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MIMO In Wireless Communication: ERINUS

A Brief Overview b

> Point-to-Point MIMO

v" MIMO channel capacity, space-time code, MIMO precoding, MIMO detection,
MIMO equalization, limited-rate MIMO feedback, MIMO-OFDM ...

» Multi-User MIMO (Single Cell)

v SDMA, MIMO-BC precoding, uplink-downlink duality, opportunistic
beamforming, MIMO relay, distributed antenna, resource allocation ...

» Multi-User MIMO (Multi-Cell)

v network MIMO/CoMP, coordinated beamforming, MIMO-IC, interference
management, interference alignment ...

» MIMO in emerging wireless systems/applications

v" cognitive radio networks, ad hoc networks, secrecy communication, two-way
communication, full-duplex communication, compressive sensing, MIMO radar,
wireless power transfer ...
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Talk Overview (1): Cognitive MIMO =ANUS
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» Exploiting MIMO in Cognitive Radio Networks

v How to optimize secondary MIMO transmissions subject to interference power
constraints at all nearby primary receivers?

v How to practically obtain the channel knowledge from secondary transmitter to
primary receivers?

v How to optimally set the interference power levels at different primary receivers?
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Talk Overview (2): Multi-Cell MIMO =RANUS
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» Cooperative Interference Management in Multi-Cell MIMO

= Network MIMO (CoMP) with baseband signal-level coordination among BSs

v" How to design the optimal (linear/non-linear) joint downlink precoding with per-
BS power constraints?

= Coordinated downlink beamforming for inter-cell interference control

v" How to jointly design beamforming and power control at all BSs to achieve
optimal rate tradeoffs among different cells?

v How to achieve optimal distributed beamforming with only local CSI at each BS?
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Talk Overview (3): Two-Way Relay NUS
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» Exploiting Multi-Antenna Relay in Two-Way Communication

v" How to optimally design the linear beamforming matrix at R to maximize two-way
information exchange rates between S1 and S2?

v" How is the optimal design fundamentally different from traditional one-way relay
beamforming (S1-R-S2 and S2-R-S1 alternatively)?
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Talk Overview (4): Power Minimization in

MIMO Cellular Networks
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Power Minimization in Cellular Networks

National University
of Singapore
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95

_ 41
Power Region

» Power Minimization in MU-MIMO given Rate Constraints

v How to characterize MU power region to achieve minimum power consumption

tradeoffs in cellular uplink?

v" How to achieve minimal BS power consumption in cellular downlink?

v" What is the fundamental relationship between MU capacity region and power region?




Talk Overview (5): MIMO Broadcasting for NUS
Wireless Information and Power Transfer
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RF-based Wireless Power Transter MIMO Broadcasting for Information and Power Transfer

» Exploiting MIMO in Wireless Information and Power Transfer

v" How to optimally design MIMO transmissions to achieve simultaneously maximal
information and power transfer?

v" How to characterize the achievable rate-energy tradeoffs?

v" What are practical design issues due to energy harvesting circuit limitations?
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Topic #1: Cognitive MIMO Systems




National University
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Operation Models of Cognitive Radio NUS

« Dynamic Spectrum Access * Spectrum Sharing
— Orthogonal transmissions: exploiting — Simultaneous transmissions:
on-off activity of primary links exploiting performance

margin of primary links

Power Spectrum in Use PU-RXx

Frequency

.".' t'.

“Spectrum Hole”
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Spectrum Sharing Cognitive Radio NUS

National University

of Singapore

v

Primary Primary
Radio Radio
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Cognitive Cognitive
Radio Radio
Transmitter Receiver

« Information-theoretic approach:
—Cognitive Relay [DevroyeMitranTarokh06] [JovicicViswanath06]

* Pragmatic approach:
—Interference Temperature [Gastpar07] [GhasemiSousa07]
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Cognitive MIMO: Enabling Spatial ANUS

of Singapore
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-
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-

w \ 7 B Cognitive/Secondary Radio

- i i B Primary Radio

Two main issues:

1. How to optimally design secondary transmissions (precoding, power control) given
interference temperature constraints?

2. How to practically obtain secondary-to-primary channels?
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Outline for Cognitive MIMO NU
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e Part |: Fundamental Limits

— Assume perfect secondary-to-primary CSI

— Characterize cognitive radio (CR) MIMO channel capacity subject to
Interference-temperature constraints in

e CR point-to-point MIMO channel

« CR MIMO broadcast channel (BC)

o Part Il: Practical Designs

— Assume no prior knowledge of secondary-to-primary CSI

— Propose practical “cognitive beamforming” schemes via
* CR self-learning
* Primary radio (PR) collaborative feedback

14




Part |. Capacity Limits of Cognitive MIMO
(with perfect CR-to-PR CSI)




e
CR Point-to-Point MIMO Channel NUS

National University
of Singapore
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e
Problem Formulation [zhangLiang08] NUS

National University
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Haxgrgize log, ‘I +- HSHH‘
Subject to Tr(S) < F;

L ~ ‘H g T — a
generalized linear transmit _—~Tr (Gkb‘c’;ﬂ ) <Ip k=1....K
power gonstraint S =0

 Problem is convex, and thus solvable by convex optimization techniques, e.g., the
Interior-point method, the Lagrange duality method (more details given later)

« Suboptimal low-complexity solution: “generalized” zero-forcing (see [ZhangLiang08])

[ZhangLiang08]: R. Zhang and Y. C. Liang, “Exploiting multi-antennas for opportunistic spectrum sharing
in cognitive radio networks,” IEEE Journal on Selected Topics in Signal Processing, Feb. 2008.
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Special Case: CR MISO Channel NUS

Natio |u
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" Y

¢ . . Maximize log, (1 + hSh™)
L Primary Recerver 51' =

aSg™ <4 Subject to Tr(S) < P

Y Y > Y 959 <7
S =0

Secondary Transmitter Secondary Receiver

Tr(S) = F;
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Optimal Solution %@ NUS

of Singapore
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CR MIMO-BC NUS

National University
of Singapore
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PU

e Problem is non-convex, thus not
SU-K solvable by standard convex
optimization techniques

e Optimal solution is obtained via
generalized BC-MAC duality [Zhang et
al. 12] (more details given later)

[Zhang et al. 12]: L. Zhang, R. Zhang, Y. C. Liang, Y. Xin, and H. V. Poor, “On the Gaussian MIMO BC-
MAC duality with multiple transmit covariance constraints,” IEEE Transactions on Information Theory,
April 2012.
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N
Other Topics on Cognitive MIMO NUS

National University
of Singapore

* Robust cognitive beamforming
—e.g., [ZhangLiangXinPoor09], [ZhengWongOttersten10]

e CR MIMO Iinterference channel (MIMO-IC)

—e.g., [KimGiannakis08], [ScutariPalomarBarbarossa08], [TajerPrasadWang10]

e A recent survey on related works available at
— [ZhangLiangCuil0]

[ZhangLiangCuil0O]: R. Zhang, Y. C. Liang, and S. Cui, “Dynamic resource allocation in cognitive
radio networks,” IEEE Signal Processing Magazine, special issue on convex optimization for signal
processing, June 2010.
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Part 11: Practical Designs for Cognitive MIMO
(without prior knowledge of CR-to-PR CSI)




earning-Based MIMO CR ERAINUS
[ZhangGaoLiangl0]
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N
Protocol for Learning-Based MIMO CR NUS

National University
of Singapore

||||||||||||

Channel Learning Data Transmission

——> < > T 7

« Two-phase protocol:

— 1%t phase: observe PR transmissions, compute PR signal sample covariance
matrix, and then estimate CR-to-PR effective interference channel (EIC);

— 2nd phase: transmit with (zero-forcing) precoding orthogonal to the EIC
e Joint design of learning time and precoding matrix to

— Maximize CR link throughput

— Minimize leakage interference to PR link
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earning-Throughput Tradeoff

National University
of Singapore
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Primary Radio Collaborative Feedback EBNUS
[HuangZhang11]

of Singapore

primary
transmitter
feedforward

- primary
receiver

feedback

- => secondary
secondary | . receiver
transmitter || _ E /

[HuangZhangll]: K.-B. Huang and R. Zhang, “Cooperative feedback for multi-antenna
cognitive radio network”, IEEE Transactions on Signal Processing, Feb. 2011.
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e
Protocol for PR Collaborative Feedback NUS

National University
of Singapore

« P-Rx estimates the primary channel and determines the tolerable in-
terference power from S-Tx, /j:
« P-Rx estimates the channel from S-Tx to P-Rx. h; = | /g;s::
« With /j. g;. and s;. P-Rx designs the feedback signal to S-Tx:
— Quantized Interference Power Control (IPC). 7. to limit the transmit
power of secondary beamforming. ||v]||* < 7:
— Quantized Channel Distribution Information (CDI), s,. to constrain

the transmit direction of secondary beamforming. v

s; = 0;
— Due to feedback quantization, |v¥s;| > 0. Thus, 7 is designed to
UHILJE < Ij.

« With 1 and s; from P-Rx. and the secondary channel s, from S-Rx.

make

S-Tx designs cognitive beamforming:

f, = arg max |1:H55 2 st vHéé = 0 and ||“U||2 < min(n, F;)

vel
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CR Link Outage Probability vs. NUS
Transmit Power Constraint (assuming Bz
perfect IPC feedback)

10° ¢
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------- Quantized CDI (Infinite SNARY) |-
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o

Maximum Transmit SNR for Secondary Link
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R EEE————=,
IPC and CDI Feedback Bit Allocation NUS
(assuming fixed sum feedback bits)
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Concluding Remarks on Cognitive MIMO =BANUS

o Capacity limits of Cognitive MIMO channels

— Transmit covariance optimization under generalized linear transmit
power constraints (more details given later)
* Practical designs for Cognitive MIMO systems

—Learning-based cognitive radio
e Learning-throughput tradeoff

—Primary radio (PR) collaborative feedback
* IPC vs. CDI feedback bit allocation

e How to set Interference Temperature (IT) In practice?

— Interference Diversity: “Average” IT constraint (over time, frequency,
space) better protects PR links than “Peak” counterpart [zhang09]

— Active I'T Control: a new approach to optimal interference
management in wireless networks, e.g.,

 Cooperative multi-cell downlink beamforming (to be shown later)

[Zhang09]: R. Zhang “On peak versus average interference power constraints for protecting primary users in
cognitive radio networks,” IEEE Transactions on Wireless Communications, April 2009.
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Topic #2: Multi-Cell Cooperative MIMO




e
A New Look at Cellular Networks

» Future trends: universal/opportunistic frequency reuse
4 Pros: more abundant/flexible bandwidth allocation
[ Cons: more severe/dynamic inter-cell interference (ICI)
1 Need more advanced cooperative interference management among BSs
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Multi-Cell Cooperative MIMO (Downlink) EBNUS

ﬁ National University
of Singapore

MS
BS-1
MS
backhaul links
MS
BS-K
MS

» Network MIMO/CoMP
O Global transmit message sharing across all BSs

O ICI utilized for coherent transmissions: baseband signal-level coordination (high complexity)
O MIMO Broadcast Channel (MIMO-BC) with per-BS power constraints
» Interference Coordination

O Local transmit message known at each BS

O ICI controlled to the best effort: interference management (relatively lower complexity)
0 MIMO Interference Channel (MIMO-IC) or partially interfering MIMO-BC

» Hybrid Models: clustered network MIMO, MIMO X channel...

34




e
Outline for Multi-Cell MIMO NUS

National University
of Singapore

e Part I: Network MIMO Optimization
—MIMO BC with per-BS power constraints

—Weighted sum-rate maximization (WSRMax)
 Optimal non-linear precoding with “dirty-paper coding (DPC)”
» Optimal linear precoding with “block diagonalization (BD)”

e Part Il: Optimal Coordinated Downlink Beamforming

—MISO Interference Channel (MISO-IC)

—Characterization of Pareto-optimal rates
* Centralized algorithms with global CSI at all BSs
* Distributed algorithms with local CSI at each BS

35




Part . Network MIMO Optimization




National University
of Singapore

System Model of Network MIMO NUS
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. / Y MS-2
AN \ f
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. . \ AN
Assumptions: Controller N/ \>/
\ \
U global channel knowledge PRV
/ /N N\

O global transmit message knowledge

U ideal backhaul links to all BSs

'Y "Y| [Msk

Equivalent to a MIMO-BC with per-BS power constraints
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Network MIMOQO: Capacity Upper Bound NUS

National University
of Singapore

MIMO-BC with per-BS power constraints

» Nonlinear dirty-paper precoding (DPC)
U Optimality of DPC [CaireShamai03] [ViswanathTse03] [YuCioffi04] [WeingartenSteinbergShamai06]
U DPC region characterization (via WSRMax)
« BC-MAC duality for sum-power constraint [VishwanathJindalGoldsimith03]
e Min-Max duality for sum-/per-antenna power constraints [YulLan07]
» Generalized BC-MAC duality for arbitrary linear power constraints: [Zhang et al. 12]

» Linear zero-forcing (ZF) or BD precoding

O Sum-power constraint (MIMO-BC): [WongMurchLetaief03], [SpencerSwindlehurstHaardt04]
U Per-antenna power constraint (MISO-BC): [WieselEldarShamai08] [HuhPapadopoulosCaire09]
Q) Arbitrary linear transmit power constraints (MISO-/MIMO-BC): [Zhang10]

[Zhang et al. 12]: L. Zhang, R. Zhang, Y. C. Liang, Y. Xin, and H. V. Poor, “On the Gaussian MIMO BC-MAC
duality with multiple transmit covariance constraints,” IEEE Transactions on Information Theory, April 2012.

[Zhangl0]: R. Zhang, “Cooperative multi-cell block diagonalization with per-base-station power constraints,”
IEEE Journal on Selected Areas in Communications, Dec. 2010.
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Channel Model (1) NUS

National University
of Singapore

« MIMO-BC baseband signal model:

’y;c:H;;:I?;;—i—E H;;:I’:j—l—z;;, k=1,--- . K

J7Fk

o Y. € CN*L: received signal at the kth MS
o x; € CM*L: transmitted signal for the kth MS, M = MzpA
o H,; € CN*M: downlink channel to the kth MS

e z; € CN*L: receiver noise at the kth MS, z;, ~ CN(0, 1), Vk
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Channel Model (2) NUS

National University
of Singapore

* Precoding (linear/nonlinear) matrix:

m}C:T;CS}CE k:....,[{

e T € CY*Pr: precoding matrix for the kth MS, D;. < min(M, N)
o 55, € CP»*1: information-bearing signal for the kth MS, s ~ CA(0, 1)

.S, £ E|x;xl]: transmit covariance matrix for the kth MS, S; =

T. T4

e Per-BS power constraints:

K

Y Tr(B.S) <P a=1.- A

k=1

Ba’i‘Dmg( 0,1+ 1,0, q)
(a—1)Mp _-ffB (A—a) Mg
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* Nonlinear DPC precoding:

e
WSRMax in Network MIMO

National University
of Singapore

=N US
95

(PA): max.
-5

S-Sk o I+H, (S5, S) Hf‘
B
st. » Tr(B,S;) <P, Va
k=1
S, =0, Yk

N

non-convex problem,
with the same structure
as CR MIMO-BC

optimization

e Linear BD precoding:

K

_max. E wy log

S-Sk o
st. H;S HY =0, Vj#k

(PB) : I+HS:H|

K
E Tr (B,S:) < P, Va
k=1

S =0, Ik

N

convex problem
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e
Nonlinear DPC Precoding Optimization NUS

with Per-BS Power Constraints
« WSRMax problem (PA):

1+ H(SE, ) HY|

K
JPA) .
I+ H; (Zikﬂ Si) HkH‘

— max. E wy log
A

K | per-BS power
s.t. Tr (Bazsk) <P va <~ | constraints

k=1
Sy~ 0, Yk

e Auxiliary problem (PA-1):

Y ,— . ' - I’ B é A )‘aBa
Slr'"!SK 1 ‘I —|_Hk' (Zi;k‘-i-l S!‘) HkH‘ /\ﬂ Zﬂfl
Py= (D o1 AP

K

k=1
Sy =0, Vk
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Algorithm for Solving (PA) NUS

National University
of Singapore

« Easy to verify the upper bound

 Interestingly, the upper bound is also tight (see [zhang et al. 12])

JFA) — 1)1\111(1}13{)\1, oy A4)

e (PA) is solved by an iterative inner-outer-loop algorithm:

¢ Outer loop: Solve the above minimization problem via sub-gradient
based methods, e.g., the ellipsoid method

*» Inner loop: Solve the maximization problem (PA-1) via the
generalized MIMO BC-MAC duality (shown in next slide).
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Generalized BC-MAC Duality

=

of Singapore

Primal MIMO-BC

2 ~ CN(0.1), T{AS i Sp) < P

Dual MIMO-MAC

7z~ CN(0,A), /L Tr(Qy) < P

convex problem,
solvable by e.g. the

/Rl
=
— > H, > v | [ HY
1/ 1 .
Zz
— — .|| T Y
x — Ho
- .
. .
. ZK -
L 1 r —»>
(a) (b)

Interior-point method

* (PA-1) is equivalent to WSRMax in dual MIMO-MAC: /

K-1 k
max. Z{u';. — w41 ) log | By + z HFQ?;H?;
Q.- Qy 1T i=1
K
s.t. ZTr (Q) < Py
k=1
Q. =0, vk

+ wg log

K
B+ ) H/QH,

i=1
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Two-User MISO-BC with Per-Antenna EBNUS

Power Constraints (DPC Precoding)

1.4

1.2

0.8

r, (bps/Hz)

0.6
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e SLIM power constraint (optimal)
po| v per-antenna power constraint (optimal) "" - i
= = = per—-antenna + sum power constraint (optimal) \
''''' per—antenna + sum power constraint (heurnstic) ‘\.
D 1 1 :
0 0.5 1 1.5

I (bpsiHz)
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Linear BD Precoding Optimization with NUS
Per-BS Power Constraints e

« WSRMax problem (PB):

K
(PB):  max_ > wylog [T+ HySiHY|
PR k=l //ZF constraints
st. H;SHY =0, ¥j £k
K e per-BS power
Y Tr(B.Sk) < P, Va constraints
k=1
Sy =0, Yk

(PB) Is convex, thus solvable by convex optimization technigues
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Remove ZF Constraints (1) NUS

Natio |u
ngp

Assume M = NK

e Denote G, = [H{,--- \H} { Hi,,,--- H k=1 K G} ¢
CLHM with L = N(K — 1).

o Denote the (reduced) singular value decomposition (SVD) of G as
G, =U,;Z,. V7.

o Define the projection matrix: P, = (I — V;cVEJ.

e Rewrite P as P = Vka, V. € CMx(M-L) ith V}HV;L =0

Lemma 1: The optimal solution of (PB) has the following structure:
S, =V.Q\V,. k=1--- K

where Q, € CM-L)x(M=1) and Q, > 0.
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Remove ZF Constraints (2) NU

e Using Lemma 1, (PB) is reduced to

K
(PB—1): max. E wilog [T + H ViQ,V Hfr)
Ql‘-""-QI{ k=1
K o
st Y T (B,JV;CQ;;V;:) < P, Ya
k=1 \
- generalized linear transmit
Q;; =0, Vk POWEr constraint

(PB-1) Is convex, thus solvable by Lagrange duality method
v" (PB-1) has the same structure as CR point-to-point MIMO optimization if K=1
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Algorithm for Solving (PB-1) NUS

Natio |u
ngp

o Introduce a set of dual variables for (PB-1), 11, ...,  [t4, corresponding
to individual per-BS power constraints.

« Denote B, = Z‘::l 1o B..

o Apply the following SVD: H;;V;;{VfBHV;;)_m — U;E;LV;LH

« Denote Z;L = Diag(or1, -+ ,0pnN).

o Obtain A;‘ — Die-l-“'[/\;;_l, s 5)\;51__.&;}, /\;;__-g — (-w;; — ﬁﬁ )+ ,'f- = 1, C e f\’v,

ki

with ()t £ max(0, z).

Lemma 2: The optimal solution of (PB-1) i1s give by

Q,=(V,.B,Vi) /2 V;A;V; (V, BﬁVH V2 p=1... K.

(PB-1) is solvable by an iterative inter-outer loop algorithm, similarly as (PA)
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Optimal BD Precoding Matrix NLUJS

of singapor

« Combining Lemmas 1 & 2 yields

Theorem: The optimal solution of (PB) 1s given by

St =V (V) BV, L2y, AV (V] B v“—lf-v k=1 K

where B = 54 B,

Corollary: The optimal BD precoding matrix 1s given by

— ViV BV PVIAY k=1, K.

Optimal precoding vectors for each user are non-orthogonal
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Properties of Optimal BD Precoding NU

National University
of Singapore

e Channel diagonalization:

~H . : 1/2
U, H; T =3\,

Linear (non-orthogonal) precoders achieve per-user MIMO capacity

 Precoding matrix in traditional sum-power constraint case:

T+ — 1 V V Alf?
ke — xRV RS

VH

Linear (orthogonal) precoding vectors for each user are optimal
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Special Case: MISO-BC with Per-AntennaNUS

Power Constraints e ety

o Optimal ZF precoding vector:

tp = Ao ViV BVY) WVihe k=1, K

v" can be shown equivalent to generalized channel inverse [wieselEldarshamaios]

e Sum-power constraint case:

tr = Ao ) VAV e k=1, K

v" can be shown equivalent to channel pseudo inverse
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Separation Approach (suboptimal) NU

National University
of Singapore

e First, apply “orthogonal” BD precoders for the
sum-power constraint case:

c I I
S, =ViA (V)T

with H, P, =U . X, (V)2 k=1,... K.

e Second, optimize power allocation for WSRMax
under per-BS power constraints:
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Two-User MISO-BC with Per-Antenna NUS
Power Constraints (ZF Precoding) @ “““““““““““““““
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Number of Transmit Antennas
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- ____________________________________________
Summary of Part | SAINUS

 Network MIMO Optimization

~WSRMax for MIMO-/MISO-BC with linear (per-BS,
per-antenna, sum-antenna) power constraints

—Nonlinear DPC precoding
* Generalized MAC-BC duality

—Linear ZF/BD precoding
 Joint precoder and power optimization
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Part I1: Optimal Coordinated Downlink
Beamforming




System Model of Coordinated Downlink NUS
Beamforming §

of Singapore

BS/ AN Y| | mMs1

: Vol
Assumptions: \\\\ 4
- . . \ \\ // /
O limited-rate backhaul links \ ,
i VIR
O local transmit message at each B . A\ AN
- 7N /) ax i
- - . \ > _2
U one active user per cell (w.l.0.g.) BS Y N \\// K MS
\ /
. . \
Q ICI treated as Gaussian noise \\ PN
L4 /( />\ )
° /%N
;/ /7 \\ \
[ J / / \
/ N
/// \\ \
/
v N
* /
SK |-t 5\ MS-K

MISO-IC with partial transmitter-side cooperation
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e
Related Work on Gaussian Interference emnys

Channel (selected) %) s

» Information-Theoretic Approach
L Capacity region unknown in general
0 Best known achievability scheme: [HanKobayashi81]
L Capacity within 1-bit: [EtkinTseWang08]

» Pragmatic Approach (interference treated as Gaussian noise)

U Interference alignment [Jafar et al.]
= DoF optimality at asymptotically high SNR

= New ingredients: improper complex Gaussian signaling, time symbol extension, non-
separability of parallel Gaussian ICs

O MISO-IC (finite-SNR regime, proper complex Gaussian signaling, no time symbol extension )
= Achievable rate region characterization [JorswieckLarssonDanev08], [ZakhourGesbert09]
= Power minimization with SINR constraints [DahroujYu10]
= Optimality of beamforming (rank-one transmit covariance matrix) [ShangChenPoor11]
U WSRMax via “Monotonic Optimization”
= SISO-IC (“Mapel” algorithm) [QianZhangHuang09]
= MISO-IC [JorswieckLarsson10], [UtschickBrehmer12], [BjornsonZhengBengtssonOttersten12]

d WSRMax for MIMO-IC
= [PetersHeath10], [RazaviyaynSanjabiLuol?2]....
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e
Channel Model NUS

National University
of Singapore

« MISO-IC baseband signal models:

o ;. recetved signal at the kth MS

e &, € CM1: transmitted signal from the kth BS, M, > 1

« h € CVMe: direct-link channel for the kth BS-MS pair

. hi e CY*M: cross-link channel from the jth BS to kth MS. j # k
. 2 receiver noise at the the kth MS, 2, ~ CA(0,07)

« ;s are independent over £: no message sharing among BSs

- transmit covariance matrix for the kth BS. S, = 0

—_

\Assumed proper/circularly-symmetric complex
Gaussian signaling (for the time being)
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e
Pareto Optimal Rates in MISO-IC NUS

National University
of Singapore

» Achievable user rate (with interference treated as noise):

» Achievable rate region (without time sharing):

R £ U {l;-rl ..... ri) 0 <rp < Ri(S1,. ... Sk) k= h}
{s1}:Tr(sp) <Pk

» Pareto rate optimality:

Definition: A rate-tuple (rq, .. ., r ) 1s Pareto optimal if there is no other
rate-tuple (ry, ..., 7)) with (r{, ..., %) = (r1,....rx)and (r], .. ., ry) #F
(r1,...,7K) (the mnequality is component-wise).

60



e
WSRMax for MISO-1C NUS

of Singapore

K 7
(\VSRI\[aX) . maxX. Z Wy 10g (1 + Z hk?ktskhkkt )

H
Sl-."' -.SK —1 Ak h]AS]hJA + O-E
S.tT. TI’(SAT) < P;“ VE
S, =0, Vk

Non-convex problem, thus cannot be solved directly by convex optimization
technigues
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N
SINR Feasibility Problem NUS

National University
of Singapore

Assuming transmit beamforming i.e. S = v ;{vf VK

(SINR — Feas.) : find {w;}
1 . . .
S.t. ;Hh’kHJakaZ > E :Hh’ivin —I_O-f* vk
'k )
JF#k
lvi||” < P,V

Convex problem, can be solved efficiently via convex Second Order Cone
Programming (SOCP) feasibility problem

Question: Can we solve WSRMax via SINR-Feas. problem for 1Cs?

[LiuZhangChual?]: L. Liu, R. Zhang, and K. C. Chua, “Achieving global optimality for weighted sum-rate
maximization in the K-user Gaussian interference channel with multiple antennas,” IEEE Transactions on
Wireless Communications, May 2012. (also see [UtschickBrehmer12], [BjornsonZhengBengtssonOttersten12])
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Rate-Profile Approach @ MJS

Rz (bps/Hz)

Two- User MISO IC
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Sum-Rate Maximization with Rate- = NUS
Profile Constraints [zhangCui10] 9 i
Given a rate-profile vector o = |y, ..., x| = 0, Z?:l ap = 1
max. RSUHI
Roum Wy}

s.T. 10% (1 - ﬂ}”k(wlp e pwh’)) > @ktRsuma vk

find {wk} S
s.t. log (1 + ﬂflat(wla SR aw[{)) Z QLT sum VE | SINR-Feas. Problem
||IU)A?||:2 g P]i‘?? \V/k

Non-convex problem, but efficiently solvable via a sequence of convex SINR-Feas. problems

[ZhangCuil0]: R. Zhang and S. Cui, “Cooperative interference management with MISO
beamforming,” IEEE Transactions on Signal Processing, Oct. 2010.
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Monotonic Optimization NUS
Key observation: Maximize WSR in MISO-IC rate region directly!
K
WSRMax) : max. U(r):= 1
( ) T=[R,...Rg] ( ) ;u
st. reR

Monotonic optimization problem (maximizing a strictly increasing function
over a “normal” set), thus solvable by e.g. the “outer polyblock
approximation” algorithm (shown in next slide)
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National University
of Singapore

Outer Polyblock Approximation E@% NUS

B 7D Ztl) Z®O1 (01
| Vi » Guaranteed convergence
| l,(z‘r | ZL-‘-.r.E
R Jpm> R L ,m2 » Controllable accuracy
—
» Complexity: ???
The polyblock P'" with R The polyblock P with R, i i )
vertex zV a vertices z.V, 292 > Key Step In each iteration:
= Find intersection point with
o B Pareto boundary given a rate
ProoS Yo OR, profile, which is solved by
— lim [ max U(r)] =maxU(r)| Sum-Rate Maximization with
32 n—o0 < Pln) TeR . .
Rate-Profile Constraints

The polyblock P® which R, . _ . .
approaches the rate region +» Rate Profile + Monotonic Optlmlzatlon

With Increasing n solves WSRMax for MISO-I1C
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Numerical Example ERANUS

ﬁ National University
of Singapore

» Benchmark scheme: “price-based” algorithm [Schmidt et al.09]
» MISO-IC: M,=2, K=4, 1.1.d. Rayleigh fading, SNR,=3, w,=1

MISO Interference Channel

N
<
w
Q
2
b
©
T
£
=3
v
K
Bt [ttt
J| Proposed Algorithm
2 [ —s«— Price—Based Algorithm |
9(\ . ,
1 ' i
0 50 100 150

lteration 67



N
Distributed Beamforming for MISO-IC EB®NUS

" B\l / National University
s of Singapore

Yl | Ms-1

MS-K

» Distributed Algorithms for Coordinated Downlink Beamforming

= Jow-rate information exchange across BSs
= only “local” (BS-side or MS-side) channel knowledge available at each BS

Question: Can we archive distributed (Pareto-rate) optimal beamforming?

[ZhangCuil0]: R. Zhang and S. Cui, “Cooperative interference management with MISO beamforming,”
IEEE Transactions on Signal Processing, Oct. 2010. (with BS-side CSI)

[QiuZhangLuoCuill]: J. Qiu, R. Zhang, Z.-Q. Luo, and S. Cui, “Optimal distributed beamforming for

MISO interference channels,” IEEE Transactions on Signal Processing, Nov. 2011. (with MS-side CSI) .



Exploiting Relationship between MISO-IC
and MISO CR Channel [ZhangCui10]

<

Y Secondary User Link

S AEEE———

NN 7 4
\ AN /7 /
N /
\ N2 /
\\ /
/
i \// \\/
A\ /N
° / \ / \ j
[ ] \ /
Y Y
/ /\
/7 \
/ \\
Primary FAREEA .
/ \
Users / \

National University
of Singapore

NUS

e For the kth MISO CR link:

h Sy hy
Ci(Ty) ==max. log | 1+ Rk R 5
Sk 2k Lik + 0%

s.t. by Sphyy < Ty \Vj # k
r(Siyr< P, Sp=0

Interference Interference
power to power from
other MSs other BSs

Y / .
N VA

(PA): “Cognitive beamforming (CB)” problem subject
to “Interference Temperature (IT)” constraints
(considered in Topic #1)

[ZhangCuil0]: R. Zhang and S. Cui, “Cooperative interference management with MISO beamforming,”
IEEE Transactions on Signal Processing, Oct. 2010.
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-
Optimal Cognitive Beamforming (CB) NUS

National University
of Singapore

Theorem: The optimal solution for S, in (PA) is |rank-one| i.e., S) =

w;;wf, and
~1

H f—
Wiy = E )‘chhfﬂcj hJ,E;j + )\IJICI h’kk’ v Pk
ik

where Ay, J # k, and Ay, are non-negative constants (solutions for the

dual problem of (PA)); and p; 1s given by

o\ +
( L Y Fﬂcwﬁ) 1
pe=\15

11 2 HA;JL;C;;HQ HA;JL,!;;;HQ

1/2

—1/2

and ()" = max(0, z).

A
where A; = (Z#k )\}c‘-jh’}cjhi' + AL )

A semi-closed-form solution, which is efficiently solvable by an
Iterative inner-outer-loop algorithm
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e
Interference Temperature (IT) Approachto EBNUS

Characterize MISO-IC Pareto Boundary 95

Proposition: For any rate-tuple (/y,..., Rx) on the Pareto boundary
of the MISO-IC rate region, which 1s achievable with a set of transmit
covariance maftrices. Sq,..., Sk, there 1s a corresponding interference-
power/interferecne-temperature constraint vector, I' > 0, with I'y; =
hgﬁ';ﬂh;ﬂj,“ﬁj # kg € {1,..., K}, and k € {1,... K}, such that

Ry = Cy(T'y), k. and S 1s the optimal solution of (PA) for the given k.

A new parametrical characterization of MISO-IC Pareto boundary iIn
terms of BSs’ mutual IT levels, which constitute a lower-dimensional
manifold than original transmit covariance matrices

1 Optimality of beamforming for MISO-IC is proved
(see an alternative proof given by [ShangChenPoorl1])
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-
Necessary Condition of Pareto Optimality NUS

National University
of Singapore

Theorem: For an arbitrarily chosen I' = [Ty, ... I'x] > 0, if the opti-
mal rate values for all &’s, C,(I'x)’s, are Pareto-optimal on the boundary
of the MISO-IC rate region, then for any pair of (¢,j),i € {1,...,K},j €
{1...., K}, and i # 7, it must hold that |D);;| = 0, where

- ocy(Iy) e (T) |
ar;, T a b
D” — o f‘ ) f.ij‘ ~. J—
oc;(1;) ocs(1;) c d
T ar, ar,; |

where [ oc, (T
8F3-__.;
M. 1n9f N 2 Hgxp,
L' 203 52 i+ 07)(3 14 Tii + 07 + hi; Siha)
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NS
Optimal Distributed Beamforming AN US

based on CB and “Active IT Control” & ==

» BS pair-wise IT update:

— stepsize
Ty Dt = [y Tl + 655 - i

/ fairness control

where d;; = sign(ad — be) - [a;;d — b, a — ofc|

» Distributed algorithm for coordinated downlink beamforming:

Initialize I' > 0 1n the network
BS & sets w;. by solving (PA) withthe given I', £ =1, .. ., K
Repeat

exchange two Fori=1,....K,j=1,....K,j+#1i,

scalars per u pdate BS i computes @ and b in D,; with the given T;
\\‘ BS j computes d and ¢ in D;; with the given I';

BS i sends @ and b to BS
BS ; sends ¢ and d to BS ¢

BS ¢ (7) computes d;;, and updates [';; and I'};
BS i (j) resets w; (w;) by solving (PA) with the updated I'; (T';)
End For
Until |Dy;| = 0,72 # 5.

73



N
Numerical Example NUS

National University
of Singapore

»MISO-IC: M; =M,=3, K=2, 1.1.d. Rayleigh fading, SNR;=5, SNR,=1

S

_Iwo-User MISO-1C




e
Distributed Beamforming via Alternating NUS

or Cyclic Projection [QiuzhangLuoCuil1] st e
» Recall SINR feasibility problem:

max () SINR target of MS i

{wi}
9 ) M = _ -
s.t. Hh’ng | > [3; (Zil‘j# hﬁwj‘ + 022) c1=1,..., M,

* Problem reformulated as (solvable by centralized SOCP):

max y
//s.t. Vi || A + nil| <
z = [wiwy w0 plae =0,
|Siz|| < /P, j=1,....,M.

Question: Can we solve SINR feasibility problem in a distributed way?

[QiuZhangLuoCuill]: J. Qiu, R. Zhang, Z.-Q. Luo, and S. Cui, “Optimal distributed beamforming for
MISO interference channels,” IEEE Transactions on Signal Processing, Nov. 2011. -



N
Alternating Projection

Similar to “Cloud

Computing’

" Average

)_.

-

.

BS1
-

£

BANUS
9.

Natio |u
ngp

e Distributed beamforming computation at each BS (via SOCP):

10N
H i

s.t.

|z —x,

.-Bi

plx=0

<\/P;,j=

|S;x|

A?f.aj + niH S

1+ 3;(hY Sx).

* Average operation at a central computer:

n—'

UZ

local SINR constraint

for MS i only
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e
Cvclic Projection ZRINUS
y J 95

National University
of Singapore

MS1
BS1 e
v .
& Tty
& aw”%rm
MSas e T— r BS2
. - -
BSas L
',' MS2
"y
2y,
e
BSus- l
M Sar s

- Cyclic beamforming computation at each BS (via SOCP):

i H:r: — a:?(f_l) H local SINR constraint
v _ — ’/ for MS i only
sit. VGi|Aix+nil| < 1+ 5k Six),
pla=0,
S| < VP j=1.....M .
D




N
Numerical Example ERINUS

National University
of Singapore

3-user MISO-IC, SNR target = 10 dB (feasible)

Alternating Projection

—
—

Cyclic Projection

11
10 101
Sr gt
8r 8t
x 7t _
e 7 % 7
0 7
@ 6 o 6F
8 8
8 °f 3 5
= X
[&]
< 47 < 4}
3r 3t
2f 2 |
1F 1t
U 1 1 | | 1 1 1 1 | 0 [ i 1 I L
0 10 2 3 40 5 6 70 8 9 100 0 5 10 15 20 25 30
Computation round Computation round
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Recap of Part I NUS

» Pareto rate characterization for MISO-IC (with interference treated as noise)
= non-convex problems in general
= rate profile vs. WSRMax
v’ rate-profile: polynomial complexity, scalable with # of users
v WSRMax: unknown complexity, non-scalable with # of users
= similar results hold for SISO-IC or SIMO-IC (see [LiuzhangChual2])

» A new general framework for non-convex utility optimization in multiuser
systems via rate profile + monotonic optimization, provided

= utility region is a normal set

= problem size is not so large

= finding intersection points with Pareto boundary is efficiently solvable

» Optimal distributed beamforming for MISO-IC
= Approach 1: cognitive beamforming + active IT control
= Approach 2: (reduced) SOCP + alternating/cyclic projection
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NUS

Extension: Improper Gaussian Signaling NUS

» Joint covariance and pseudo-covariance optimization
= Two-User SISO-IC [Zeng et al. 12]

[ hee | Cs, )—}—Elogl _ C};2|C}'r|2
0'2 + |hrF|2Cx?

Rr = log(1 1 2 "1 - GG

"

T
rpw:::-pher ( Cxl ? sz )

..............................
...........................

....................

#  Improper, rank—1 with MMSE Kg
Improper, rank—1 with ZF -

[

-+ { =—@= = Proper

“, (| =—t— |mproper, proposed

pe T | — %1

1 1.5 2
R1 (bps/Hz)




-
Concluding Remarks on Cooperative =N US

Multi-Cell MIMO e

» Fundamental limits
= Capacity region characterization for interfering MIMO-MAC (uplink), and interfering

MIMO-BC (downlink)
= In general, very difficult (non-convex) optimization problems

» Interference alignment (1A) techniques
» Provide optimal signal dimension sharing at high-SNR: DoF optimality
= Reveal new design principles for K-user Gaussian ICs at finite-SNR, e.g.,
v" improper complex Gaussian signaling
v’ symbol extension
v" non-separability of parallel Gaussian channels
= open challenge: How to optimally exploit IA gains in practical wireless systems?

» Other 1ssues

= imperfect backhaul/feedback links

= channel estimation error
= interference cancelation (not treating interference as noise?)
= cooperation in heterogeneous networks
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Agenda NUS

1 Overview of the talk

1 Exploiting multi-antennas In

» Cognitive Radio Networks

» Cooperative Multi-Cell

» Two-Way Relay Networks

» Green Cellular Networks

» Wireless Information and Power Transfer

1 Concluding remarks
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National University

Topic #3: Two-Way Relay Beamforming




Two-Way Relay System (1) NUS

» Two source nodes (S1 and S2) exchange information via a relay node (R)
v all nodes operate half-duplex
v" no direct channel between S1 and S2

Sl R S2
» Question: How many time slots needed for one round of information
exchange between S1 and S27?
» Traditional orthogonal approach (4 slots needed)
X, X,
S1 X, R X, S2
» Wireless network coding (3 slots needed) [wuChouKung05]
X, X,

s1 x®X, R x®Hx, S2
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Two-Way Relay System (2) MJS

of singapor

» Question: Can we do better?

» Physical-Layer Network Coding (2 slots needed) [zhangLiewl_am06]
X, X,
s1 x®x R x®x, S2
» Analogue Network Coding (2 slots needed) [KattiGollakota Katabi07]
Q= O — Q
S1 XX, XX,

» Other related work
v" information-theoretic study [OechteringSchnurrBjelakovicBoche08]
v two-way amplify-and-forward (AF) relaying [RankovWittneben05]
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Two-Way Relay Beamforming [zhang et al. 09] EBINUS

ﬁ National University
of Singapore

» Assume single-antenna source, multi-antenna relay, channel reciprocity

» Consider analogue network coding (or two-way AF relaying)

[t LY T

S1 R S2
Time-Slot 1

Y —— 1.Y —

S1 R S2
Time-Slot 2

> Related work
v one-way AF MIMO relay [TangHua07], [MunozVidalAgustin07]
v' two-way distributed relay beamforming [HavaryShahGrami10], [ZengZhangCuill]

[Zhang et al. 09]: R. Zhang, Y. C. Liang, C. C. Chai, and S. Cui, “Optimal beamforming for two-
way multi-antenna relay channel with analogue network coding,” IEEE Journal on Selected
Areas in Communications, June 2009.
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Signal Model of Two-Way Relay BF MJS

of singapor

e At 1sttime-slot, R receives

Yr(n) = hiy/prsi(n) + hay/pasa(n) + zg(n)

* R linearly processes (AF relaying) received signal as

TR(n) = AK‘QR('”-}
\

A E CJI/‘(JI

e At 2" time-slot, S1 (similarly as for S2) receives

y(n) = hfiﬁﬁ(ﬂ-] + 2(n)

— thh,l\/’ﬂsl(n) + hl Ahs,/pasa(n) + h1 Azg(n)+ z1(n)
\

Assumed perfect “self-interference” cancellation
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Achievable Rate Region NUS

Natio |u
ngp

e Achievable rates at S1 and S2:

IhT Ahs|2p ) 1 ( hy Ahy|*py )
ro < —logy, | 1+
|ATR;|12 + 1 (1) resgle |AT R + 1 (2)

1
ro1 = 3]‘1)") (1 +

* Relay power consumption:
pr(A) = ||Ahy|]*py + || Ahs||ps 4 tr(AAY)

» Achievable rate region given p,, p,, and Pg

Ripep. Pr) 2 | Alranr): (1).(2))
A:pR{A}gPR

“Capacity region” (assuming AF relaying)

C(Py, Po, Pp) £ U R(p1,p2, PR)

(P1.02):P1=Fy,pa=D
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-
Dimension Reduction on Optimal BF

Matrix A

ANUS

Natio |u
f59p

%

Theorem 1: The optimal relay beamforming matrix. A. that attains a

boundary rate-pair of ‘R(p;, ps, Pr) has the following structure:

A=U"BU"

where |B € C**?
SVD of Huyl. = [h1, ho] € CM*2 ie. Hy, = USVE

is an unknown matrix. U € CM*2 {5 obtained from

C amﬁqu 1. Rip1, pe, Pr) can be equivalently expressed as

1 g7 Bg,|*p, non-convex
U {(ﬁr:}lv?lﬂ:’ -1 = 5 logy (1 T ) ; rate region
2 BgiP+1) |/
i'-:'Rl: B ) =Fr /
1 I'Bg,|
rig < almgg (1 n |Q.2H ?1l Pl_ ) }
2 IB™g5]° + 1
where pp(B) = |Bg,||*p1 + | Bgs|*p2 + txr(BBY).
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Rate Profile Approach ERAINUS

1.4

1.2

0.5

0.g
I'c

0.4

o (bitsfcomplex dimension)

0.2

National University
of Singapore

Capacity Hegion

— i : — — — Achievable Rate Region|

.C(Pl, PQ, Pr)

.................................................................................................

Tas {bitsicomplex dimension)
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e
Problem Reformulation NUS

National University
of Singapore

Sum-Rate Max. with Rate-Profile Constraints

Max. Roum D Pp.r
Rsu11hB R* pR > R.'-' L
1 97 Bg,* T pr < Pr,r ]
s.t. Slogy [ 1+ 22222 ) > g R )
2 ( \B g:ﬁﬂ) o 1
%109;2 (l + fé}?ggfp;) > O5'121-[3:3L1111
17+ : . 2 2 H
) Min.  pr = |Bgy[[p1 + | Bga|I"p2 + tr(BBY)
|Bg,|I*p1 + | Bgal*ps + tr(BB") < Pp. B
1 97 Bg,*p .
S.t. logy { 1 4+ 2222 | > (g7
2062 ( |B7g;2+1 ) =
%1 (l —+ |||‘(‘]é£;gﬁi p1) = (ot
PMin-SNR (power minimization with SNR constraints) 1
: . 2 2 H — : . _
Mﬁl- pr = |Bgi|I"p1 + || Bgs[|"p2 + tr(BB™) Ap = 2%0m” ]
s.t. 91 Bg,|* = 2| B gi|” + » 2, 327 — |
N
2~ 7 H %12 4
9, Bgy|” > fHB 95" + e SNR targets
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Solve PMin-SNR by SDP EANUS
Min. PR = H*@b”2
b
b=Vec(B) | s.t. |f;fb‘2
f2b > §| sz||2
X = [bg:bi] x b b7 @

in. pr = tr(FpX)
X
s.t. tr(F1X)>1, tr(FoX)>1, X ~0,
rank( X ) = 1.
/

Semi-Definite Programming (SDP) with rank-one constraint:
non-convex!
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SDP Relaxation NUS

Min. m ::trFX
X PR (FoX)

st. tr(F X) > 1 tr(FoX) > 1, X = 0,|<&3 X ™ of rank one
rank(X) = 1. /\

4

removing
rank-one [Ye&Zhang03]
constraint

4

Min. PR = tr(FoX]

X x = FE )
st tr(FX) > 1, tr(FoX) > 1, X =0, ——> X7 ofrank r > 1

SDP in standard form,
solvable by e.g. CVX
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. ____________________________________
Low-Complexity Suboptimal Schemes NUS

 Maximal-Ratio (MR) Relay Beamforming

(MR 0
_ H H

0 buvr

Hyy, = [hy, hy) Hyy, = [ho, hl]T

o Zero-Forcing (ZF) Relay Beamforming

ay7p 0

Azr = HlDL H{IL

U bZF
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e
Performance Comparison (1) NUS

National University
of Singapore

pi:h,l, ho) =0.1

Optimal

[]_ﬁ—-------------:--———MRFE—MHT ..... .............. .............. X* ..............
: ZFR-ZFT : : : : :

r,, (bits/complex dimension)

L1 L LELIETETPE P PEEER TP PR TR RETRRT S TRRRTTRE Semieeeenes R EERIET

DE_'" .............. .............. ............. -r_

i} 0.2 0.4 0.G 0.8 1 1.2 14
s (hitsfcomplex dimension)
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Performance Comparison (2) NUS

National University
of Singapore

M=4 P =P =PFPr=10

1.4_.............:.........-....: .............. R R R REEEEREEE R

R NS S -------------- Optlmal

I s ~= ____ R ___________ _ plhy, ho) = 0.5

7] SRR AR A S AU T . g

r,o (bits/complex dimension)

U Optimal , . :
— — — MRR-MRT ; \i ; '
----- ZFR-ZFT ; ! : : :
L LR R TP TR PR P P PP PP T e e s R L R ETETRPE:

0.6 0.8
Ty (hits/complex dimension)
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BANUS
95

Performance Comparison (3)

National University

of Singapore

M=4 P = Pg Pr =10

L R E T T R E TR P PR PR R R EEEPETREE R EEETTRT RTTERIRTRERPE EEETPERE TP

Cptimal
— — — MER-MRT
----- IFR-ZFT

I, (bits/complex dimension)

7] USRS RSN (e L N D S ey,
DA e e .............. .............. ,

plhy, ha) =08

.....................

.....................

|
] 0.2 0.4 0.6 0.8 1
. {bits/complex dimension)
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Concluding Remarks on Two-Way Relay NUS

Beamforming

of Singapore

» Optimal two-way relay beamforming for analogue network coding
» Rate region characterization: non-convex problem
» Global optimal solution achieved via rate-profile + SDP relaxation

» Low-complexity schemes: MR performers better than ZF
v’ non-wise to suppress interference at relay due to source self-interference cancellation

» Similar results hold for non-reciprocal source-relay channels

» Many possible extensions
v multiple relays
v multi-antenna source nodes
v multiple source nodes
v multi-hop
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.
Extension: Collaborative BF for Distributed gm NUS

Two-Way Relay Networks [ZengZhangCuill] 95 o™

Relay 1

va\ individual -power constraint

e (Case of Reciprocal Source-Relay Channel
v only relay power allocation needs to be optimized

« (Case of Non-Reciprocal Source-Relay Channel
v both relay power and phase need to be optimized

[ZengZhangCuill]: M. Zeng, R. Zhang, and S. Cui, “On design of collaborative beamforming for

two-way relay networks,” IEEE Transactions on Signal Processing, May 2011.
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Agenda NUS

1 Overview of the talk

1 Exploiting multi-antennas In

» Cognitive Radio Networks

» Cooperative Multi-Cell

» Two-Way Relay Networks

» Green Cellular Networks

» Wireless Information and Power Transfer

1 Concluding remarks
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National University

Topic #4: Power Minimization in MU-MIMO




Green” Cellular Networks NLUJS

S
Y..Y

.. /' EIectrIClty Grid
—User K )

ase Station

fﬂ: —> User 2

e Energy consumption reduction at base station
— electricity cost, environmental concerns

e Energy consumption reduction at mobile terminals
— limited battery capacity, operation time maximization

A design paradigm shift in wireless communication
— from “throughput/rate maximization” to “energy/power minimization”
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e
Fundamental Limits CRAINUS

ﬁ National University
of Singapore

e (Capacity Region vs. Power Region
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Power Minimization in MU-MMO NUS
[MohseniZhangCioffi06]

* Power Region Characterization for Cellular Uplink (MIMO-MAC)
— weighed sum-power minimization (W-SPmin)
v AWGN channel
v fading channel

e BS Power Minimization for Cellular Downlink (MIMO-BC)
— apply uplink results with MIMO MAC-BC duality (details omitted)

[MohseniZhangCioffi06]: M. Mohseni, R. Zhang, and J. M. Cioffi, “Optimized transmission of
fading multiple-access and broadcast channels with multiple antennas,” IEEE Journal on
Selected Areas in Communications, Aug. 2006.
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e
Channel Model of AWGN MIMO-MAC NUS

National University
of Singapore

y=Hy---Hg|| + |+z

e y is 7 x 1 received signal vector at base station
e H, isr x tp channel matrix for user k
e x; sty x 1 transmitted signal vector for user k

e =z isr x 1 additive Gaussian noise vector at receiver. z ~ CN (0. S.)
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e
Assumption CEAANUS
P %5

National University
of Singapore

e Optimum Gaussian encoder at each transmitter

— L ~~ CJ\-‘“’(O, S;b) VEk

- S, £ E[:I:km;[] transmit covariance matrix (or spatial spectrum) of user k

e Optimum successive decoder at receiver

— 7 : decoding order vector, permutation over {1.2,--- K}
— e.g., user (1) is decoded first , user w(2) is decoded second , ...

Y l >
. SER / 4 *%
(1) '% z(l)
-H zr(z)’@/'

Decodet Decoder
+ Xx() i) re) .
» X
(1)
> Xr(2)
Y—’xfrﬁ)
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-
Special Case: SISO-MAC NUS

National University
of Singapore

y = hyxy + hoxo + 2

Capacity Region: Polymatroid Power Region: Contra - Polymatroid

e W-SRmax: weighted sum-rate maximization

e W-SPmin: weighted sum-power minimization
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Power Region of MIMO-MAC NUS

y=Hx, + Hyxs + 2

F
&
) Fix (8}, S5), P>
Tr(S) <P, Tr(S2)< P,

Capacity Region: Union of Polymatroids Power Region: ?
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N
Capacity Polymatroid (convex set) %@ NUS

National University
of Singapore

e /: mutual information

e Rate Inequalities for MAC:

keT

— Ahlswede ('71), Liao ('72), Cover-Wyner ('73)

e Capacity polymatroid given {S1,---,Sk}:

C({Sk}) = {‘r eRE D rp<log




Power Region Definition NUS

Definition 1. Given user’s rate constraint R = (R1, Ro.--- . Ry), a transmit
power-tuple p = (p1.pa,--- ,pK) Is in the power region P (R) iff there exits a
set of {Sy} , k=1,--- K such that

o pr = Tr(SE),Vk

e« ReC({Sk))
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e
Power Region Characterization via W-SPmin NUS

of Singapore

e A= (A1, A\a,--- ,Ag) € Rff © power prices

I )
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W-SPmin Problem Formulation MJS

e \ariables:

— transmit rates: r = (11,79, -+ . TK)
— transmit covariance matrices: S1.S9.--- . Sk

e Problem formulation:

Minimize Z AT (Sk)

Subject to ri > Ry, v Implicit rate constraints

rc C({Sk})/

S, =0 Yk

® Convex problem, but not directly solvable due to implicit rate constraints
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—
Heuristic Approach NUS

Natio |u
f59p

e Step 1
Fix decoding order 7, find { S} to minimize ), A\xTr (Sk)

— For user w(k), rqr (k) is expressed as

K K
log | Hp)SriyHp +S:| = log| > HrwSwmHp; +5-
i=k i=k+1

— Caution : Constraint 77 () = Rz (k) Is non-convex

e Step 2:
Over all possible (A'!) decoding orders, find 7 to minimize >, A\xTr (Sy)

— Caution : Excludes time-sharing of decoding orders
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N
Proposed Optimal Solution NUS

National University
of Singapore

e Goal : joint optimization of transmit powers, transmit covariance matrices,
decoding orders, and (if necessary) time-sharing factors

e Approach : duality between power region and capacity region under weighted
sum-power (W-SP) constraint

e |mplementation : Lagrange duality
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N
Capacity Region under W-SP Constraint NUS

National University
of Singapore

e Example: 2-user single transmit and multiple receive antenna (SIMO) MAC

Fix (p,.p,)

18 —=— ._ . -
T - o \\\\/

16f ——=-_ ~_ ~Time-Sharing Region
14} R

.
. ,

- —- Decoding Order 2 — 1
o8 | o Decoding Order 1 — 2

r (nats/sec/Hz)

06+

041

0.2

% 52 5 06 o8 i 12 14 T: 18 2
r (nats/sec/Hz)
"
A1p1 + Aopa < p
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Power/Capacity Region Duality NUS

National University
of Singapore

v e AP +Aaps=p
(p1,P2) :
P

AT p (W -SPmin)
P

Power Region:1| = Rj,r, 2 R, Dual Capacity Region: A, p, + As py < p°

e \WW-SPmin in power region = W-SRmax in dual capacity region

e How to find o« ? Lagrange duality
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Lagrange Duality

S

W-SPmin

Lagrangian

Dual Function

Dual Problem

Duality Gap
A

ﬁ National University
of Singapore
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L_agrangian NUS
grang

e Primal (original) problem :

K
Minimize p = Z A:Tr (Sh)
l—

Subject to rp, = R Vk

e Dual variables: p w.rt. rp > Ry, k="

e Lagrangian :

K
LSk} {re}.m) =D MTr(Sk) — Y pk(rk — Ry)
k=1 =




Dual Function 95 NUS

of Singapor

( = min  L({Sg}. {ret.
g(p) P ({ Skt {re}. 1)
K K
— min ZAhTr Sir) — Z;Lk-r;g = Zp,-kRk
{Sk}Ame} k=1 k=1

e Equivalent problem:

K K
Maximize Z HETE — Z /\kTT(SkJ

Subject to 7 € C({S:})

o Weighted sum-rate maximization (W-SRmax) over C({S%})
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N
Polymatroid Structure of C({S:}) NUS
Lemma 1. [Tse-Hanly('98)] The solution for the W-SRmax over C({S}}): o
K
Maximize Z JLET L
k=1
Subject to r € C({Sr})

is attained by a vertex ™) of C({S}}), for which

e T isgiven by pigr1) < pwe) S -0 S UK

AT 150 K -
® rxiy =log| X HeSwoyHy ) +S-

. K 1
— log ‘Zi:;ﬂﬂ H?F(-i}sﬂ{i]H;r{_i} + S,

A

P \
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lllllllllllllllllllllllllllllllllllllllllllll
Obtain g(p)

K K
Maximize Z [T — Z AeTr(Sg) (1)
k=1 k=1

Subject to 7 € C({Sk})

e By Lemma 1, (1) simplifies as the maximization of

K

> (HM')S':T@)H%@) +

i=k

K
S.| = > MTr(S)
k=1

K
Z Hﬂ' (k+1) — Hﬂ'(k log
k=1

e Twice continuously differentiable and concave function of {S}}

® Solvable by using gradient-based method, e.g., Newton’s method
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e
Dual Problem NUS
95

Natio |u
ngp

e {S}.} and {r}} are Lagrangian minimizers:
9(p) = ZAkTr Z,uk — Ry)

e Dual problem:

d* = mz: 2 g(p”
= maxg(p) = 9(p)
e Search yu; towards jij:
— Ry — 1y is a sub-gradient for pu, , k=1..... K

— Update j1p, by using sub-gradient based method e.g., Ellipsoid method
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L
Algorithm NUS
J 9.

Natio |u
ngp

K
p =d" =max min MeTr(S)) — [ (ry — Ry)
1S, {ret i Z Z_:

e ‘min": Fix p , obtain g(u)
e ‘max : Update ;o towards p*

e |terates the above two until the algorithm converges
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R
Illustration via Lagrange Duality NUS

National University
of Singapore

AT p(W -SPmin)
) 41
Pﬂwﬂ-Regi{m:ﬂ_ > R[,?b :_"”"RZ DJa]Capacitychiﬂn: ‘ll-pl + A-z_pz < P*

Lagrange duality: find u* = o
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Optimal Decoding Order (K=2) NUS

2 T T T T I* = T T T T
e <
~~ WMt
18f A T~ .
- \Q
16 s .
DN ‘E
141 e i
h" D

—_ \K 'l= &
T 12} ST,
< :
3 L |
@
= 08f — —- Decoding Order 2 — 1 L
S R PP Decoding Order 1 — 2 |

06 .

0.4 .

02r .

GI 1 1 1 1 1 1 1 1 1
0 02 04 0.6 0.8 1 1.2 14 16 1.8 2

r (nats/sec/Hz)

o Casel: iy < py: " isl — 2, eg., R asPoint A

o Casell: pf = pu5 : " is time-sharing of 1 — 2 and 2 — 1, eg., R as Point B
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-
Optimal Decoding Order (arbitrary K) NUS

National University
of Singapore

e Case I:
— If all {y1} are distinct ...
— 7 is given by ;L%(l) < P’%(g) < < ;L;';‘.(K)

e Case |l:

— If {pu} areequal forall ke J,J C{1.2,--- K} ...
— 7 is given by time-sharing of at most | 7| different decoding orders
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Natio |u
f59p

Power Region Characterization via NUS

Power Profile Approach

Given:
— rate constraint: R1. Ro..... Rk
— power profile vector : @ = (601.605,--- .0k) € Rf,szzl O, =1

Goal: find minimum {p1,pa.--- . px} such that p:’ — g:f Yk E e {1,2,--- K}

Applications: proportionally-fair power consumption

F )

P>

0
power-profile
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Sum-Power Minimization under Power NUS
Profile Constraints Lo
Minimize P

Subject to r. > R Vk
r € C({Sk})
S =0 Yk
Tr (Sk) < 0P Yk
P>0

e Solutions implemented via Lagrange duality

e Dual variables:

— i wWrt.rp > R, k=1,... K
— A\ wort. Tr(Sg) < 6P, A.—l....EK
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National University
of Singapore

Illustration via Lagrange Duality NUS

A" (W -SPmin)
) Lg|
Power Region: i = Ry, 2 Ry Dual Capacity Region: 4, p; + 4, p, < P*

Lagrange duality: find both A™ and p*
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e
Admission Problem NUS

National University
of Singapore

e Given:
— rate constraint: 1. [R9..... Rk
— maximum power constraint : P = (P, Pa,--- ,Pk) € Rff

e Goal: check whether P € P(R)

— |If yes, find a feasible set of powers
— |f no, find a proof for infeasibility

F Y

P>

feasibleset | T
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NS
Feasibility Test for Admission Problem NUS

National University
of Singapore

Minimize 0
Subject to re = R VEk
r € C({Sk})
Tr(Sk) < P Yk
S =0 YVk

Solvable by Lagrange duality, similarly as Sum-Power Minimization under Power
Profile Constraints

131




Extension: Fading MIMO-MAC 2ANUS

fading state

Uscr 1 YY Hl(‘g Y YY Given:
\ Hy(v)- Hg (v)

A
! Y T Y %P Determine:
Uset 2 (V) pg()

! $1)---Sg ()

r() - rg(v)

G

-

—<]

—<
X

g

Base Station

|
|
|
Feedback Channel |

_ G |
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R
Channel Model of Fading MIMO-MAC NUS

National University
of Singapore

y=[Hi(v) - Hx)] | : | +2

v : fading state

e state space is continuous and infinite

e state process is stationary and ergodic
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—
W-SPmin for Fading MIMO-MAC MJS

of singapor

e Both Si(r) and r(r) depend on v

e Problem formulation:

K
Minimize Z ANeEy [Tr (Sk(v))]
k

1
Subject to E,[re(v)] > Ry Yk

r(v)eC, ({Sk(v)}) v
Se(v) =0 Y. k

e Solutions implemented via Lagrange dual decomposition

e Dual variables: 11, wrt. E [rp(v)] > R, k=1,.... K
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Lagrange Dual Decomposition EBAINUS

National University
of Singapore

e Lagrangian:

K K
LUSKW) Y Ar() ) ) = D ME [Tr (Sk(w)] = > p (By[ri(v)] = Ry)

e Dual function:

g(p) = min  L{Sk(v)}. {re(v)} 1)
Sk(u),?"k(u],*ﬁ’k,y

K K
= [E, min Z A Tr (Si(v)) — Z prre(v) -+ Z Ry
Srw)r@).vk | r—1

iy -

¥

%Qy u—”

e Dual problem:

d¥ = .
max g(p)
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e
Power Region Comparison: ERANUS

SDMA vs. TDMA B e

R

2 1] nats/sec/Hz

35_.........;...........i. ........;...........i...........;..........i...........;...........;........._ . Two_user fad'lng MIMO_MAC

e Number of transmit antennas: 2, k = 1.2

e Number of receive antennas: 2

e« H.(v)=H,R/> k=12

. i -,FEqual Time-Slot Duratior:

P, (dB)




-
Concluding Remarks on Power =N US

Minimization in MU-MIMO Bz

* Power region characterization for MIMO-MAC via
— W-SPmin
— power profile

» Power/capacity region duality via Lagrange duality

 |_agrange dual decomposition
—a general tool for optimal resource allocation over parallel (e.g., fading,
multi-carrier) channels
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National University

Topic #5: MIMO Broadcasting for Wireless
Information and Power Transfer




RF-Based Wireless Power Transfer NUS

& f (t)  ipe®
) ) ((¢ Y@ a . nc
F ) :> ] +oe ’{ Diode " LPF | T/ " Batery
Agi ' : B
na (t) : Rectifier Y Nrec (t)

Energy Transmitter Energy Receiver

RF Energy Receiver Architecture

O Why RF-based Wireless Power Transfer (WPT)?

» longer transmission distance than near-field WPT (e.g., RFID)
» many advantages over traditional batteries and energy harvesting
= [ower cost: no need to replace/dispose batteries
= safer: in e.g. toxic environment
= more robust: overcome lack of light, temp. diff., or vibration (for energy harvesting)
= more convenient: controllable, continuous, schedulable on demand
» abundant applications in emerging wireless sensor networks
» building automation, healthcare, smart grid, structural monitoring.....
» current limitation

= [ow received power (<1uW at distance > 5m and transmit power <1\W)
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High-Efficiency WPT: An Energy EAINUS

Beamforming Approach @ K

 Transmit covariance matrix: Enerav Beamformin
S = Elz(n)a! (n) 9 J
L Optimization problem (convex): % G
max ():=tr (GSGH) S = L
s.T. tr(S) < P, S > 0. _Y Energy Receiver
d Beamforming is optimal: Trgﬁ:r;?i/ter
H

Sty = Pvyv;

v;: eigenvector of G G corresponding to the largest eigenvalue ¢

1 Maximum received power: beamforming gain

et
Qmax — ( IP 141



1 Hybrid Information/Energy Flow:
» “asymmetric” downlink/uplink transmissions

(1 Technical Challenges:

» joint energy and communication scheduling
" energy-aware communication
= communication-aware energy transfer
» Information and power transfer (downlink)
= orthogonal transmissions
» simultaneous transmissions (more efficient)
v circuit limitation: existing energy receivers
cannot decode information directly
v’ possible solutions:
** MIMO broadcasting [ZhangHo011]

\ / National University
of Singapore

RF-Powered Wireless Sensor Network

»Downlink (Base Station — Sensors)
»Uplink (Sensors — Base Station)
Energy Flow

>

)) ) ) Information Flow

)

([

Base Station
w/ constant power

supply

Wireless Sensor
w/o embedded
power supply

¢ “opportunistic” energy harvesting [LiuZhangChual2]
**“Integrated” energy/information receivers [ZouZhangHo012]

[ZhangHo011]: R. Zhang and C. K. Ho, “MIMO broadcasting for simultaneous wireless information and power transfer,”
IEEE Globecom, 2011. (Available Online at http://arxiv.org/abs/1105.4999 )

[LiuZhangChual?]: L. Liu, R. Zhang, and K. C. Chua, “Wireless information transfer with opportunistic energy
harvesting,” IEEE ISIT, 2012. (Available Online at http://arxiv.org/abs/1204.2035)

[ZouZhangHo012]: X. Zhou, R. Zhang, and C. K. Ho, “Wireless information and power transfer: architecture design and rate-
energy tradeoff,” submitted to IEEE Globecom, 2012. (Available Online at http://arxiv.org/abs/1205.0618)




MIMO Broadcasting for Wireless Information E®RNUS
and Power Transfer [ZhangHo11] B9 e

L Two scenarios: 7
> separated receivers: G #H .
» co-located receivers: G = H G 7"
 Objective: characterize “rate-energy” region v Energy Receiver
» extension of capacity-energy function of SISO .
AWGN channels [Varshney08], [GroverSahai10] _Y%I
3 Optimization problem (convex): Transmitter e
max 10g‘I—|—HSHH‘ &=
o - Information Receiver
s.t. tr(GSG") > Q
\ A three-node MIMO broadcast system with
tr(S) <P N perfect CSIT/CSIR
q - generalized linear transmit power

constraint

G € CVenxM [  CNpxM
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Separated Recelver Case (G # H) NUS

e Semi-closed-form optimal solution:

S = APV AV AT

where

e 117 optimal dual variable for transmit power constraint

o \*: optimal dual variable for receive power constraint
e A=1'T-NGHG
o 11 > \'g, (largest eigenvalue of G G)

« V' obtained from the (reduced) SVD H A2 = [Njf‘l/ QVH

I = diag(ﬁl, .ooyhyp) =0, T = min(M, Nip)

/

e A =diag(py,....pr), with pi=(1—1/h)*,i=1,...,T

« Optimal solution obtained by Lagrange duality method
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R
Rate-Energy Region (Separated Receiver) %@ NUS

National University
of Singapore

Crp(P) £ {(R. Q): R<log|I + HSH"|,Q) < tr(GSG"),tr(S) < P, S - 0}

0.7 | | |
energy beamforming -

R T Jo T T 1 e M= Ngg=Np =4
' ' 5 5 « P=0.1W (20dBm)
e f.=900MHz, B,, = 10MHz
e d = 10m (60dB signal power attenuation)

s
i J « G, H:1id Rayleigh fading
o
@ o Nyp = —130dBm/Hz
L . :
Optimal Transmit Covariance | | 7‘ « per-antenna average recetved power: 100nW
02f{~ - —Time—ESharing — """""""" (RﬂQO) """" . - per-antenna average received SNR: 20dB
: : | « energy conversion efficiency: 50%
01 L , ................... ____________________ .................... __________________ —
O 1 1 ] ]
0 50 100 150 200 250

Rate (Mbps)
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Co-Located Recelver Case (G=H) NU

e Optimal solution simplified as

S*=VyXVy

e V y: obtained from the (reduced) SVD H = U HI‘gQVg
e 'y =diag(hy,...,hr) =0, T =min(M, Np)

4

] ] +
. 3 = diag(py, ..., pr), with p; = (ﬁ—%) Ci=1...T

« Optimal solution obtained by Lagrange duality method

 Question: Is the corresponding R-E region achievable by
practical receivers?
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e
Practical Recelvers ZRANUS

il
 Circuit Limitation
» Existing RF-based EH circuits cannot decode information directly
» Thus, previously established rate-energy region only provides
performance upper bound

 Practical Receiver Design
» Time switching
» Power splitting
» Antenna switching (a special case of power splitting)

| Energy | Energy
Harvester Harvester
2@ o—
¢
o ®—
Information Information
Decoder Decoder

(a) Time Switching (b) Power Splitting
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Special Case: SISO AWGN Channel NUS

( h ’ y(t) | Energy Harvesting
-+ and / or

Information Decoding

s(t) na(t)

Transmitter Receiver

R-E Region Upper Bound
Rate-Energy Region
Y &Y ,/ CREL(P) & {(R, Q) : R <log(l1+hP),Q < hP}

_ Power Splitting

Py = {(R. Q) R <log(l+ (1—p)hP),Q < phP}

P 0<p<l

| Time Switching

Crlp(P) & U { (R,Q): R<(1—a)log(l+hP),Q < a-hP}

a: 0<a<1

(zH/28s/s10) 81ey

Energy (joules/sec)
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MIMO Case NLUJS

 Time Switching

Chlp(P) £ U { (R.Q):R< (1 —a)log|I + HS H"|,Q < atr(HS,H"),

a: 0<a<l

tr(Sl) i P._ tr(Sg) i P._ Sl i O._ SQ i O}

1 Power Splitting

1/2‘

ey 2 {(B.Q) R <log|I +A*HSH"A

{pi}: 0<p;<1.¥1

Q <tr(AYHSH"A!?) tx(S) < P.S - o}

where A, =diag(p;,...,pn). A

,=1—A,
» Two Special Cases:
= Uniform Power Splitting: oi = p, Vi, 0 < p <1

= On-Off Power Splitting (Antenna SWltchlng). pi=0,1€; pi=1,i€Q
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Rate-Energy Region (Co-Located Receiver) EBNUS

My, =Ngg=Np=2 P=100 G=H=1[1,0.50.5, 1]

250

200 S

150 \\\ \

Energy Unit
=
o
o
T
i
i
i
i
i
i
i
i
i
i
4
4
i/
i/
Y
/1
A
S
4 1
doo
i
i
!

—— Outer Bound
50 || ===~ Time Switching
—&— Uniform Power Splitting
------- Antenna Switching
% 2 i :

12
Rate (bits/channel use)
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Concluding Remarks on Wireless RN US

National University

Information and Power Transfer

 Exploit MIMO broadcasting for wireless information and

power transfer
» wireless power transfer: energy beamforming is optimal
» wireless information transfer: spatial multiplexing is optimal
» fundamental tradeoff: rate-energy region
» separated vs. co-located receivers
» “useful” interference (from viewpoint of wireless power transfer)

[ Practical circuit limitation

» existing energy receiver cannot decode information directly
» practical receiver designs: time switching vs. power splitting
» how to close the gap from R-E region outer bound? (an open problem)
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» Cognitive Radio Networks

» Cooperative Multi-Cell

» Two-Way Relay Networks

» Green Cellular Networks

» Wireless Information and Power Transfer

1 Concluding remarks

152




e
Concluding Remarks ERANUS

of Singapore

ﬁ National University
» MU-MIMO Optimization '

= New applications

v'cognitive radio networks, cooperative multi-cell, two-way relay networks, green cellular
networks, wireless information and power transfer....

= Main challenges

v generalized linear transmit power constraint: interference-power constraint, per-antenna
power constraint, per-BS power constraint, harvested power constraint...

v non-convex rate maximization: broadcast channel, interference channel, relay channel...

v’ distributed implementation: imperfect sensing/estimation, limited-rate feedback/backhaul,
limited computing power....

=  Useful tools

v’ optimization theory: Lagrange duality, nonlinear programming (GP, QCQP, SOCP, SDP),
non-convex optimization (branch & bound, monotonic optimization, outer polyblock
approximation, sequential convex programming...), alternating/cyclic projection, sub-
gradient, ellipsoid method, SDP relaxation, dual decomposition, robust optimization...

v/ communication and signal processing: cognitive transmission, cooperative feedback,
interference diversity, active interference control, uplink-downlink duality, interference
alignment, improper complex Gaussian signaling, symbol extension, rate/power profile
approach, power/rate region duality, network coding, compressive sensing...

= Anongoing very active area of research

v'coherently integrating expertise from multiple fields such as optimization, signal processing,
communication theory, information theory, and circuit theory 153



Thank you and please direct your inquiries to
Ruil Zhang
(e-mail: elezhang@nus.edu.sg)

National University
of Singapore
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