}}$

$$\mu = \max_{i \neq j} \mid \langle a_i, a_j \rangle \mid$$

- When $n \gg m$, $\frac{1}{\sqrt{m}} \le \mu \le 1$
- Uniqueness of y=Ax can be expressed in terms of μ as

$$k < \frac{1}{2}(1 + \frac{1}{\mu})$$

■ Under same condition we will see that efficient recovery is possible as well

Restricted Isometry Property (RIP)

Candès and Tao, '05

- When noise is present uniqueness cannot be guaranteed
- Would like to ensure stability
- Can be guaranteed using RIP
- A has RIP of order δ if

$$(1 - \delta) \|x\|^2 \le \|Ax\|^2 \le (1 + \delta) \|x\|^2$$

for any *k*–sparse vector *x*

- In this case *A* is an approximate isometry
- If A has unit-columns and coherence μ then it has the RIP with

$$\delta = k\mu$$

Recovery of Sparse Vectors

• Reconstruction: Find the sparsest and consistent *x*

(Requires
$$m = 2K$$
) $\min_{x} ||x||_0$ s.t. $y = Ax$ NP-Hard!!

Alternative recovery algorithms (Polynomial-time):

■ Basis pursuit $\min_{x} \|x\|_{1}$ s.t. y = Ax (Requires $m = O(K \log(N/K))$)

Convex and tractable

$$RIP-\delta_{2K} < \sqrt{2}-1 \rightarrow exact\ recovery$$

or coherence guarantee
$$K < \frac{1}{2} \left(1 + \frac{1}{\mu} \right)$$

Greedy algorithms

OMP, FOCUSS, etc.
OMP coherence guarantee
$$K < \frac{1}{2} \left(1 + \frac{1}{\mu} \right)$$

Donoho, '06 Candès et al., '06

Candès, '08

Donoho and Elad, '03

Tropp, Elad, Cotter *et* al., Chen *et* al., and many others...

Eldar, 2012

Greedy Methods: Matching Pursuit

Essential algorithm:

Mallat and Zhang, '93

1) Choose the first "active" column (maximally correlated with y)

$$\operatorname{arg\,max}_i \langle \mathbf{A}_i, \mathbf{y} \rangle$$

$$S = \operatorname{supp}(\hat{\mathbf{x}}) \leftarrow i$$

2) Subtract off to form a residual

$$\mathbf{y}' = \mathbf{y} - \sum_{i \in S} \langle \mathbf{A}_i, \mathbf{y} \rangle \mathbf{A}_i$$

- 3) Repeat with y'
- Very fast for small scale problems
- Not as accurate/robust for large signals in the presence of noise

Orthogonal MP:

Pati et al., '93

Improve residual computation

$$\mathbf{y}' = (\mathbf{I} - \mathcal{P}_S)\mathbf{y} = \mathbf{y} - \mathbf{A}\mathbf{A}_S^{\dagger}\mathbf{y}$$

Recovery In the Presence of Noise

$$y = Ax + w$$

- $lacktriangleq \ell_1$ -relaxation techniques (convex optimization problems)
 - Basis pursuit denoising (BPDN) / Lasso:

$$\min_{x} ||x||_1$$
 s.t. $||y - Ax||_2^2 \le \eta$ or $\min_{x} ||x||_1 + \lambda ||y - Ax||_2^2$

Tibshirani '96 Chen et al., '98

Dantzig selector: $\min_{x} \|x\|_1$ s.t. $\|A^T(y - Ax)\|_{\infty}^2 \le \eta$

Candès and Tao, '07

Greedy approaches: stop when data error is on the order of the noise

Recovery Gurantees

$$y = Ax + w$$

Common settings:

- Random sensing matrix A, random noise $w \sim N(0, \sigma^2 I)$
 - RIP (and similar properties) can be approximated w.h.p.
 - RIP-based guarantees for Dantzig selector and BPDN: $||x \hat{x}||_2^2 \le C_0 K \sigma^2 \log N$ assuming RIP

Candès and Tao, '07 Bicket et al., 09

- Deterministic *A* and *x*, random $w \sim N(0, \sigma^2 I)$
 - RIP typically unknown, coherence must be used
 - Coherence-based results for BPDN, OMP, thresholding: $||x \hat{x}||_2^2 \le C_0 K \sigma^2 \log N$ assuming low μ

Ben-Haim, Eldar and Elad, '10

- Deterministic "adversarial" noise $w: ||w||_2^2 \le \epsilon^2$
 - Guarantees on order of $||x \hat{x}||_2^2 \sim \epsilon^2$

Donoho et al., '06

The Sensing Matrix A

Random IID matrices ensure recovery with high probability for sub-Gaussian distributions (Gaussian, Rademacher, Bernoulli, bounded RVs ...) when $m = O(K \log(N/K))$

Donoho, '06

- Random partial Fourier matrices (or more generally unitary matrices) also ensure recovery with a slightly higher number of measurements

 Candès et al., '06
- Some structured matrices work as well such as a Vandermonde matrix

Tutorials on Compressed Sensing:

- R. G. Baraniuk, "Compressive sensing," IEEE Signal Processing Mag., 24(4), 118–124, July 2007.
- E. J. Candès and M. B. Wakin, "An introduction to compressive sampling," IEEE Sig. Proc. Mag., 25(3), 21–30, Mar. 2008.
- M. Duarte and Y. C. Eldar, "Structured Compressed Sensing: From Theory to Applications," IEEE Trans. On Signal Processing, 59(9), 4053-4085, Sept. 2011.
- Y. C. Eldar and G. Kutyniok, "Compressed Sensing: Theory and Applications," Cambridge Press., 2012.

Sub-Nyquist in a Union

$$x(t) \in \mathcal{U}$$
 $\mathcal{U} = \bigcup_{\lambda \in \Lambda} \mathcal{A}_{\lambda}$

- Imposing subspace model $x(t) \in \Sigma$ is inefficient, f_{max} problems

- High-sampling rate
- Analog bandwidth issues
- Geheadlizethsaligithing thesing for entridues excessive rate

Still developing.

Apply CS on discretized analog models?

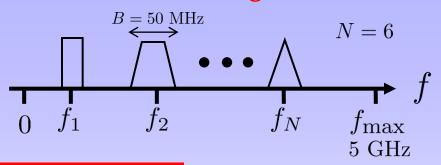
...at the price of model sensitivity, high computational loads, and loss of resolution

Rule of thumb: 1 MHz Nyquist = CS with 1 Million unknowns!

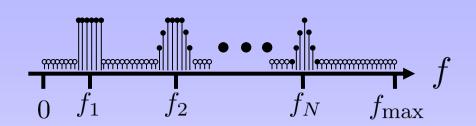
Eldar, 2012 67

Multiband: Discretization?

Instead of analog multiband:



Work with **discrete multi-tone**:



Advantages:

Model size:

$$\Phi = N \times \frac{f_{\text{max}}}{B} \approx 40 \times 200$$

Proportional to actual bandwidth

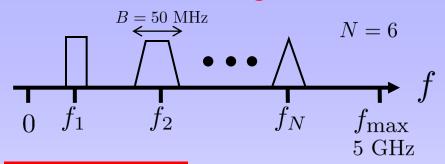
Problems:

$$\Phi \approx 10^7 \times 10^{10}$$

Proportional to Nyquist rate

Multiband: Discretization?

Instead of analog multiband:

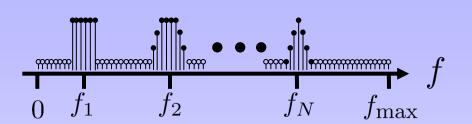


Advantages:

- Model size: $\Phi \approx 40 \times 200$
- Sensitivity:

Negligible (for a slight rate increase)

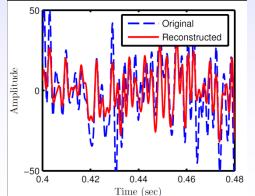
Work with discrete multi-tone:



Problems:

$$\Phi \approx 10^7 \times 10^{10}$$
 huge-scale

Cannot avoid grid mismatch



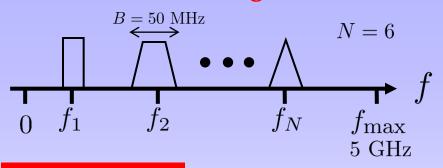
0.005% grid mismatch

$$\frac{\|f(t) - \hat{f}(t)\|^2}{\|f(t)\|^2} = 37\%$$

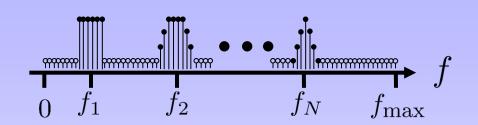
Mishali, Eldar and Elron, '10

Multiband: Discretization?

Instead of analog multiband:



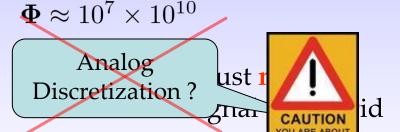
Work with **discrete multi-tone**:



Advantages:

- Model size: $\Phi \approx 40 \times 200$
- Sensitivity: Negligible

Problems:



Computational load (100 MHz processer):

$$\approx 200$$

Realtime processing

$$\approx 10^9 \text{ MIPS}$$

Mishali, Eldar and Elron, '10

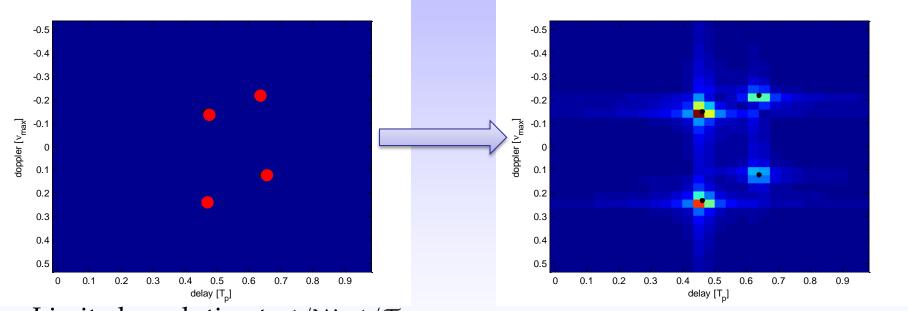
Discrete CS Radar

- A discrete version of the channel is being estimated
- Bajwa, Gedalyahu and Eldar, '11

■ Leakage effect → fake targets

$$C(\tau, \nu) = \sum_{k=1}^{K} \alpha_k \delta(\tau - \tau_k) \delta(\nu - \nu_k)$$

Discretized channel $C(\tau, \nu) = \sum_{k} \alpha_k \delta(\tau - \tau_k) \delta(\nu - \nu_k) \qquad C(\ell, m) = \sum_{k} \alpha_k e^{j\pi(m - \tau_{\nu_k})} \operatorname{sinc}(m - \tau_{\nu_k}) \operatorname{sinc}(\ell - \mathcal{W}\tau_k)$



- Limited resolution to 1/W, 1/T
- Sampling process in hardware is unclear
- Digital processing is complex and expensive

Eldar, 2012

ADCs: Why Not Standard CS?

- \blacksquare CS is for finite dimensional models (y=Ax)
- Loss in resolution when discretizing
- Sensitivity to grid, analog bandwidth issues
- Is not able to exploit structure in analog signals
- Results in large computation on the digital side
- Samples do not typically interface with standard processing methods

More elaborate signal models needed that exploit structure to reduce sampling and processing rates

Sub-Nyquist in a Union

$$x(t) \in \mathcal{U}$$
 $\mathcal{U} = \bigcup_{\lambda \in \Lambda} \mathcal{A}_{\lambda}$

Imposing subspace model $x(t) \in \Sigma$ is inefficient, f_{\max} problems

Generalized sampling theory for unions?

Still developing...

Apply CS on discretized analog models?

Discretization issues...

Must combine ideas from Sampling theory and CS recovery algorithms

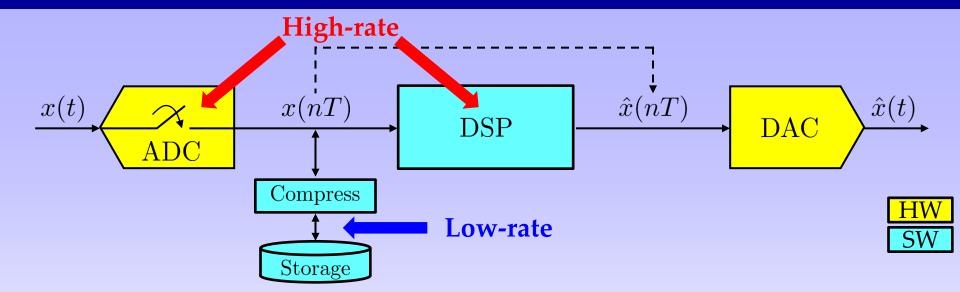
Part 4 –Xampling

Functional approach to sub-Nyquist in a Union

- CS+Sampling = Xampling
- X prefix for compression, e.g. DivX

→ Outline

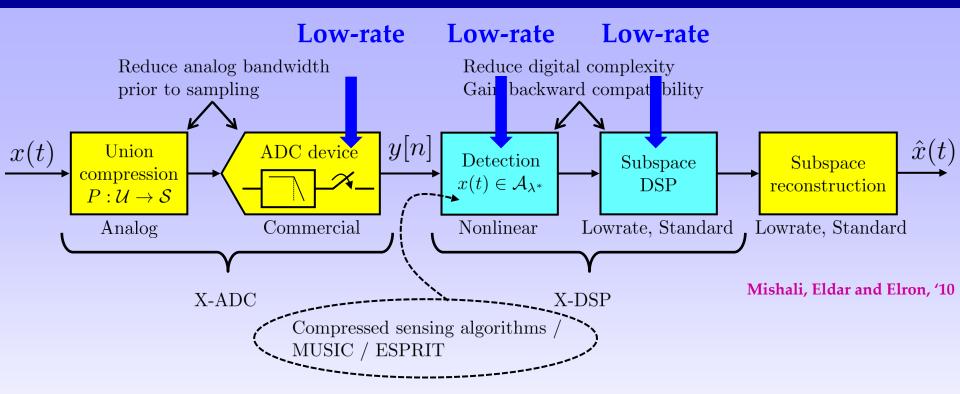
Standard DSP Systems



- Sampling and processing at high rates = Nyquist of x(t)
- After compression, data has low rate
- Standard DSP software expects Nyquist-rate samples rely on invariant properties $x(t) \leftrightarrow x(nT)$ (enables digital filtering / digital estimation for example)

Move compression to hardware before ADC!

Xampling – Architecture



- Functional architecture: Both sampling and processing at low rate
- **v**[n] ≠ x(nT) → Detection block outputs lowrate data that DSP can handle

Built bottom-up: based on practical and pragmatic considerations

Xampling: Main Idea

Principle #1 (X-ADC):

- Create several streams of data
- Each stream is sampled at a low rate (overall rate much smaller than the Nyquist rate)
- Each stream contains a combination from different subspaces

New hardware design ideas

Principle #2 (X-DSP):

- Identify subspaces involved (e.g., using CS)
- Recover using standard sampling results

Union compression $P: \mathcal{U} \to \mathcal{S}$

Analog

Detection $x(t) \in \mathcal{A}_{\lambda^*}$

Nonlinear

New DSP algorithms

Xampling Systems

Modulated wideband converter

Mishali and Eldar, '07-'09

Periodic nonuniform sampling (fully-blind)

Mishali and Eldar, '07-'09

Sparse shift-invariant framework

Eldar, '09

Finite rate of innovation sampling

Vetterli et al., '02-'07

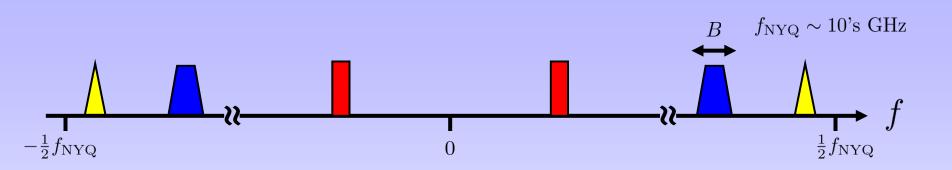
Dragotti et al., '02-'07

Gedalyahu, Tur and Eldar, '10-'11

Random demodulation

Tropp et al., '09

Multiband Union



- 1. Each band has an uncountable number of non-zero elements
- 2. Band locations lie on the continuum
- 3. Band locations are unknown in advance

 $\mathcal{M} = \{ x(t) \mid \text{ no more than } N \text{ bands, max width } B, \text{ bandlimited to } [-\frac{1}{2}f_{\text{NYQ}}, +\frac{1}{2}f_{\text{NYQ}}) \}$

Mishali and Eldar, '07

Optimal Blind Sampling Rate

Theorem (known spectral support)

Let R be a sampling set for $\mathcal{B}_{\mathcal{F}} = \{x(t) \in L^2(\mathbb{R}) \mid \text{supp } X(f) \subseteq \mathcal{F}\}.$ Then,

 $D^-(R) \not\geq c \not= \operatorname{meas}(\mathcal{F})$

Landau, '67

1:

Average sampling rate

Theorem (unknown spectral support)

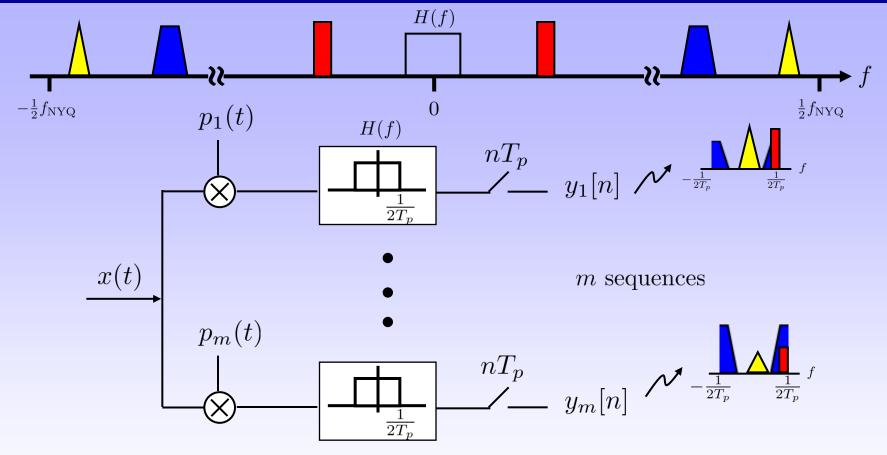
Let R be a sampling set for $\mathcal{N}_c = \{\mathcal{B}_{\mathcal{F}} : \text{meas}(\mathcal{F}) \leq c\}$. Then,

 $D^-(R) \ge \min\{2c, f_{\text{NYQ}}\}$

Mishali and Eldar, '07

- 1. The minimal rate is doubled
- 2. N bands, individual widths $\leq B$, requires at least 2NB samples/sec

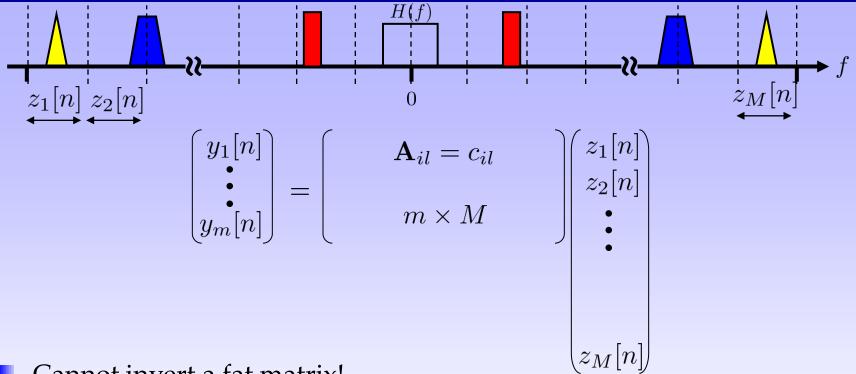
The Modulated Wideband Converter



 T_p -periodic $p_i(t)$ gives the desired aliasing effect

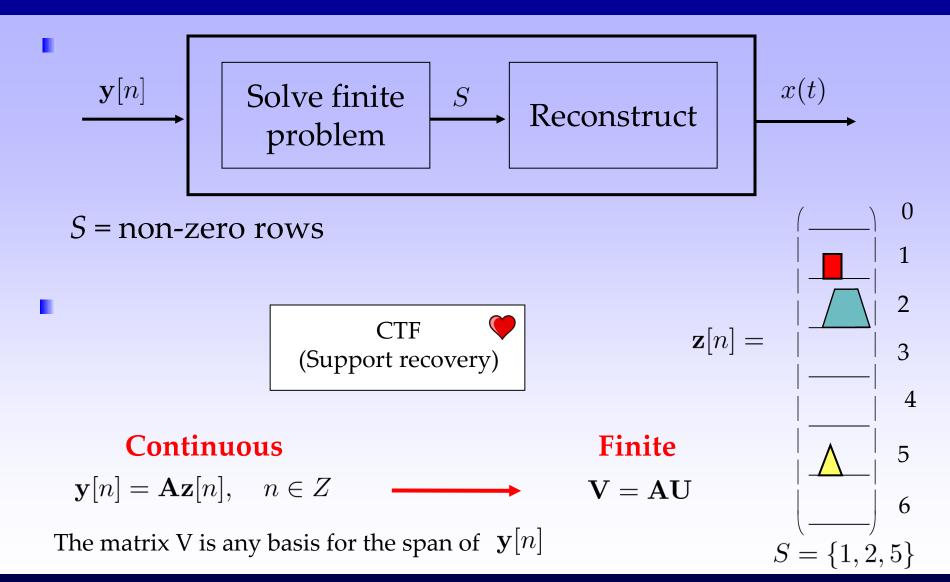
Mishali and Eldar, '09

Recovery From Xamples



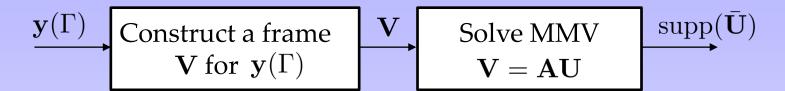
- Cannot invert a fat matrix!
- Spectrum sparsity: Most of the $z_i[n]$ are identically zero
- For each n we have a small size CS problem
- Problem: CS algorithms for each $n \rightarrow$ many computations

Reconstruction Approach



Underlying Theory

$$\mathbf{y}(\lambda) = \mathbf{A}\mathbf{z}(\lambda), \quad \lambda \in \Gamma$$



Theorem [Exact Support Recovery, CTF]

Let $\bar{\mathbf{z}}(\Gamma)$ be a k-sparse solution set. If

$$\sigma(\mathbf{A}) \ge 2k - (\operatorname{rank}(\mathbf{y}(\Gamma)) - 1)$$

then $\operatorname{supp}(\bar{\mathbf{z}}(\Gamma)) = \operatorname{supp}(\bar{\mathbf{U}}).$

Mishali and Eldar, '08

CTF = Continuous to Finite

Insight into CTF

$$\mathbf{y}[n] = \mathbf{A}\mathbf{z}[n]$$

Run CS recovery for each time-instance n

Poly.-time / $\mathbf{y}[n]$

nonlinear

easy

nonlinear

Computationally heavy

- 1. Construct frame ${f V}$
- 2. Solve CS systemV = AU
- 3. Apply \mathbf{A}_{S}^{\dagger} on $\mathbf{y}[n]$ for each time-instance n

 $\mathcal{O}(k)$ snapshots

Poly.-time once

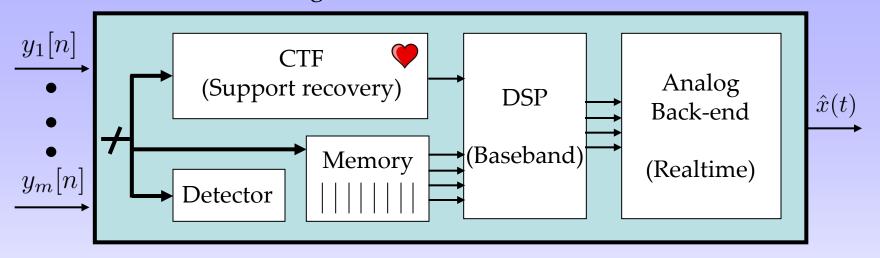
1 matrix-vector mult. / $\mathbf{y}[n]$ linear

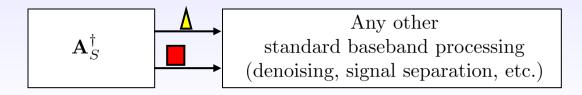
Computationally light

Reconstruction

High-level architecture

Mishali and Eldar, '07-'10

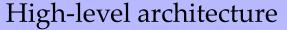


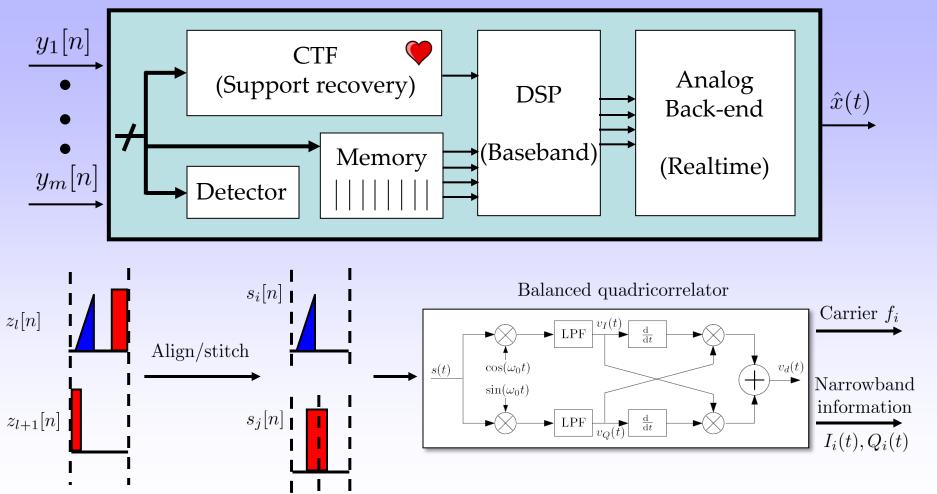


Recover any desired spectrum slice at baseband

Reconstruction

Mishali and Eldar, '07-'10

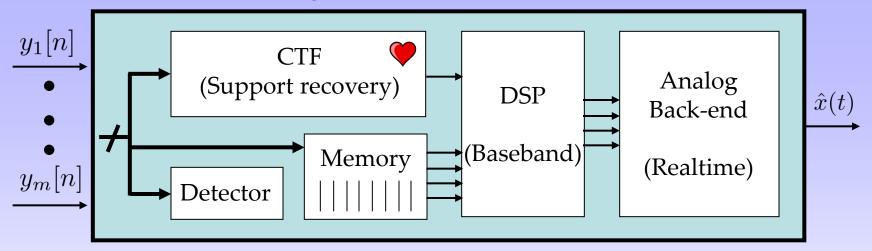




Reconstruction

Mishali and Eldar, '07-'10

High-level architecture



Can reconstruct:

- The original analog input exactly $\hat{x}(t) = x(t)$ (without noise)
- Improve SNR for noisy inputs, due to rejection of out-of-band noise
- Any band of interest, modulated on any desired carrier frequency

Sign-Flipping Periodic Waveforms

$$p_i(t) = \prod_{0}^{M \text{ alernations}} \longrightarrow \mathbf{A} = \mathbf{SF} \begin{cases} \mathbf{S} = \text{rectangular (signs)} \\ \mathbf{F} = \text{square (DFT)} \end{cases}$$

Theorem [Expected-RIP for MWC]

Periodic mixing with sign patterns gives A with ExRIP probability

$$p \ge 1 - \frac{(1 - C_k)\rho_M \left(1 + \alpha(\mathbf{S}) - 2\beta(\mathbf{S})\right) - (B_k - C_k)\rho_M \left(\gamma(\mathbf{S}) - \beta(S)\right) + C_k M\beta(\mathbf{S}) - 1}{\delta_k^2}$$

TABLE II: ExRIP guarantees for different sign patterns

	Dimensions			Quality ×100			ExRIP prob. p	
Family	m	M	2K	$\boldsymbol{lpha}(\mathbf{S})$	$\boldsymbol{\beta}(\mathbf{S})$	${m \gamma}({f S})$	Normal	Uniform
Maximal	80	511	24	1.438	0.196	0.408	0.932	0.931
Gold	80	511	24	1.255	0.198	0.199	0.939	0.939
Hadamard	80	512	24	1.250	1.094	1.238	0.000	0.000
Random1	80	511	24	1.439	0.198	0.202	0.927	0.927
Kasami	16	255	12	6.667	0.392	0.294	0.689	0.675
Random2	40	195	24	3.025	0.526	0.537	0.856	0.858

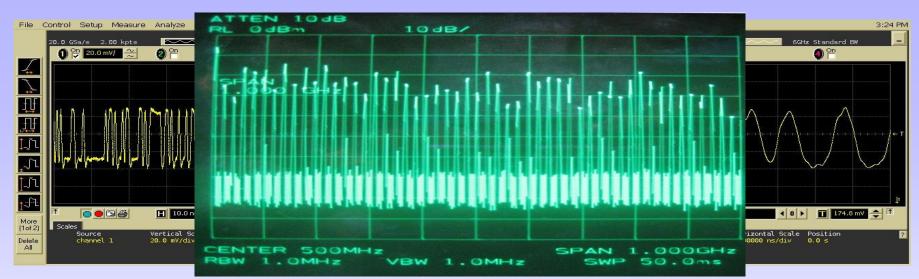
$$\alpha(\mathbf{S}) = \text{correlations energy}$$

$$\beta(\mathbf{S}) = \text{auto/cross-correlations}$$

$$\gamma(\mathbf{S}) = \text{reverse-correlations}$$

Mishali and Eldar, '09

Time Appearance of Mixing Waveforms



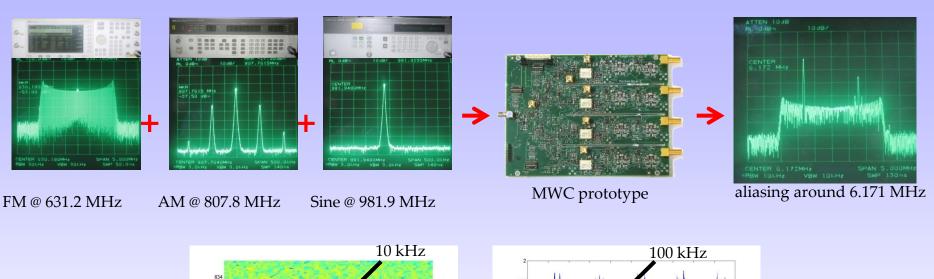
Good news: only the periodicity matters!

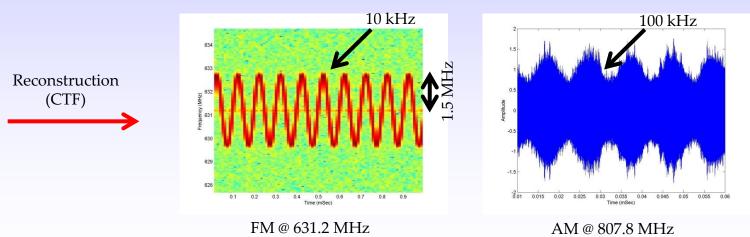
$$p_i(t) = \sum_{l=-\infty}^{\infty} c_{il} e^{j\frac{2\pi}{T_p}lt} \qquad \iiint_{T_p} \qquad \iiint_{T_p} \qquad \text{and many more...}$$

Competing approaches (pure CS) struggle with time appearance

Sub-Nyquist Demonstration

Carrier frequencies are chosen to create overlayed aliasing at baseband





Mishali et al., '10

Xampling Systems

Modulated wideband converter

Mishali and Eldar, '07-'09

Periodic nonuniform sampling (fully-blind)

Mishali and Eldar, '07-'09

Sparse shift-invariant framework

Eldar, '09

Finite rate of innovation sampling

Vetterli et al., '02-'07

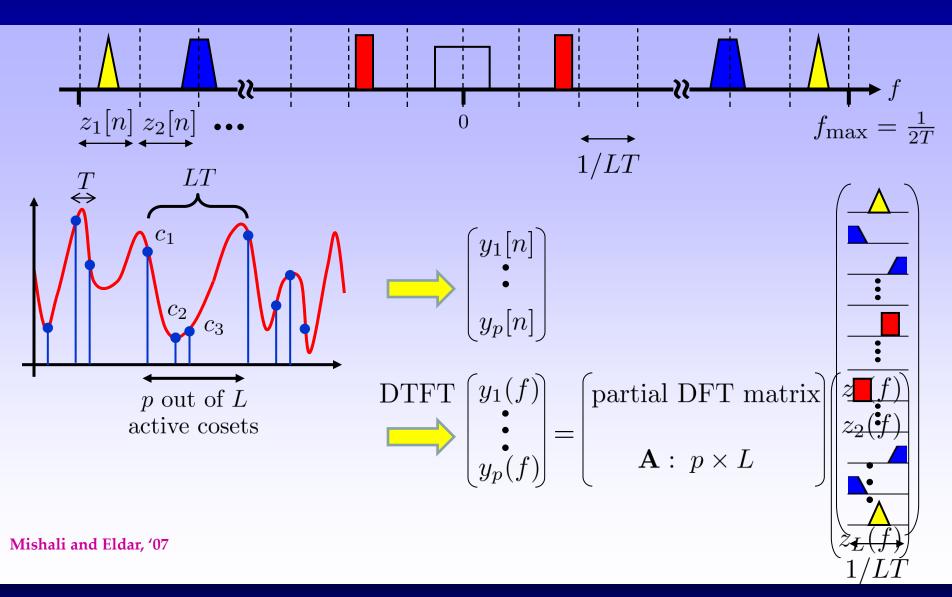
Dragotti et al., '02-'07

Gedalyahu, Tur and Eldar, '10-'11

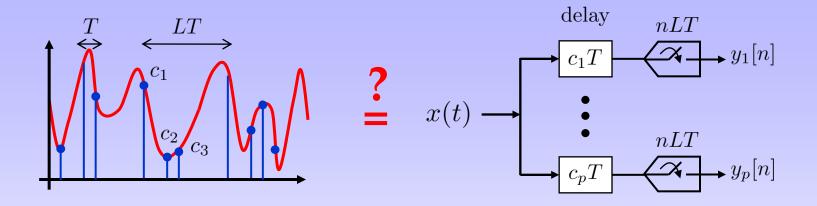
Random demodulation

Tropp et al., '09

Fully-Blind PNS Approach

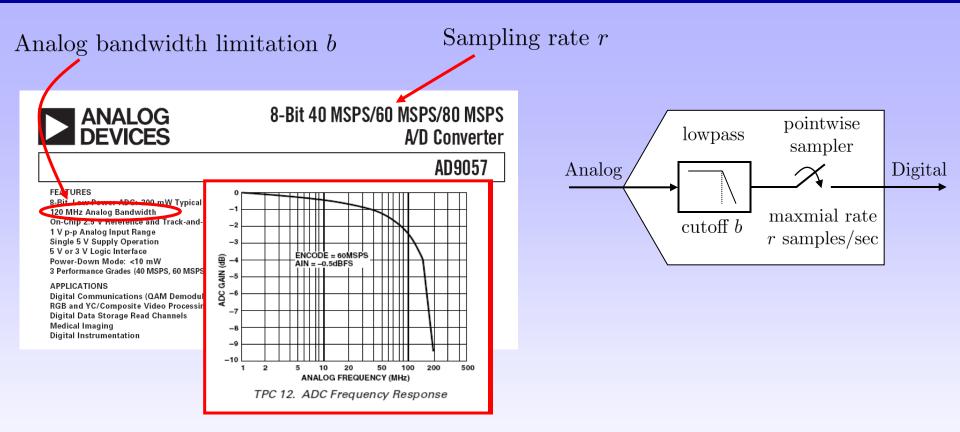


Can Avoid RF Front-end?



YES! If the input bandwidth is not too high...

Practical ADC Devices



In non-uniform sampling:

- Both T/H and mux operate at the Nyquist rate
- Digital processing and recovery requires interpolation to the high Nyquist grid

• Accurate time-delays ϕ_i are needed

Xampling Systems

Modulated wideband converter

Mishali and Eldar, '07-'09

Periodic nonuniform sampling (fully-blind)

Mishali and Eldar, '07-'09

Sparse shift-invariant framework

Eldar, '09

Finite rate of innovation sampling

Vetterli et al., '02-'07

Dragotti et al., '02-'07

Gedalyahu, Tur and Eldar, '10-'11

Random demodulation

Tropp et al., '09

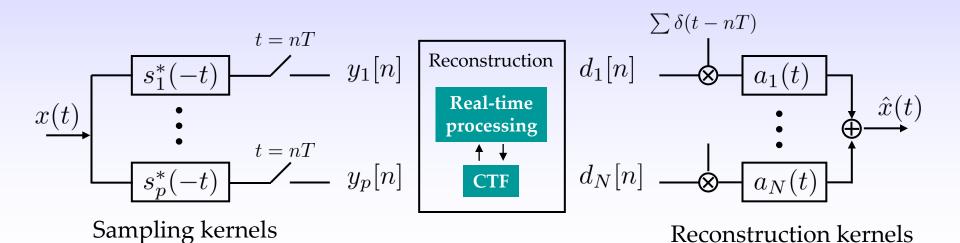
Sparse Shift-Invariant Framework

Eldar, '09

Sampling signals from a structured union of shift-invariant spaces (SI)

$$x(t) = \sum_{|\boldsymbol{l}| = \boldsymbol{k}} \sum_{n = -\infty}^{\infty} d_{\boldsymbol{l}}[n] a_{\boldsymbol{l}}(t - n)$$

There is no prior knowledge on the exact |l| = k indices in the sum



Xampling Systems

Modulated wideband converter

- Mishali and Eldar, '07-'09
- Periodic nonuniform sampling (fully-blind)

Mishali and Eldar, '07-'09

Sparse shift-invariant framework

Eldar, '09

Finite rate of innovation sampling

Vetterli *et al.*, '02-'07

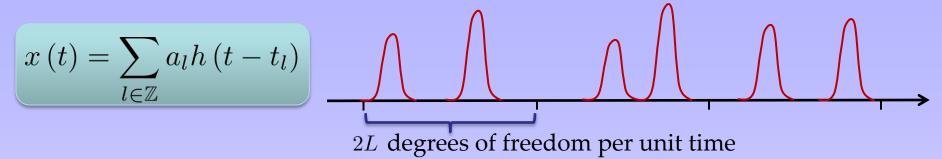
Dragotti et al., '02-'07

Gedalyahu, Tur and Eldar, '10-'11

Random demodulation

Tropp et al., '09

Pulse Streams



- Delays and amplitudes are unknown
- Applications:

Communication

Radar

Bioimaging

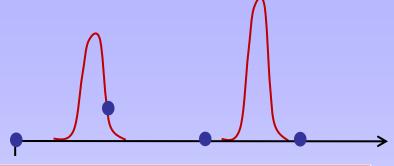
Neuronal signals

- Special case of Finite Rate of Innovation (FRI) signals
- Minimal sampling rate the rate of innovation: $\rho = \frac{2L}{T}$

Vetterli et al., '02

Analog Sampling Stage

- Naïve attempt: direct sampling at low rate
- Most samples do not contain information!!

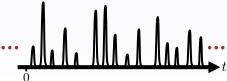


Sampling rate reduction requires proper design of the analog front-end

Special cases:

- Periodic pulse streams
- Finite

Infinite pulse streams



Vetterli *et al.*, '02-'05

Dragotti et al., '07-'10

Tur et al., '10-'11

Gedalyahu et al., '09

Periodic Pulse Streams

Periodic FRI signal model:

$$x(t) = \sum_{k \in \mathbb{Z}} \sum_{\ell=1}^{L} a_{\ell} h(t - t_{\ell} - k\tau), \ t_{\ell} \in [0, \tau)$$

Vetterli et al., '02-'05

The function h(t) and the period are known

Since x(t) is periodic it has a Fourier series with coefficients

$$X[k] = H\left(\frac{2\pi k}{T}\right) \sum_{l=1}^{L} a_l e^{-j2\pi k t_l/T}$$

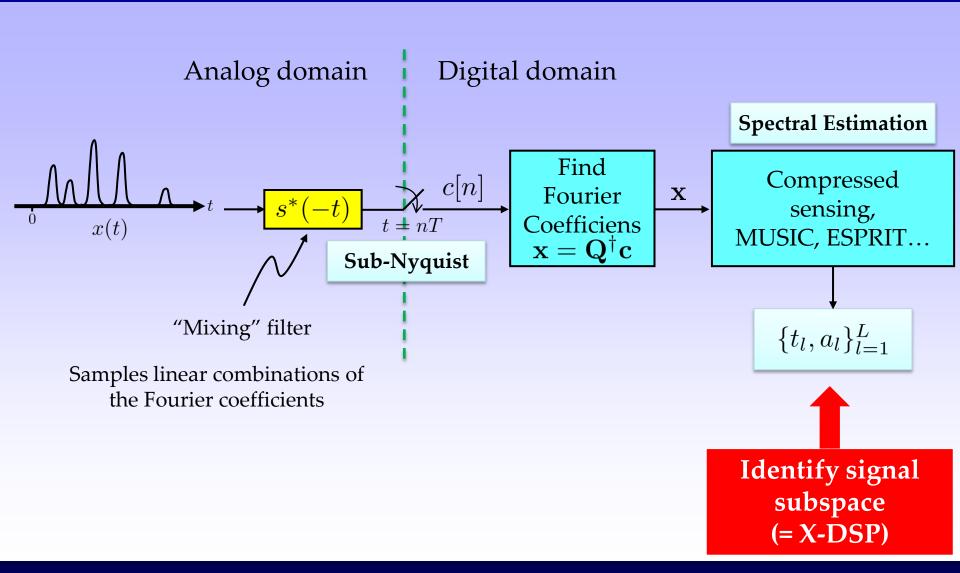
- Spectral estimation: sum of complex exponentials problem
- Solved using 2L measurements
 - Methods: annihilating filter, MUSIC, ESPRIT

Schmidt, '86

Roy and Kailath, '89

Stoica and Moses, '97

General Approach



Find Fourier Coefficients

lowpass $\rightarrow \neq 0, -L \leq k \leq L$

$$\mathbf{x} = [\cdots X[k] \cdots]^T$$
 Unknown

Sensing with lowpass:

$$c[n] = \langle s(t - nt), x(t) \rangle = \sum_{k} X[k] \int_{-\infty}^{\infty} e^{j2\pi kT/\tau} s^{*}(t - nT) dt$$

$$= \sum_{k} X[k] e^{j2\pi knT/\tau} S^{*} \left(\frac{2\pi k}{\tau}\right) = \sum_{k=-L}^{L} X[k] e^{j2\pi knT/\tau} S^{*} \left(\frac{2\pi k}{\tau}\right) \longrightarrow \mathbf{c} = \mathbf{VS} \mathbf{x}$$

$$S^{*}(\omega) = \text{CTFT}\{\mathbf{s}(\mathbf{t})\} \qquad \mathbf{V} \qquad \text{diagonal } \mathbf{S} \qquad \mathbf{c} = [\cdots c[n] \cdots]^{T}$$

Known

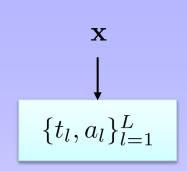
measurements

Eldar, 2012 103

Annihilating ``Filter''

■ Goal: design a digital filter A[k] with z-transform:

$$A(z) = \sum_{k=0}^{L} A[k]z^{-k} = A[0] \prod_{l=1}^{L} \left(1 - e^{-j2\pi t_{\ell}/\tau} z^{-1} \right)$$



- lacksquare A[k] has zeros at the ``frequencies'' $t_\ell \longrightarrow$ annihilates X[k]
- Filter coefficients can be computed from the measurements:

$$A[k] * X[k] = 0 \longrightarrow \begin{bmatrix} X[0] & X[-1] & \cdots & X[-L] \\ X[1] & X[0] & \cdots & X[-(L-1)] \\ \vdots & \vdots & \ddots & \vdots \\ X[L] & X[L-1] & \cdots & X[0] \end{bmatrix} \begin{pmatrix} A[0] \\ A[1] \\ \vdots \\ A[L] \end{pmatrix} = \mathbf{0}$$

X-ADC: Filter Choice

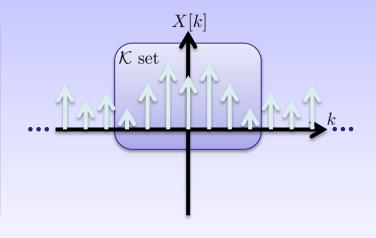
$$x(t) \xrightarrow{s^*(-t)} \underbrace{c[n]}_{t=nT}$$

Theorem [Sufficient Condition]

If the filter $s^*(-t)$ satisfies:

$$S^*(\omega) = \begin{cases} 0 & \omega = 2\pi k/\tau, k \notin \mathcal{K} \\ \text{nonzero} & \omega = 2\pi k/\tau, k \in \mathcal{K} \\ \text{arbitrary} & \text{otherwise,} \end{cases}$$

and $N \geq |\mathcal{K}|$, then the vector \mathbf{x} can be obtained from the samples $c[n], n = 1 \dots N$.



Tur, Eldar and Friedman, '11

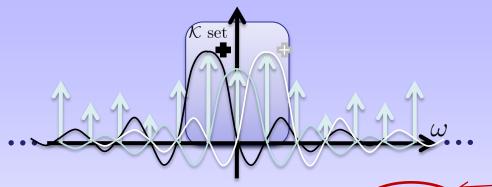
Special Cases

Low pass filter

Vetterli et al., '02

Sum of sincs (SoS) in the frequency domain

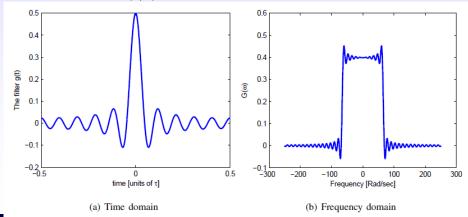
Tur, Eldar and Friedman, '11



$$\frac{\tau}{\sqrt{2\pi}} \sum_{k \in \mathcal{K}} b_k \operatorname{sinc}\left(\frac{\omega}{2\pi/\tau} - k\right)$$

Compact support!

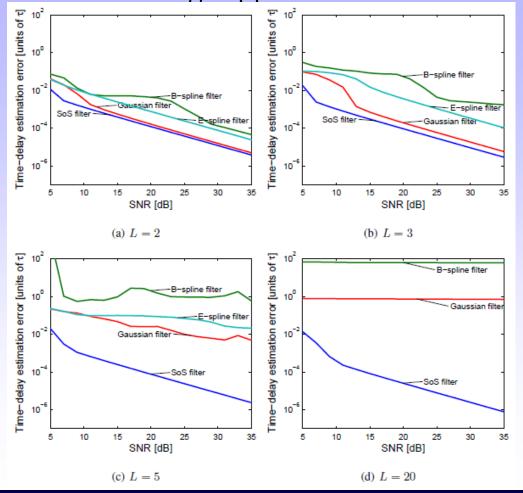
- In the time domain $g(t) = \cot\left(\frac{t}{\tau}\right) \sum_{k \in \mathcal{K}} b_k e^{j2\pi kt/\tau}$
- For $b_k = 1$: $g(t) = \text{rect}\left(\frac{t}{\tau}\right) D_p(2\pi t/\tau)$, $D_p(t)$ is the Dirichlet kernel



Finite Pulse Streams

- SoS filter can be used for finite streams due to its finite support!
- Not true for LPF or other filters with long support

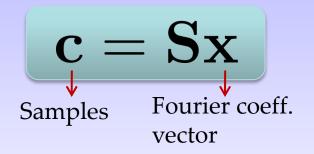
Far more robust than Spline based methods – works even for high *L*!

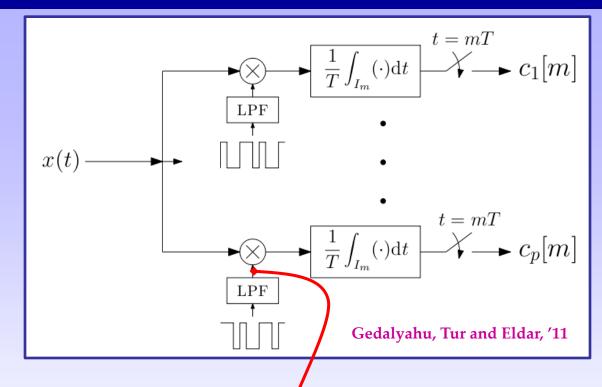


Multichannel Scheme

Proposed scheme:

- Mix & integrate
- Take linear combinations from which Fourier coeff. can be obtained



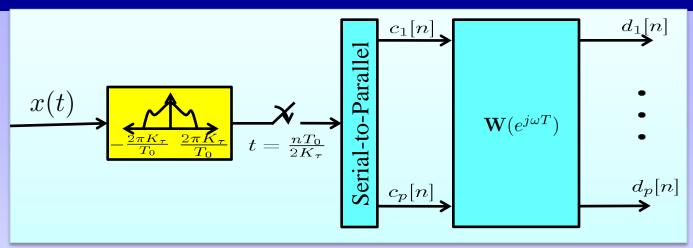


- Supports general pulse shapes (time limited)
- Operates at the rate of innovation
- Stable in the presence of noise
- Practical implementation based on the MWC
- Single pulse generator can be used

$$=\sum_k s_{i\ell} e^{-j2\frac{\pi}{T}kt}$$

$$\mathbf{S} = [s_{i\ell}]$$

Filter Bank Approach



■ The analog sampling filter "smoothens" the input signal:

Gedalyahu and Eldar, '09

Allows sampling of short-length pulses at low rate

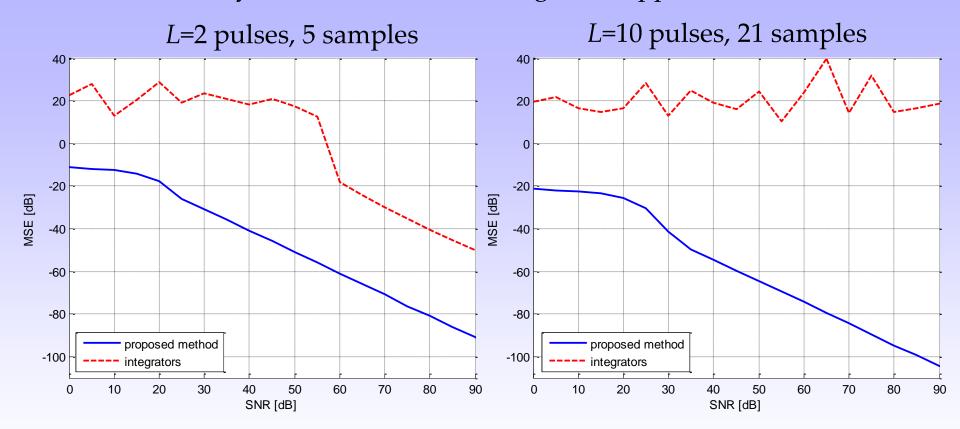
CS interpretation: each sample is a linear combination of the signal's values.

- The digital correction filter-bank:
 - Removes the pulse and sampling kernel effects
 - Samples at its output satisfy: $\mathbf{d}[n] = \mathbf{V}(\tau_i)\mathbf{a}[n]$ $\mathbf{V}(\tau_i)$ is Vandermonde
 - The delays can be recovered using ESPRIT as long as $W \ge 2\pi K_{\tau}/T_0$

Noise Robustness

MSE of the delays estimation, versus integrators approach

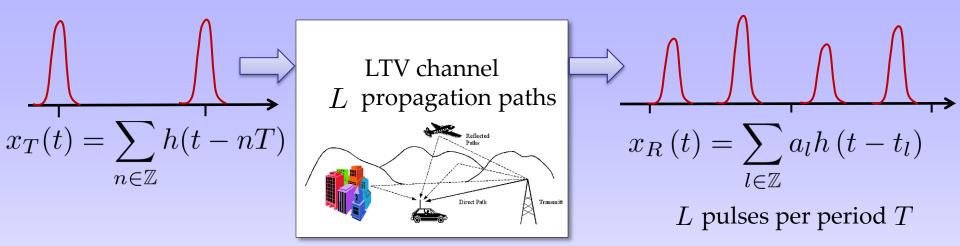
Kusuma and Goyal, '06



The proposed scheme is stable even for high rates of innovation!

Application: Multipath Medium Identification

Gedalyahu and Eldar, '09-'10



- Medium identification:
 - Recovery of the time delays
 - Recovery of time-variant gain coefficients

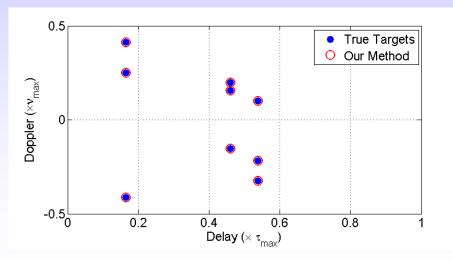
The proposed method can recover the channel parameters from sub-Nyquist samples

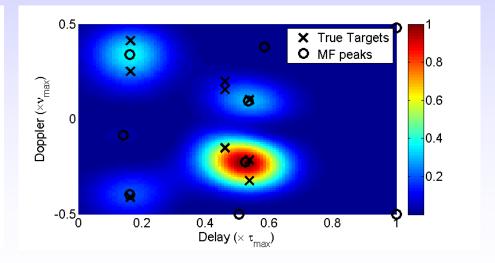
Application: Radar

- Each target is defined by:
 - Range delay
 - Velocity doppler
- Targets can be identified with **infinite** resolution as long as the time-bandwidth product satisfies $TW \ge 2\pi(K+1)^2$

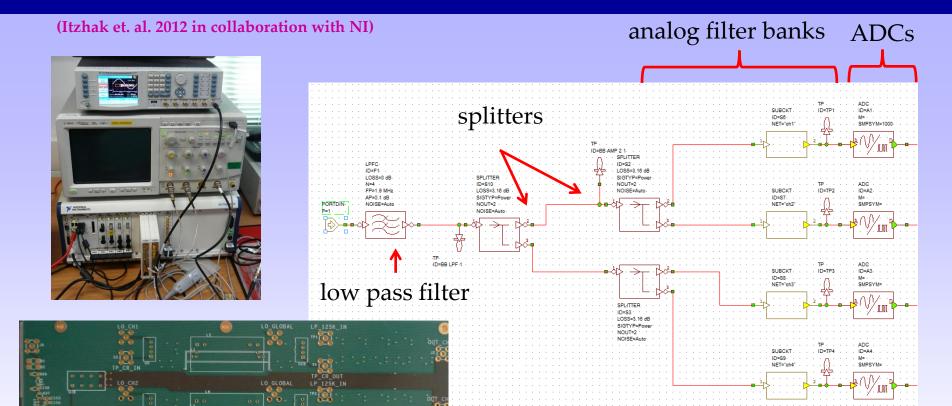
Bajwa, Gedalyahu and Eldar, '11







Xampling of Radar Pulses

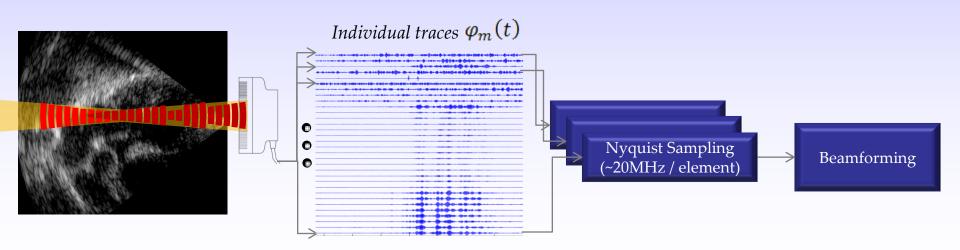


Demo of real-time radar at NI week in August

Application to Ultrasound

Wagner, Eldar, and Friedman, '11

- Ultrasonic pulse is transmitted into the tissue
- Pulse is conducted along a relatively narrow beam
- Echoes are scattered by density and propagation-velocity perturbations
- Reflections detected by multiple array elements.
- Beamforming is applied digital processing, signals must first be sampled at Nyquist rate (~20MHz)



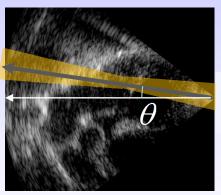
Standard Imaging - Beamforming

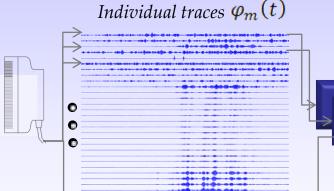
Non-linear scaling of the received signals

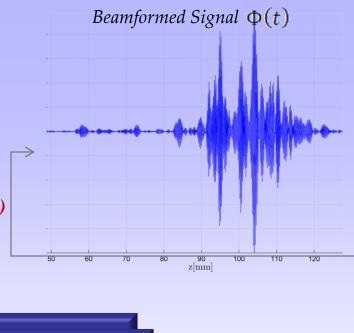
$$\Phi(t;\theta) = \frac{1}{M} \sum_{m=1}^{M} \varphi_m \left(\frac{1}{2} \left(t + \sqrt{t^2 - 4\gamma_m t \sin\theta + 4\gamma_m^2} \right) \right)$$

 γ_m - distance from m'th element to origin , normalized by c .

Performed in the digital domain (after sampling at Nyquist-rate)







Nyquist Sampling

(~20MHz / element)

--> Beamforming

- Focusing along a certain axis reflections originating from off-axis are attenuated (destructive interference pattern)
- SNR is improved

Sample Rate Reduction - Motivation

- Recent developments in medical treatment typically imply increasing the number of transducer elements involved in each imaging cycle
- Amount of raw data that needs to be transmitted and processed grows significantly, effecting machinery size and power consumption
- By reducing sampling and processing rate, we may achieve significant reduction of data size this implies potential reduction of machinery size ar
 Our Approach:

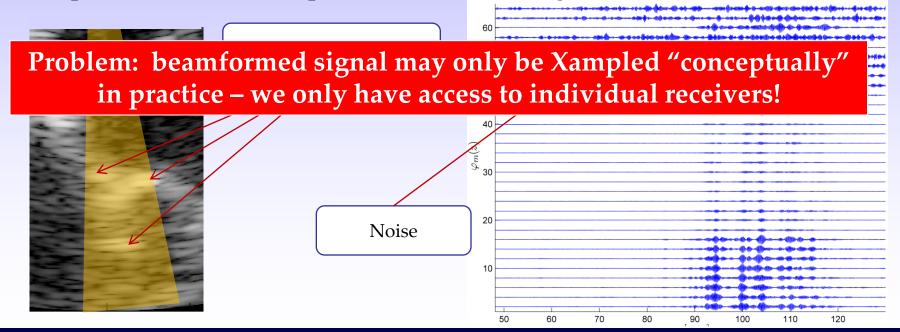
Integrate Xampling and beamforming

Reduction of sampling rate implies potential reduction of machinery size and power consumption

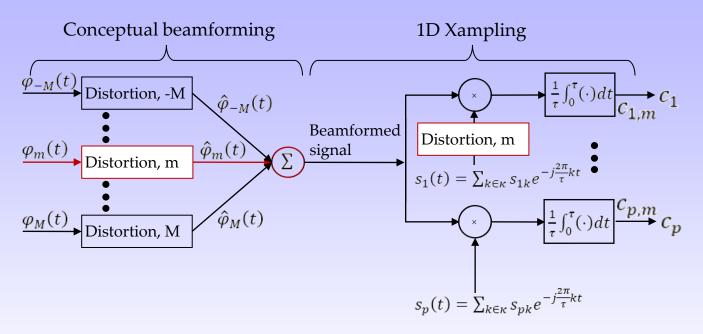
Portable Systems Low-End Systems Mid-Range Systems High-End Systems

Ultrasound and Xampling

- Possible approach (does not work in practice....): Replace Nyquist rate sampling by Xampling, then reconstruct signals and apply beamforming
- Problems:
 - Low SNR: erroneous parameter extraction by sub-Nyquist scheme
 - Reflections from a relatively wide region: complicated algorithm for matching pulses across signals
- Proposed solution Xample the beamformed signal

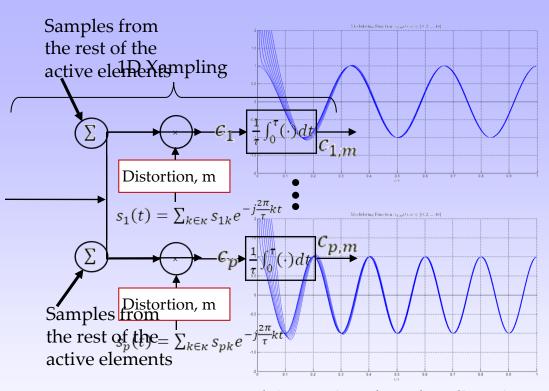


Compressed Beamforming Scheme



- Scheme combines signals from multiple elements for SNR improvement.
- Similar to beamforming techniques used in standard ultrasound imaging.
- Here, the beamforming is moved to the compressed domain samples at output corresponds to the beamformed signal.

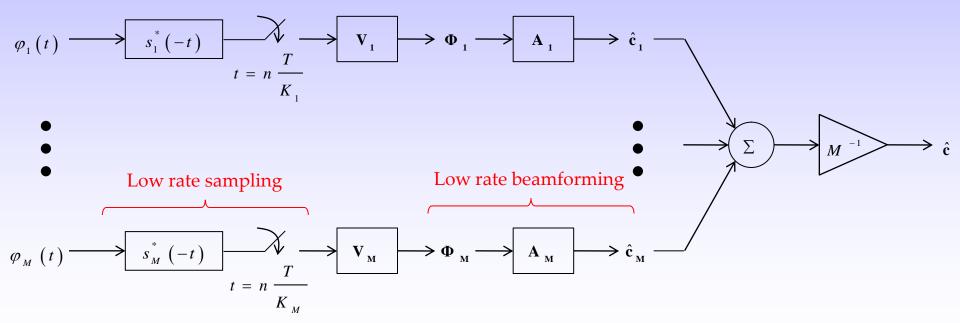
Compressed Beamforming Scheme



Applying receiver-dependent distortions to two of the modulating kernels

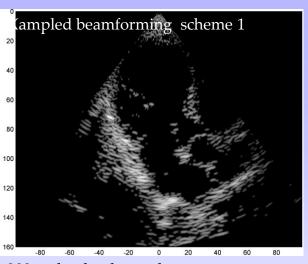
Digital Compressed Beamforming

- Using some algebraic manipulations we can show that the same affect can be obtained digitally
- Use existing schemes to extract extended set of Fourier series coefficients (e.g. Sum of Sincs or multichannel bank) and then apply appropriate linear transform on the coefficients

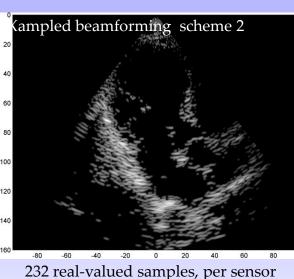


Results

1662 real-valued samples, per sensor per image line



200 real-valued samples, per sensor per image line (assume L=25 reflectors per line)



232 real-valued samples, per sensor per image line (average *)

- Xampling results in an error in the peaks with standard deviation being 0.42mm.
- We obtain a more than 7-fold reduction in sample rate.

^{*} Applying 2nd scheme – Max. number of samples (for some line angles & sensor indexes) - 266

Xampling Systems

Modulated wideband converter

Mishali and Eldar, '07-'09

Periodic nonuniform sampling (fully-blind)

Mishali and Eldar, '07-'09

Sparse shift-invariant framework

Eldar, '09

Finite rate of innovation sampling

Vetterli et al., '02-'07

Dragotti et al., '02-'07

Gedalyahu, Tur and Eldar, '10-'11

Random demodulation

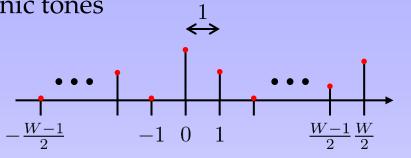
Tropp et al., '09

Random Demodulation

■ **Model:** sparse sum of harmonic tones

$$f(t) = \sum_{\omega \in \Omega} a_{\omega} e^{j2\pi\omega t}$$

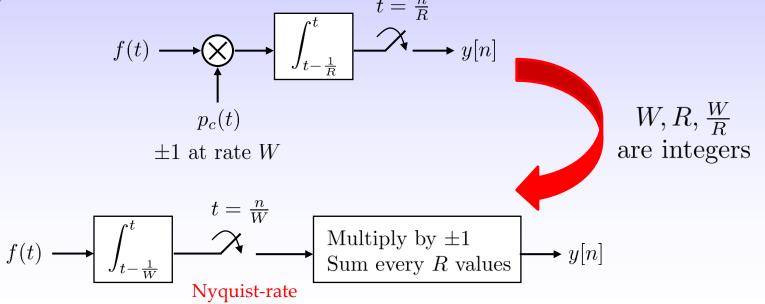
K active tones, $|\Omega| \leq K$



Tropp et al., '09

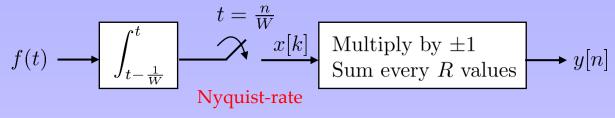
freq.

Sampling:



Random Demodulation

■ Reconstruction:



Integers $W, R, \frac{W}{R}$ + multitone input $(a'_{\omega} = c_{\omega} a_{\omega})$:

$$y[n] = \begin{bmatrix} 1 \cdots 1 & & \frac{W}{R} \\ & 1 \cdots 1 & & \frac{W}{R} \\ & & 1 \cdots 1 \end{bmatrix} \begin{bmatrix} \pm 1 & & & \\ & \ddots & & \\ & & \pm 1 \end{bmatrix} \begin{bmatrix} x[\mathbf{t}] \mathbf{F} \mathbf{T} \\ \mathbf{matrix} \\ x[\mathbf{W}] \mathbf{W} \end{bmatrix} \begin{bmatrix} \mathbf{t} \\ a'_{\omega} \\ \mathbf{t} \end{bmatrix}$$

$$\mathbf{H} \qquad \mathbf{D} \qquad \mathbf{x} \mathbf{F} \qquad \mathbf{a}$$

- Use CS solvers to recover a, then reconstruct f(t)
- Numerical simulations: 32 kHz AM signal recovered from sampling at 10% Nyquist rate

 Tropp et al., '09

Similar to MWC? Next part describes the differences...

Summary: Xampling Systems

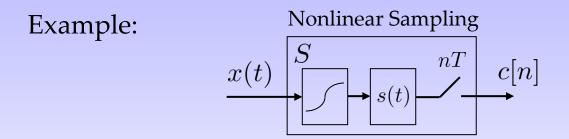
Model	Union dim. $\Lambda, \mathcal{A}_{\lambda}$	Strategy	X-ADC	X-DSP
Multiband	finite ∞	MWC Mishali-Eldar 09	Periodic mixing	CTF
		PNS Mishali-Eldar 08	time shifts	CTF
		Nyquist-folding Fudge et al. 08	Jittered undersampling	
Sparse shift-invariant	finite ∞	Eldar 08	Filter-bank	CTF
FRI (time-delays)	∞ finite	Periodic Vetterli et al. 02-05	Lowpass	Annihilating filter
		One-shot Dragotti et al. 07	Splines	Moments factoring
		Periodic/one-shot Gedlyahu-Tur-Eldar 09-10	Sum-of-Sincs filtering	Annihilating filter
Sequences of innovation	∞ ∞	Gadlyahu-Eldar 09	Lowpass or periodic mixing + integration	MUSIC or ESPRIT
Harmonic tones	finite finite	RD Tropp et al. 09	Sign flipping + integration	CS

"Xampling: Signal Acquisition and Processing in Union of Subspaces", Mishali, Eldar and Elron, TSP '11

Nonlinear Sampling

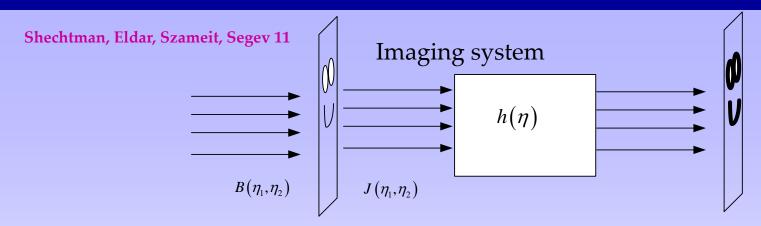
Michaeli & Eldar, '12

Results can be extended to include many classes of nonlinear sampling



- In particular we have extended these ideas to phase retrieval problems where we recover signals from samples of the Fourier transform magnitude (Candes et. al., Szameit et. al., Shechtman et. al.)
- Many applications in optics: recovery from partially coherent light, crystallography, subwavelength imaging and more

Quadratic Measurements in Optics



Field at object plane: $A(\eta)$

Intensity at image plane: I(u)

- Input/output relation: $I(u) = \iint h(u \eta_1)h^*(u \eta_2) A(\eta_1) A^*(\eta_2) B(|\eta_1 \eta_2|) d\eta_1 d\eta_2$
- Coherence of light is expressed by the mutual coherence function:

$$B\left(\eta_{1},\eta_{2}\right):=\left\langle u\left(\eta_{1},t\right)u^{*}\left(\eta_{2},t\right)\right\rangle \bigg|_{z=0}$$

- For "fully coherent" light (~Laser) : $B(\eta_1, \eta_2) := 1$
- For "fully incoherent" light (\sim Sun) : $B(\eta_1, \eta_2) := \delta(\eta_1, \eta_2)$
- The interesting part is in between!

Semi-Definite Relaxation

$$\min_{a} \|a\|_0$$
 subject to $|a^*M_u a - y_u| \le \epsilon$

- Define a matrix $X := aa^*$
- Look for *X* that is:
 - Rank 1
 - Row sparse
 - Consistent with the measurements
 - PSD

$$\underset{X}{\operatorname{arg\,min}} \ Rank(X) \ s.t.$$

$$\sum_{a} \left(\sum_{b} X_{ab}^{2} \right)^{1/2} \leq \zeta$$

$$\left| tr(M_{u}X) - y_{u} \right| \leq \varepsilon \ \forall u \in U$$

$$X \geq 0$$

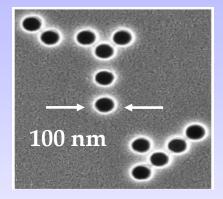
Fazel, Hindi, Boyd 03

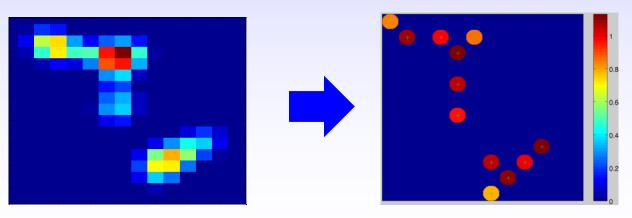
- In practice we replace Rank(X) with log det $(X+b\ I)$ and solve iteratively
- Can generalize the approach to more general nonlinearities and use efficient greedy methods (Beck and Eldar 2012)

Phase Retrieval

Szameit et al., Nature Photonics, '12

- Subwavelength Coherent Diffractive Imaging: Sub-wavelength image recovery from highly truncated Fourier spectrum
- Quadratic CS: based on SDP-relaxation and log-det approximation





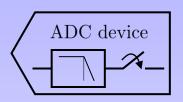
- Part 5 -From Theory to Hardware

→ Outline

Theory vs. Practice

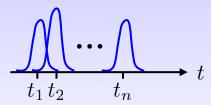
- Practical considerations affect the choice of a sampling solution
- **Example 1:** Multiband sampling (known carriers f_i)

	RF demodulation	Nonuniform methods
Minimal analog preprocessing		\checkmark
ADC with low analog bandwidth	\checkmark	

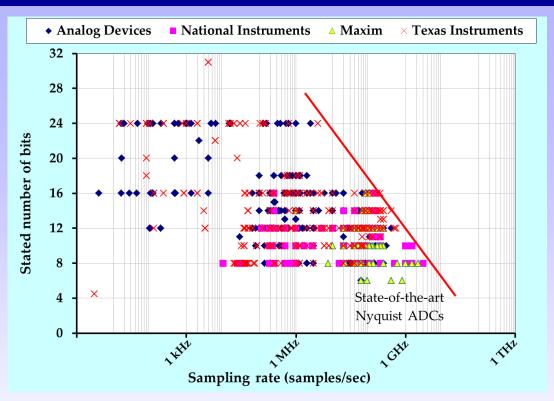


Example 1: Pulse streams (known delays t_n)

	$s_n(t) = h(t - t_n)$	Digital match filter
Low sampling rate	\checkmark	
Robustness to model mismatch		\checkmark



ADC Market



- State-of-the-art ADCs generate Nyquist samples
- Today's challenges:
 - Increase sampling rate (Giga-samples/sec)
 - Increase front-end bandwidth
 - Increase (effective) number of bits

Sub-Nyquist: Practical Challenges

- Goal: Shift f_{max} challenge away from ADC technology
- No free lunches! Signal has frequencies until f_{\max}
- Nyquist will enter elsewhere into system design
- Practical design metrics:
 - robustness to model mismatches
 - flexible hardware design
 - light computational loads
 - imaging: high resolution
 - noise performance
 - power, area, size, cost, ...

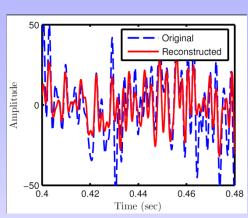
Focus of this part

■ Next slides:

- Study practical metrics of example sub-Nyquist systems (RD/MWC)
- Glance into sub-Nyquist circuit challenges
- Sub-Nyquist imaging: analog vs. discrete CS

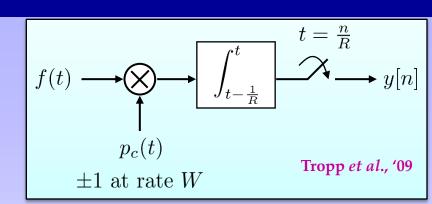
Random Demodulator

Robustness:



0.005% grid mismatch

$$\frac{\|f(t) - \hat{f}(t)\|^2}{\|f(t)\|^2} = 37\%$$



- $\rightarrow W, R$ must be integer multiplies of tones grid spacing
- **Required hardware accuracy** (so that y = HDFa):

Accurate integrator:

$$p_c(t) = \begin{array}{c} 1/W \\ +1 \\ -1 \end{array}$$

- **Computational load:** $W = 1 \text{MHz} \rightarrow \text{CS on 1 million unknowns}$
- Reported hardware: W = 800 kHz, R = 100 kHzDSP processor 160 MHz

Ragheb et al., '08 Yu et al., '10

Modulated Wideband Converter

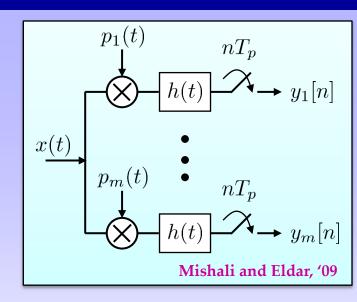
Robustness:

$$m \ge 2N$$
, $1/T_p \ge B$ (basic setup)

Inequalities allow model mismatches

Required hardware accuracy:

$$p_i(t) = \text{periodic waveforms}$$
 '`Nice''
 $h(t) = \text{lowpass}$ appearance



Nonideal lowpass response can be compensated digitally

Chen et al., '10

■ Computational load: $f_{\text{NYQ}} = 5 \text{ GHz}, N = 6, B = 50 \text{ MHz}$

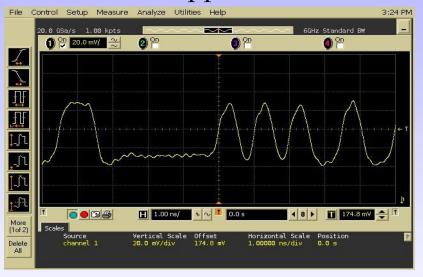
CS system size: 40×200 linear real-time reconstruction

■ Reported hardware: $f_{\rm NYQ} = 2.2 \; {\rm GHz}, \; {\rm sampling \; rate \; 280 \; MHz}$ $10 {\rm msec \; recovery \; (on \; PC-MATLAB)}$

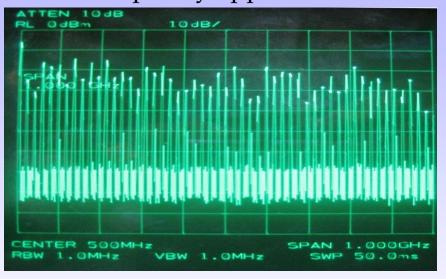
Mishali et al., '11

Hardware Accuracy

Sign alternating functions at 2 GHz rate

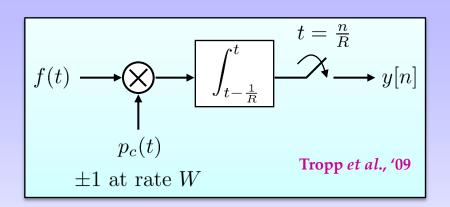


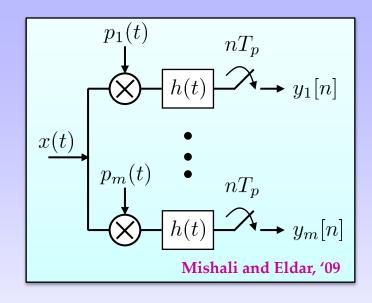
Frequency appearance



Comparison

Visually-similar systems – major differences in practical metrics





- No free lunches... Nyquist enters in:
- Time-domain accuracy
- Computational loads

Freq.-domain accuracy (handled by RF front-end)

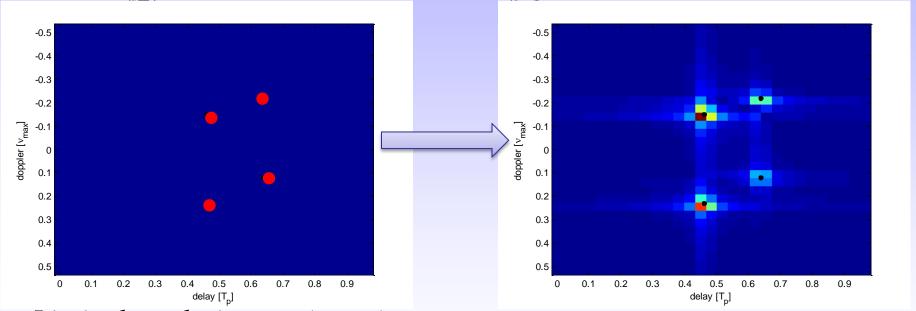
Similar conclusions in other applications?

CS Radar

- A discrete version of the channel is being estimated
- Leakage effect → fake targets

$$C(\tau, \nu) = \sum_{k=1}^{K} \frac{\text{Real channel}}{\alpha_k \delta(\tau - \tau_k) \delta(\nu - \nu_k)}$$

Discretized channel $C(\tau, \nu) = \sum_{k=0}^{\infty} \alpha_k \delta(\tau - \tau_k) \delta(\nu - \nu_k) \qquad C(\ell, m) = \sum_{k=0}^{\infty} \alpha_k e^{j\pi(m - \tau_k)} \operatorname{sinc}(m - \tau_k) \operatorname{sinc}(\ell - \mathcal{W}\tau_k)$



- Limited resolution to 1/W, 1/T
- Sampling process in hardware is unclear
- Digital processing is complex and expensive

Eldar, 2012 138

ADCs: Why Not Standard CS?

- CS is for finite dimensional models (y=Ax)
- Loss in resolution when discretizing
- Sensitivity to grid, analog bandwidth issues
- Is not able to exploit structure in analog signals
- Results in large computation on the digital side
- Samples do not typically interface with standard processing methods

More details in: M. Mishali, Y. C. Eldar, and A. Elron, "Xampling: Signal acquisition and processing in union of subspaces"

Besides union models and Xampling there are many more challenges!

Stepping CS to Practice

- Address wideband noise and dynamic range:
 - Since x is noisy: y=A(x+e)+w, e=wideband noise
 - MWC/PNS: Nyquist-bandwidth noise is aliased
 - RD: noise is folded from all possible tone locations
 - Large interference will swamp ADC
- Integrate into existing systems
 - Minimal (preferably no) modification to hardware
 - *e.g.*, reprogramming firmware, rewiring, etc.
 - Deal with large analog BW and wide dynamic range
- Prove cost-effective
 - Rate is only one factor! Digital complexity is not less important
 - Improve effective number of bits / Xample
- Next slides: quick glance at circuit challenges + applications

A 2.4 GHz Prototype



- 2.3 GHz Nyquist-rate, 120 MHz occupancy
- 280 MHz sampling rate
- Wideband receiver mode:
 - 49 dB dynamic range
 - SNDR > 30 dB over all input range
- ADC mode:
 - 1.2 volt peak-to-peak full-scale
 - 42 dB SNDR = 6.7 ENOB
- Off-the-shelf devices, ~5k\$, standard PCB production

Mishali and Eldar, '08-10

Circuit Design (2)

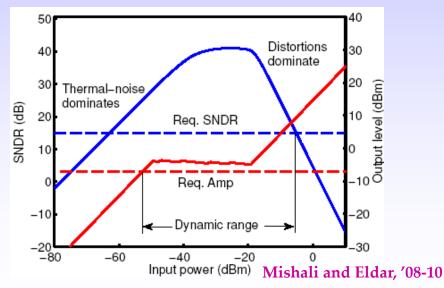
- Analog board
 - m=4 channels
 - 1:4 Split + mixing + filtering
 - Filter cutoff 33 MHz
 - Sampling rate 70 MHz per channel (scope)

- Digital board: sign alternating sequences
 - 2.075 GHz VCO
 - Discrete ECL shift-register
 - M=108 bits
 - 4 Outputs (taps of the register)

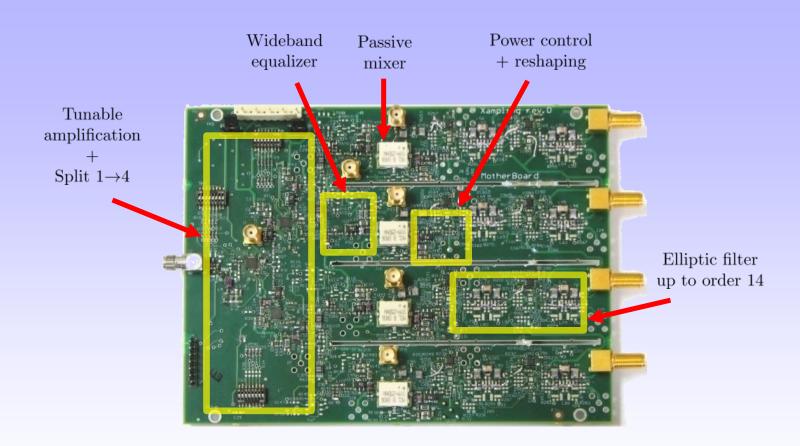
Mishali and Eldar, '08-10

Circuit Design (3)

- Wideband receiver mode:
 - Gain control on the input
 - Design specifications:Power out > -7 dBmSNDR > 30 dBover all input range
 - Gives 49 dB dynamic range

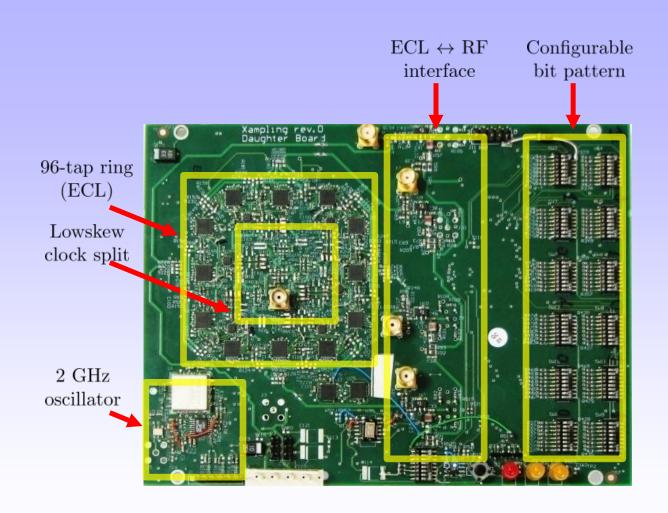


Analog Design



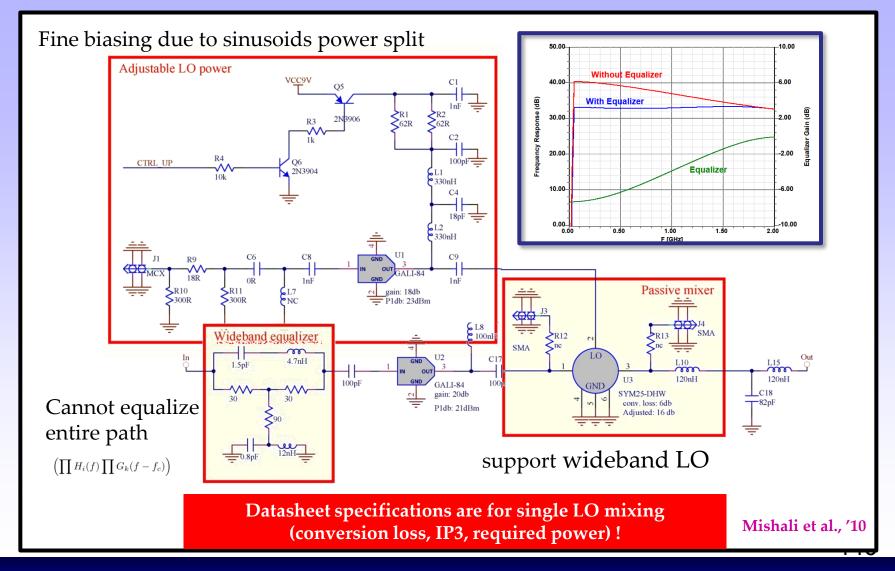
Mishali et al., '10

Digital Design

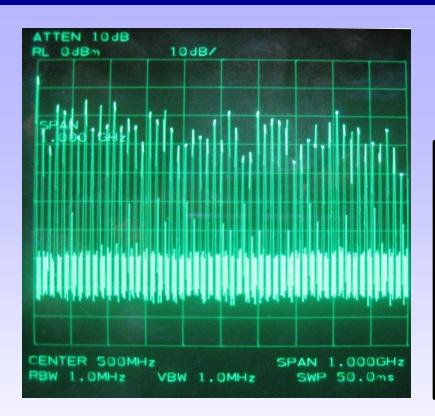


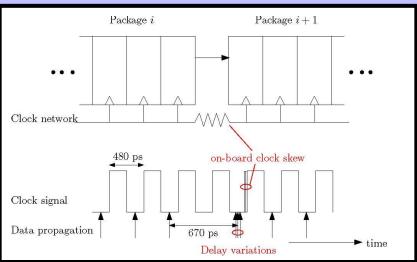
Mishali et al., '10

Mixing with Periodic Functions



Highly-Transient Periodic Waveforms



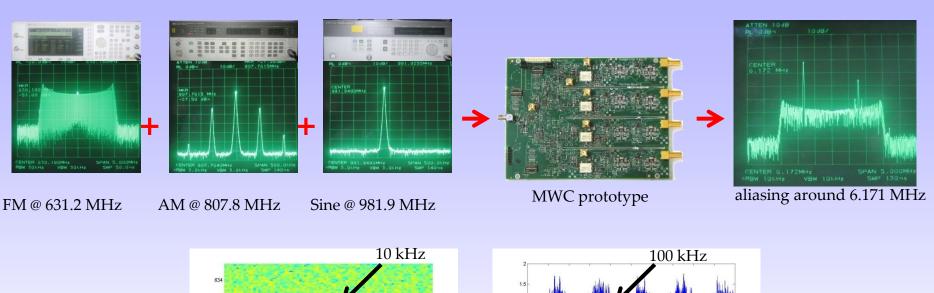


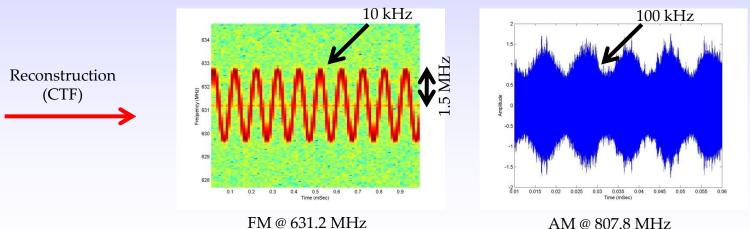
- We selected the sign pattern which gives about the same harmonic levels
- Tap locations: 5th bit in every consecutive 24 bits (layout considerations only)

Mishali et al., '10

Sub-Nyquist Demonstration

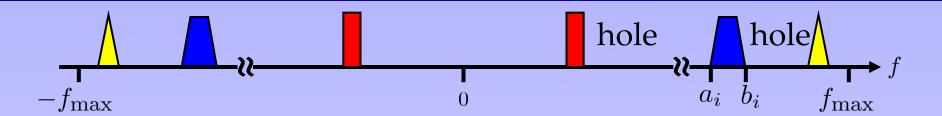
Carrier frequencies are chosen to create overlayed aliasing at baseband



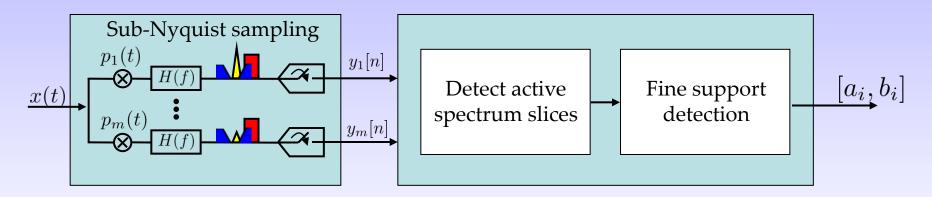


Mishali et al., '10

Application: Cognitive Radio



Xampling for Spectrum Sensing



For example:

m=4 channels, sampling rate = 70 MHz/channel

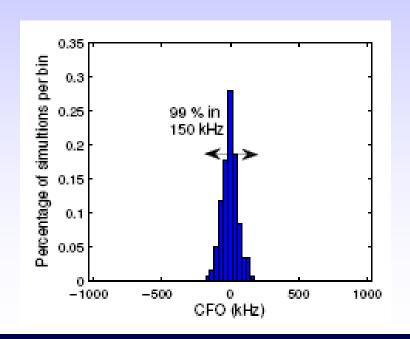
Covers 2 GHz spectrum bandwidth

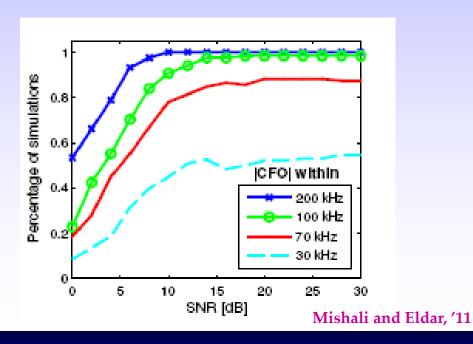
Holes detection up to tens of kHz resolution

Mishali and Eldar, '11

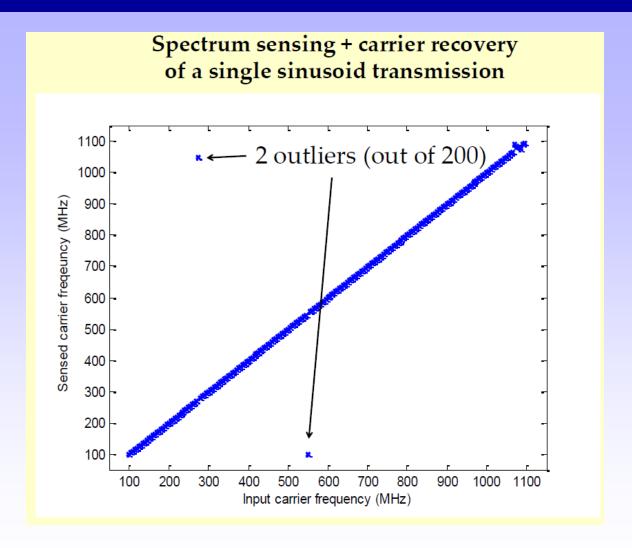
Simulations

- 3 QPSK transmissions, Symbol rate = 30 MHz, $f_{max} = 5 \text{ GHz}$
- Quality measure, CFO = Carrier frequency offset
- Satisfies IEEE 802.11 40ppm specifications of standard transmissions around 3.75 GHz





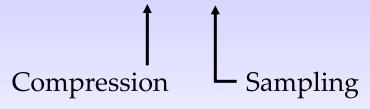
Experiments

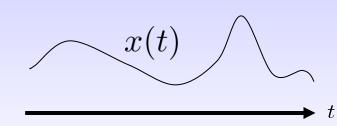


Take-Home Message

Compressed sensing uses finite models

Xampling works for analog signals





Must combine ideas from Sampling theory and algorithms from CS

- CS+Sampling = Xampling
- X prefix for compression, e.g. DivX

Summary: Next Big Challenge

- Develop cost-effective CS hardware solutions
- Address wideband noise and dynamic range
- Integrate into existing hardware solutions
- Innovate at the circuit level: wideband input and large dynamic range
- Design provable hardware
 - at lab
 - on-board
 - on-chip
- Become a mature technology !

Conclusions Q & A

→ Outline

Conclusions

- Union of subspaces: broad and flexible model
- Can lead to simple and efficient algorithms
- Includes analog signal models
- Sub-Nyquist sampler in hardware
- Compressed sensing of many classes of analog signals
- Many research opportunities: extensions, robustness, hardware, mathematical ...

Compressed sensing can be extended practically to the infinite analog domain!

Opinion

- Burst of innovative publications
- Theory is still developing, yet the basic principles are understood
- Next frontier: Hardware implementations
- Become a mature technology !

More details in:

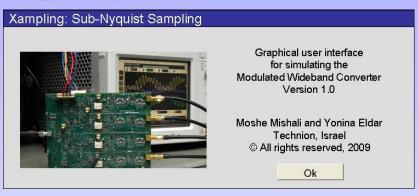
- M. Mishali and Y. C. Eldar, "Sub-Nyquist Sampling: Bridging Theory and Practice," Sig. Proc. Mag.
- M. Duarte and Y. C. Eldar, "Structured Compressed Sensing: From Theory to Applications," *TSP*.
- M. Mishali and Y. C. Eldar, "Xampling: Compressed Sensing of Analog Signals," in book, Cambridge press.

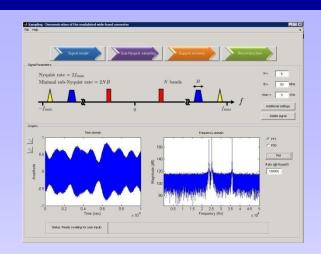
References + Online Documentations

→ Outline

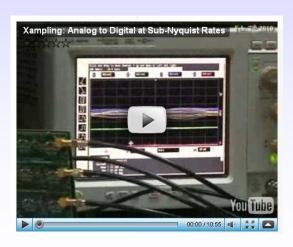
Online Demonstrations

GUI package of the MWC



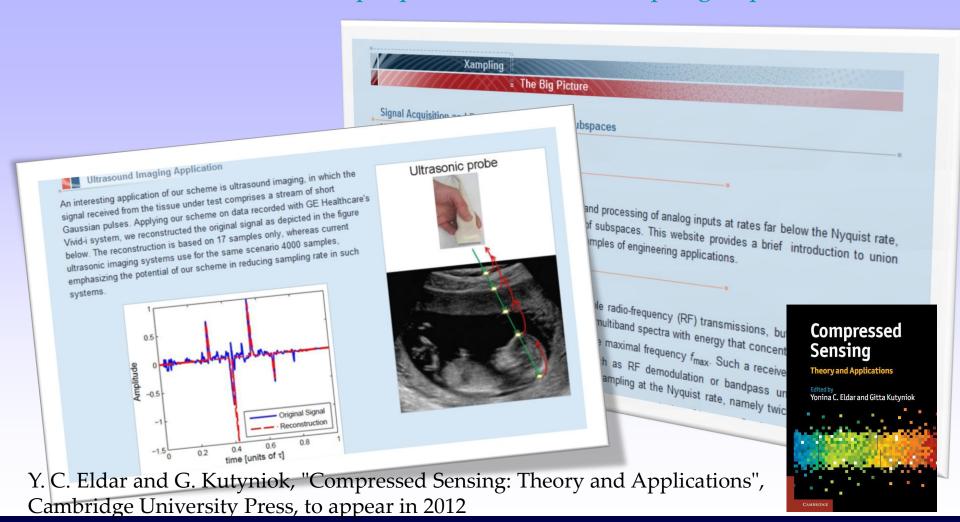


■Video recording of sub-Nyquist sampling + carrier recovery in lab



Xampling Website

webee.technion.ac.il/people/YoninaEldar/xampling top.html



Acknowledgements

Students:

Kfir Gedalyahu

Ronen Tur

Noam Wagner

Collaborators:

- General Electric Israel
- National Instruments Corp. Ahsan Aziz, Sam Shearman, Eran Castiel

Sponsors:

- Israel Science Foundation
- Binational Science Foundation
- Magneton

Thank you!

We'll be happy to hear your comments, ideas for future work etc: yonina@ee.technion.ac.il

Tutorial:

- M. Mishali and Y. C. Eldar, "Sub-Nyquist Sampling: Bridging Theory and Practice," IEEE Sig. Proc. Mag.
- M. Duarte and Y. C. Eldar, "Structured Compressed Sensing: From Theory to Applications," TSP
- M. Mishali and Y. C. Eldar, "Xampling: Compressed Sensing of Analog Signals," in book, Cambridge press
- Y. C. Eldar and G. Kutyniok, "Compressed Sensing: Theory and Applications," Cambridge Press

Other Tutorials and Summaries:

- R. G. Baraniuk, "Compressive sensing," *IEEE Sig. Proc. Mag.*, vol. 24, no. 4, pp. 118–120, 124, July 2007
- E. J. Candès and M. B. Wakin, "An introduction to compressive sampling," *IEEE Sig. Proc. Mag.*, vol. 25, pp. 21–30, Mar. 2008
- J. Uriguen, Y. C. Eldar, P. L. Dragotti and Z. Ben-Haim, "Sampling at the Rate of Innovation: Theory and Applications," in book, *Cambridge press*

Generalized Sampling Theory:

- A. J. Jerry, "The Shannon sampling theorem-Its various extensions and applications: A tutorial review," *Proc. Of the IEEE*, vol. 65, no. 11, pp. 1565-1596, Nov. 1977
- A. Aldroubi and M. Unser, "Sampling procedures in function spaces and asymptotic equivalence with Shannon's sampling theory," *Numer. Funct. Anal. Optimiz.*, vol. 15, pp. 1-21, Feb. 1994
- M. Unser and A. Aldroubi, "A general sampling theory for nonideal acquisition devices, "IEEE Trans. Signal Process., vol. 42, no. 11, pp. 2915-2925, Nov. 1994
- C. de Boor, R. DeVore and A. Ron, "The structure of finitely generated shift-invariant spaces in $L_2(\mathbb{R}^d)$," *J. Funct. Anal*, vol. 119, no. 1, pp. 37-78, 1994
- A. Aldroubi, "Oblique projections in atomic spaces," *Proc. Amer. Math. Soc.*, vol. 124, no. 7, pp. 2051-2060, 1996
- M. Unser, "Sampling 50 years after Shannon," IEEE Proc., vol. 88, pp. 569-587, Apr. 2000
- P. P. Vaidyanathan, "Generalizations of the sampling theorem: Seven decades after Nyquist," *IEEE Trans. Circuit Syst. I*, vol. 48, no. 9, pp. 1094-1109, Sep. 2001
- Y. C. Eldar and T. Michaeli, "Beyond bandlimited sampling," IEEE Signal Process. Mag., vol. 26, no. 3, pp.
- 48–68, May 2009.
- T. Michaeli and Y. C. Eldar, "Optimization Techniques in Modern Sampling Theory," in book *Cambridge Univ. Press*, ch., pp. 266–314, 2010

Subspace Sampling:

- I. Djokovic and P. P. Vaidyanathan, "Generalized sampling theorem in multiresolution subspaces," *IEEE Trans. Signal Process.*, vol. 45, pp. 583-599, Mar. 1997
- M. Unser, "Splines: A perfect fit for signal and image processing," *IEEE Signal Process. Mag.*, pp. 22-38, Nov. 1999
- Y. C. Eldar and A. V. Oppenheim, "Filter bank reconstruction of bandlimited signals from nonuniform and generalized samples," *IEEE Trans. Signal Processing*, vol. 48, no. 10, pp. 2864-2875, 2000
- A. Aldroubi and K. Gröchenig, "Non-uniform sampling and reconstruction in shift-invariant spaces," *SIAM Review*, vol. 43, pp. 585-620, 2001
- Y. C. Eldar, "Sampling and reconstruction in arbitrary spaces and oblique dual frame vectors," *J. Fourier Analys. Appl.*, vol. 1, no. 9, pp. 77-96, Jan. 2003
- O. Christensen and Y. C. Eldar, "Oblique dual frames and shift-invariant spaces," *Applied and Computational Harmonic Analysis*, vol. 17, no. 1, pp. 48-68, Jul. 2004
- O. Christensen and Y. C. Eldar, "Generalized shift-invariant systems and frames for subspaces," *J. Fourier Analys. Appl.*, vol. 11, pp. 299-313, 2005
- Y. C. Eldar and T. Werther, "General framework for consistent sampling in Hilbert spaces," *International Journal of Wavelets, Multiresolution, and Information Processing*, vol. 3, no. 3, pp. 347-359, Sep. 2005
- Y. C. Eldar and O. Christensen, "Caracterization of Oblique Dual Frame Pairs," *J. Applied Signal Processing*, vol. 2006, Article ID 92674, pp. 1-11
- T. G. Dvorkind, Y. C. Eldar and E. Matusiak, "Nonlinear and non-ideal sampling: Theory and methods," *IEEE Trans. Signal Processing*, vol. 56, no. 12, pp. 5874-5890, Dec. 2008

Multiband subspaces:

- H. J. Landau, "Necessary density conditions for sampling and interpolation of certain entire functions," *Acta Math.*, vol. 117, pp. 37-52, Feb. 1967
- A. Kohlenberg, "Exact interpolation of band-limited functions," *J. Appl. Phys.*, pp. 1432–1435, Dec. 1953
- R. G. Vaughan, N. L. Scott, and D. R. White, "The theory of bandpass sampling," *IEEE Trans. Signal Process.*, vol. 39, no. 9, pp. 1973–1984, Sep. 1991
- Y.-P. Lin and P. P. Vaidyanathan, "Periodically nonuniform sampling of bandpass signals," *IEEE Trans. Circuits Syst. II*, vol. 45, no. 3, pp. 340-351, Mar. 1998
- C. Herley and P. W. Wong, "Minimum rate sampling and reconstruction of signals with arbitrary frequency support," *IEEE Trans. Inform. Theory*, vol. 45, no. 5, pp. 1555-1564, Jul. 1999
- R. Venkataramani and Y. Bresler, "Perfect reconstruction formulas and bounds on aliasing error in sub-Nyquist nonuniform sampling of multiband signals," *IEEE Trans. Inf. Theory*, vol. 46, no. 6, pp. 2173–2183, Sep. 2000

Union of Subspaces:

- Y. M. Lu and M. N. Do, "A theory for sampling signals from a union of subspaces," *IEEE Trans. Signal Processing*, vol. 56, no. 6, pp. 2334–2345, 2008
- Y. C. Eldar and M. Mishali, "Robust recovery of signals from a structured union of subspaces," *IEEE Trans. Info. Theory*, vol. 55, no. 11, pp. 5302–5316, 2009
- T. Blumensath and M. E. Davies, "Sampling theorems for signals from the union of finite-dimensional linear subspaces," *IEEE Trans. Inf. Theory*, vol. 55, no. 4, pp. 1872–1882, Apr. 2009
- T. Michaeli and Y. C. Eldar, "Xampling at the Rate of Innovation", *IEEE Transactions on Signal Processing*, vol. 60, no. 3, pp. 1121-1133, March 2012.

Xampling Framework:

- Y. C. Eldar, "Compressed sensing of analog signals in shift-invariant spaces", *IEEE Trans. Signal Processing*, vol. 57, no. 8, pp. 2986-2997, August 2009
- Y. C. Eldar, "Uncertainty relations for analog signals," *IEEE Trans. Inform. Theory*, vol. 55, no. 12, pp. 5742 5757, Dec. 2009
- M. Mishali, Y. C. Eldar, and A. Elron, "Xampling: Signal acquisition and processing in union of subspaces," *IEEE Transactions on Signal Processing*, vol.59, issue 10, pp.4719-4734, Oct. 2011
- M. Mishali, Y. C. Eldar, O. Dounaevsky, and E. Shoshan, "Xampling: Analog to digital at sub-Nyquist rates," *IET Circuits, Devices & Systems*, vol. 5, no. 1, pp. 8–20, Jan. 2011

Modulated Wideband Converter / Fully-blind Multi-Coset:

- M. Mishali and Y. C. Eldar, "Blind multiband signal reconstruction: Compressed sensing for analog signals," *IEEE Trans. Signal Processing*, vol. 57, pp. 993–1009, Mar. 2009
- M. Mishali and Y. C. Eldar, "From theory to practice: Sub-Nyquist sampling of sparse wideband analog signals," *IEEE Journal of Selected Topics on Signal Processing*, vol. 4, pp. 375-391, April 2010
- M. Mishali, Y. C. Eldar, O. Dounaevsky, and E. Shoshan, "Xampling: Analog to digital at sub-nyquist rates," *IET Circuits, Devices and Systems*, vol. 5, no. 1, pp. 8–20, Jan. 2011
- M. Mishali and Y. C. Eldar, "Reduce and boost: Recovering arbitrary sets of jointly sparse vectors," *IEEE Trans. Signal Processing*, vol. 56, no. 10, pp. 4692–4702, Oct. 2008
- M. Mishali and Y. C. Eldar, "Wideband spectrum sensing at sub-Nyquist rates," to appear in *IEEE Signal Process*. *Mag*, vol. 28, no. 4, pp. 102-135, July 2011

Random Demodulator:

- J. A. Tropp, J. N. Laska, M. F. Duarte, J. K. Romberg, and R. G. Baraniuk, "Beyond Nyquist: Efficient sampling of sparse bandlimited signals," *IEEE Trans. Inf. Theory*, vol. 56, no. 1, pp. 520–544, Jan. 2010
- Z. Yu, S. Hoyos, and B. M. Sadler, "Mixed-signal parallel compressed sensing and reception for cognitive radio," in ICASSP, 2008, pp. 3861–3864
- T. Ragheb, J. N. Laska, H. Nejati, S. Kirolos, R. G. Baraniuk, and Y. Massoud, "A prototype hardware for random demodulation based compressive analog-to-digital conversion," in *Circuits and Systems*, 2008. MWSCAS 2008. 51st Midwest Symposium on, 2008, pp. 37–40
- Z. Yu, X. Chen, S. Hoyos, B. M. Sadler, J. Gong, and C. Qian, "Mixed-signal parallel compressive spectrum sensing for cognitive radios," *International Journal of Digital Multimedia Broadcasting*, 2010

Pulse streams:

- M. Vetterli, P. Marziliano, and T. Blu, "Sampling signals with finite rate of innovation," *IEEE Trans. Signal Process.*, vol. 50, no. 6, pp. 1417–1428, 2002
- P. L. Dragotti, M. Vetterli, and T. Blu, "Sampling moments and reconstructing signals of finite rate of innovation: Shannon meets Strang Fix," *IEEE Trans. Signal Process.*, vol. 55, no. 5, pp. 1741–1757, May 2007
- C. Seelamantula and M. Unser, "A generalized sampling method for finite-rate-of-innovation-signal reconstruction," *IEEE Signal Process. Lett.*, vol. 15, pp. 813–816, 2008
- E. Matusiak and Y. C. Eldar, "Sub-Nyquist sampling of short pulses," *IEEE Trans. Signal Processing*, vol.60, issue 3, pp.1134-1148, March 2012.
- Z. Ben-Haim, T. Michaeli, and Y. C. Eldar, "Performance bounds and design criteria for estimating finite rate of innovation signals," to appear in *IEEE Trans. on Info Theory*
- K. Gedalyahu and Y. C. Eldar, "Time-delay estimation from low-rate samples: A union of subspaces approach," *IEEE Trans. Signal Processing*, vol. 58, no. 6, pp. 3017–3031, June 2010
- N. Wagner, Y. C. Eldar and Z. Friedman, "Compressed Beamforming in Ultrasound Imaging", to appear in *IEEE Transactions on Signal Processing*.
- R. Tur, Y. C. Eldar, and Z. Friedman, "Innovation rate sampling of pulse streams with application to ultrasound imaging," *IEEE Trans. Signal Process.*, vol. 59, no. 4, pp. 1827–1842, Apr. 2011
- K. Gedalyahu, R. Tur, and Y. C. Eldar, "Multichannel sampling of pulse streams at the rate of innovation," *IEEE Trans. Signal Process.*, vol. 59, no. 4, pp. 1491–1504, Apr. 2011
- W. U. Bajwa, K. Gedalyahu, and Y. C. Eldar, "Identification of underspread linear systems with application to super-resolution radar," *IEEE Transactions on Signal Processing*, vol. 59, no. 6, pp. 2548-2561, June 2011

Compressed sensing (#1):

- D. L. Donoho, "Compressed sensing," *IEEE Trans. Info. Theory*, vol. 52, no. 4, pp. 1289–1306, Sep. 2006
- E. J. Candès, J. K. Romberg, and T. Tao, "Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information," *IEEE Trans. Info. Theory*, vol. 52, no. 2, pp. 489–509, 2006
- E. J. Candès and T. Tao, "Near optimal signal recovery from random projections: Universal encoding strategies?," *IEEE Trans. Info. Theory*, vol. 52, no. 12, pp. 5406–5425, Dec. 2006
- J. A. Tropp, "Greed is good: Algorithmic results for sparse approximation," *IEEE Trans. Info. Theory*, vol. 50, no. 10, pp. 2231–2242, Oct. 2004
- D. Needell and J. A. Tropp, "CoSaMP: Iterative signal recovery from incomplete and inaccurate samples," *Appl. Comput. Harmon. Anal.*, vol. 26, no. 3, pp. 301–321, May 2008
- J. A. Tropp, A. C. Gilbert, and M. J. Strauss, "Algorithms for simultaneous sparse approximation. Part I: Greedy pursuit," *Signal Processing*, vol. 86, pp. 572–588, Apr. 2006
- J. A. Tropp, "Algorithms for simultaneous sparse approximation. Part II: Convex relaxation," *Signal Processing*, vol. 86, Apr. 2006
- D. L. Donoho and M. Elad, "Optimally sparse representation in general (nonorthogonal) dictionaries via `1 minimization," Proc. Nat. Acad. Sci., vol. 100, no. 5, pp. 2197–2202, Mar. 2003
- Z. Ben-Haim and Y. C. Eldar, "The Cramér–Rao bound for estimating a sparse parameter vector," *IEEE Trans. Signal Processing*, vol. 58, no. 6, pp. 3384–3389, June 2010
- I. F. Gorodnitsky and B. D. Rao, "Sparse signal reconstruction from limited data using FOCUSS: A reweighted minimum norm algorithm," *IEEE Trans. Signal Processing*, vol. 45, no. 3, pp. 600–616, Mar. 1997

Compressed sensing (#2):

- Z. Ben-Haim, Y. C. Eldar, and M. Elad, "Coherence-based performance guarantees for estimating a sparse vector under random noise," *IEEE Trans. Signal Processing*, vol. 58, no. 10, pp. 5030–5043, Oct. 2010
- S. F. Cotter, B. D. Rao, K. Engan, and K. Kreutz-Delgado, "Sparse solutions to linear inverse problems with multiple measurement vectors," *IEEE Trans. Signal Processing*, vol. 53, no. 7, pp. 2477–2488, July 2005
- J. Chen and X. Huo, "Theoretical results on sparse representations of multiple-measurement vectors," *IEEE Trans. Signal Processing*, vol. 54, no. 12, pp. 4634–4643, Dec. 2006
- M. Mishali and Y. C. Eldar, "Reduce and boost: Recovering arbitrary sets of jointly sparse vectors," *IEEE Trans. Signal Processing*, vol. 56, no. 10, pp. 4692–4702, Oct. 2008
- S. Mallat and Z. Zhang, "Matching pursuit with time-frequency dictionaries," *IEEE Trans. Signal Processing*, vol. 41, no. 12, pp. 3397–3415, Dec. 1993
- Y. Pati, R. Rezaifar, and P. Krishnaprasad, "Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition," in *Asilomar Conf. Signals, Systems, and Computers*, Pacific Grove, CA, Nov. 1993
- M. E. Davies and Y. C. Eldar, "Rank awareness in joint sparse recovery," *IEEE Trans. on Info. Theory*, vol.58, issue 2, pp.1135 1146, Feb. 2012
- A. Beck and Y. C. Eldar, "Sparsity Constrained Nonlinear Optimization: Optimality Conditions and Algorithms", submitted to *SIAM Optimization*, arXiv:1203.4580v1, March 2012.
- S. Gleichman and Y. C. Eldar, "Blind Compressed Sensing", *IEEE Trans. on Information Theory*, vol. 57, issue 10, pp. 6958-6975, Oct. 2011

