Recent Advances in Multiuser MIMO Optimization

Rui Zhang

National University of Singapore

Agenda

• Overview of the talk

Exploiting multi-antennas in

- Cognitive Radio Networks
- Cooperative Multi-Cell
- Two-Way Relay Networks
- Green Cellular Networks
- Wireless Information and Power Transfer
- Concluding remarks

MIMO in Wireless Communication: A Brief Overview

Point-to-Point MIMO

✓ MIMO channel capacity, space-time code, MIMO precoding, MIMO detection, MIMO equalization, limited-rate MIMO feedback, MIMO-OFDM ...

> Multi-User MIMO (Single Cell)

✓ SDMA, MIMO-BC precoding, uplink-downlink duality, opportunistic beamforming, MIMO relay, distributed antenna, resource allocation ...

Multi-User MIMO (Multi-Cell)

 ✓ network MIMO/CoMP, coordinated beamforming, MIMO-IC, interference management, interference alignment ...

> MIMO in emerging wireless systems/applications

✓ cognitive radio networks, ad hoc networks, secrecy communication, two-way communication, full-duplex communication, compressive sensing, MIMO radar, wireless power transfer ...

Exploiting MIMO in Cognitive Radio Networks

- ✓ How to optimize secondary MIMO transmissions subject to interference power constraints at all nearby primary receivers?
- ✓ How to practically obtain the channel knowledge from secondary transmitter to primary receivers?
- ✓ How to optimally set the interference power levels at different primary receivers?

Talk Overview (2): Multi-Cell MIMO of Singapore **Inter-Cell Interference** MS BS-1 0 X MS backhaul Ø 8 X links 0 8 MS Ø X **BS-K** 8 J Ň MS **Multi-Cell Cooperative MIMO (Downlink) Universal Frequency Reuse in Cellular network**

Cooperative Interference Management in Multi-Cell MIMO

- Network MIMO (CoMP) with baseband signal-level coordination among BSs
 - How to design the optimal (linear/non-linear) joint downlink precoding with per-BS power constraints?
- Coordinated downlink beamforming for inter-cell interference control
 - ✓ How to jointly design beamforming and power control at all BSs to achieve optimal rate tradeoffs among different cells?
 - ✓ How to achieve optimal distributed beamforming with only local CSI at each BS?₅

Talk Overview (3): Two-Way Relay Beamforming for Wireless Network Coding

Two-Way Relay System (with analogue network coding)

Two-Way Multi-Antenna Relay System

Exploiting Multi-Antenna Relay in Two-Way Communication

- ✓ How to optimally design the linear beamforming matrix at R to maximize two-way information exchange rates between S1 and S2?
- ✓ How is the optimal design fundamentally different from traditional one-way relay beamforming (S1-R-S2 and S2-R-S1 alternatively)?

Talk Overview (4): Power Minimization in MIMO Cellular Networks

Power Minimization in Cellular Networks

Power Region

Power Minimization in MU-MIMO given Rate Constraints

- ✓ How to characterize MU power region to achieve minimum power consumption tradeoffs in cellular uplink?
- ✓ How to achieve minimal BS power consumption in cellular downlink?
- ✓ What is the fundamental relationship between MU capacity region and power region?

Talk Overview (5): MIMO Broadcasting forWireless Information and Power Transfer

MIMO Broadcasting for Information and Power Transfer

> Exploiting MIMO in Wireless Information and Power Transfer

- ✓ How to optimally design MIMO transmissions to achieve simultaneously maximal information and power transfer?
- ✓ How to characterize the achievable rate-energy tradeoffs?
- ✓ What are practical design issues due to energy harvesting circuit limitations?

Agenda

• Overview of the talk

Exploiting multi-antennas in

- Cognitive Radio Networks
- Cooperative Multi-Cell
- Two-Way Relay Networks
- Green Cellular Networks
- Wireless Information and Power Transfer
- Concluding remarks

Topic #1: Cognitive MIMO Systems

Operation Models of Cognitive Radio

- Dynamic Spectrum Access
 - Orthogonal transmissions: exploiting on-off activity of primary links
- Spectrum Sharing
 - Simultaneous transmissions: exploiting performance margin of primary links

Spectrum Sharing Cognitive Radio

- Information-theoretic approach:
 _Cognitive Relay [DevroyeMitranTarokh06] [JovicicViswanath06]
- Pragmatic approach:

-Interference Temperature [Gastpar07] [GhasemiSousa07]

Cognitive MIMO: Enabling Spatial Spectrum Sharing

Two main issues:

- 1. How to optimally design secondary transmissions (precoding, power control) given interference temperature constraints?
- 2. How to practically obtain secondary-to-primary channels?

Outline for Cognitive MIMO

• Part I: Fundamental Limits

- Assume **perfect** secondary-to-primary CSI
- Characterize cognitive radio (CR) MIMO channel capacity subject to interference-temperature constraints in
 - CR point-to-point MIMO channel
 - CR MIMO broadcast channel (BC)

• Part II: Practical Designs

- Assume **no prior** knowledge of secondary-to-primary CSI
- Propose practical "cognitive beamforming" schemes via
 - CR self-learning
 - Primary radio (PR) collaborative feedback

Part I: Capacity Limits of Cognitive MIMO (with perfect CR-to-PR CSI)

CR Point-to-Point MIMO Channel

Problem Formulation [ZhangLiang08]

- Problem is **convex**, and thus solvable by convex optimization techniques, e.g., the interior-point method, the Lagrange duality method (more details given later)
- Suboptimal low-complexity solution: "generalized" zero-forcing (see [ZhangLiang08])

[ZhangLiang08]: R. Zhang and Y. C. Liang, "Exploiting multi-antennas for opportunistic spectrum sharing in cognitive radio networks," *IEEE Journal on Selected Topics in Signal Processing*, Feb. 2008.

Special Case: CR MISO Channel

Optimal Solution

• Beamforming is optimal, i.e., Rank(
$$S$$
) = 1
• $S = vv^{H}$, $v = \alpha_{v}\hat{g} + \beta_{v}\hat{h}_{\perp}$
- Case I (Interference Power Constraint Inactive): If $\gamma \ge \frac{||g||^{2}||\alpha_{h}||^{2}}{||\alpha_{h}||^{2} + ||\beta_{h}||^{2}}P_{t}$
 $\alpha_{v} = \sqrt{\frac{P_{t}}{||\alpha_{h}||^{2} + ||\beta_{h}||^{2}}}\alpha_{h}, \quad \beta_{v} = \sqrt{\frac{P_{t}}{||\alpha_{h}||^{2} + ||\beta_{h}||^{2}}}\beta_{h}} \leftarrow \begin{array}{c} \text{Conventional}\\ \text{maximal-ratio}\\ \text{maximal-ratio}\\ \text{transmission (MRT)} \end{array}$
- Case II (Interference Power Constraint Active): If $\gamma < \frac{||g||^{2}||\alpha_{h}||^{2}}{||\alpha_{h}||^{2} + ||\beta_{h}||^{2}}P_{t}^{t}$
 $\alpha_{v} = \frac{\sqrt{\gamma}}{||g||} \frac{\alpha_{h}}{||\alpha_{h}||}, \quad \beta_{v} = \sqrt{P_{t} - \frac{\gamma}{||g||^{2}}} \frac{\beta_{h}}{||\beta_{h}||}$
 $\leftarrow \begin{array}{c} \text{"Cognitive}\\ \text{beamforming (CB)"} \end{array}$

R MIMO-BC

PU

 H_1 SU-1 Subject to $\operatorname{Tr}\left(\boldsymbol{GSG}^{H}
ight)\leq\Gamma$ H_K $S_i \succeq 0, i = 1, \ldots, K$ SU-BS $\mathrm{Tr}(\boldsymbol{G}\boldsymbol{S}\boldsymbol{G}^{H}) \leq \Gamma$ Problem is non-convex, thus not solvable by standard convex SU-K

[Zhang et al. 12]: L. Zhang, R. Zhang, Y. C. Liang, Y. Xin, and H. V. Poor, "On the Gaussian MIMO BC-MAC duality with multiple transmit covariance constraints," IEEE Transactions on Information Theory, **April 2012.**

optimization techniques

Optimal solution is obtained via

al. 12] (more details given later)

generalized BC-MAC duality [Zhang et

Other Topics on Cognitive MIMO

• Robust cognitive beamforming

- e.g., [ZhangLiangXinPoor09], [ZhengWongOttersten10]

- CR MIMO interference channel (MIMO-IC) – e.g., [KimGiannakis08], [ScutariPalomarBarbarossa08], [TajerPrasadWang10]
- A recent survey on related works available at – [ZhangLiangCui10]

[ZhangLiangCui10]: R. Zhang, Y. C. Liang, and S. Cui, "Dynamic resource allocation in cognitive radio networks," *IEEE Signal Processing Magazine*, special issue on convex optimization for signal processing, June 2010.

Part II: Practical Designs for Cognitive MIMO (without prior knowledge of CR-to-PR CSI)

Learning-Based MIMO CR [ZhangGaoLiang10]

[ZhangGaoLiang10]: R. Zhang, F. Gao, and Y. C. Liang, "Cognitive beamforming made practical: effective interference channel and learning-throughput tradeoff," *IEEE Transactions on Communications*, Feb. 2010.

- Two-phase protocol:
 - 1st phase: observe PR transmissions, compute PR signal sample covariance matrix, and then estimate CR-to-PR effective interference channel (EIC);
 - -2^{nd} phase: transmit with (zero-forcing) precoding orthogonal to the EIC
- Joint design of learning time and precoding matrix to
 - Maximize CR link throughput
 - Minimize leakage interference to PR link

Learning-Throughput Tradeoff

Primary Radio Collaborative Feedback [HuangZhang11]

[HuangZhang11]: K.-B. Huang and R. Zhang, "Cooperative feedback for multi-antenna cognitive radio network", *IEEE Transactions on Signal Processing*, Feb. 2011.

Protocol for PR Collaborative Feedback

- P-Rx estimates the primary channel and determines the tolerable interference power from S-Tx, I₀;
- P-Rx estimates the channel from S-Tx to P-Rx, $h_i = \sqrt{g_i} s_i$;
- With I_0 , g_i , and s_i , P-Rx designs the feedback signal to S-Tx:
 - Quantized Interference Power Control (IPC), $\hat{\eta}$, to limit the transmit power of secondary beamforming, $\|v\|^2 \leq \hat{\eta}$;
 - Quantized Channel Distribution Information (CDI), \hat{s}_i , to constrain the transmit direction of secondary beamforming, $v^H \hat{s}_i = 0$;
 - Due to feedback quantization, $|v^H s_i| > 0$. Thus, $\hat{\eta}$ is designed to make $|v^H h_i|^2 \le I_0$.
- With
 η̂ and *ŝ_i* from P-Rx, and the secondary channel *s_s* from S-Rx, S-Tx designs cognitive beamforming:

$$\boldsymbol{f}_o = \arg \max_{\boldsymbol{v} \in \mathbb{C}^L} |\boldsymbol{v}^H \boldsymbol{s}_s|^2$$
, s.t. $\boldsymbol{v}^H \hat{\boldsymbol{s}}_i = 0$ and $\|\boldsymbol{v}\|^2 \le \min(\hat{\eta}, P_s)$

CR Link Outage Probability vs. Transmit Power Constraint (assuming perfect IPC feedback)

IPC and CDI Feedback Bit Allocation (assuming fixed sum feedback bits)

29

Concluding Remarks on Cognitive MIMO

Capacity limits of Cognitive MIMO channels

– Transmit covariance optimization under generalized linear transmit power constraints (more details given later)

- Practical designs for Cognitive MIMO systems
 - -Learning-based cognitive radio
 - Learning-throughput tradeoff
 - -Primary radio (PR) collaborative feedback
 - IPC vs. CDI feedback bit allocation

• How to set Interference Temperature (IT) in practice?

- **Interference Diversity**: "Average" IT constraint (over time, frequency, space) better protects PR links than "Peak" counterpart [Zhang09]
- Active IT Control: a new approach to optimal interference management in wireless networks, e.g.,
 - Cooperative multi-cell downlink beamforming (to be shown later)

[Zhang09]: R. Zhang "On peak versus average interference power constraints for protecting primary users in cognitive radio networks," *IEEE Transactions on Wireless Communications*, April 2009.

Agenda

• Overview of the talk

Exploiting multi-antennas in

- Cognitive Radio Networks
- Multi-Cell Cooperation
- Two-Way Relay Networks
- Green Cellular Networks
- Wireless Information and Power Transfer
- Concluding remarks

Topic #2: Multi-Cell Cooperative MIMO

A New Look at Cellular Networks

>Future trends: universal/opportunistic frequency reuse

- □ Pros: more abundant/flexible bandwidth allocation
- □ Cons: more severe/dynamic inter-cell interference (ICI)
- □ Need more advanced cooperative interference management among BSs

Multi-Cell Cooperative MIMO (Downlink)

Network MIMO/CoMP

Global transmit message sharing across all BSs

ICI utilized for coherent transmissions: baseband signal-level coordination (high complexity)
 MIMO Broadcast Channel (MIMO-BC) with per-BS power constraints

Interference Coordination

□ Local transmit message known at each BS

ICI controlled to the best effort: interference management (relatively lower complexity)
 MIMO Interference Channel (MIMO-IC) or partially interfering MIMO-BC

→ Hybrid Models: *clustered network MIMO*, *MIMO X channel*...

Outline for Multi-Cell MIMO

- Part I: Network MIMO Optimization
 - -MIMO BC with per-BS power constraints
 - -Weighted sum-rate maximization (WSRMax)
 - Optimal non-linear precoding with "dirty-paper coding (DPC)"
 - Optimal linear precoding with "block diagonalization (BD)"

• Part II: Optimal Coordinated Downlink Beamforming

- -MISO Interference Channel (MISO-IC)
- -Characterization of Pareto-optimal rates
 - Centralized algorithms with global CSI at all BSs
 - Distributed algorithms with local CSI at each BS

Part I: Network MIMO Optimization
System Model of Network MIMO

Equivalent to a MIMO-BC with per-BS power constraints

Network MIMO: Capacity Upper Bound

MIMO-BC with per-BS power constraints

> Nonlinear dirty-paper precoding (DPC)

Optimality of DPC [CaireShamai03] [ViswanathTse03] [YuCioffi04] [WeingartenSteinbergShamai06]
 DPC region characterization (via WSRMax)

- BC-MAC duality for sum-power constraint [VishwanathJindalGoldsimith03]
- Min-Max duality for sum-/per-antenna power constraints [YuLan07]
- Generalized BC-MAC duality for arbitrary linear power constraints: [Zhang et al. 12]

Linear zero-forcing (ZF) or BD precoding

- □ Sum-power constraint (MIMO-BC): [WongMurchLetaief03], [SpencerSwindlehurstHaardt04]
- □ Per-antenna power constraint (MISO-BC): [WieselEldarShamai08] [HuhPapadopoulosCaire09]
- □ Arbitrary linear transmit power constraints (MISO-/MIMO-BC): [Zhang10]

[Zhang et al. 12]: L. Zhang, R. Zhang, Y. C. Liang, Y. Xin, and H. V. Poor, "On the Gaussian MIMO BC-MAC duality with multiple transmit covariance constraints," *IEEE Transactions on Information Theory*, April 2012.

[Zhang10]: R. Zhang, "Cooperative multi-cell block diagonalization with per-base-station power constraints," *IEEE Journal on Selected Areas in Communications*, Dec. 2010.

Channel Model (1)

• MIMO-BC baseband signal model:

$$\boldsymbol{y}_k = \boldsymbol{H}_k \boldsymbol{x}_k + \sum_{j \neq k} \boldsymbol{H}_k \boldsymbol{x}_j + \boldsymbol{z}_k, \quad k = 1, \cdots, K$$

y_k ∈ C^{N×1}: received signal at the kth MS
x_k ∈ C^{M×1}: transmitted signal for the kth MS, M = M_BA
H_k ∈ C^{N×M}: downlink channel to the kth MS
z_k ∈ C^{N×1}: receiver noise at the kth MS, z_k ~ CN(0, I), ∀k

Channel Model (2)

• Precoding (linear/nonlinear) matrix:

$$\boldsymbol{x}_k = \boldsymbol{T}_k \boldsymbol{s}_k, \quad k = 1, \dots, K$$

- $T_k \in \mathbb{C}^{M \times D_k}$: precoding matrix for the kth MS, $D_k \leq \min(M, N)$
- $m{s}_k \in \mathbb{C}^{D_k imes 1}$: information-bearing signal for the kth MS, $m{s}_k \sim \mathcal{CN}(m{0},m{I})$
- $S_k \triangleq \mathbb{E}[x_k x_k^H]$: transmit covariance matrix for the kth MS, $S_k = T_k T_k^H$
- Per-BS power constraints:

$$\sum_{k=1}^{K} \operatorname{Tr} \left(\boldsymbol{B}_{a} \boldsymbol{S}_{k} \right) \leq P, \quad a = 1, \cdots, A$$
$$\boldsymbol{B}_{a} \triangleq \operatorname{Diag} \left(\underbrace{0, \cdots, 0}_{(a-1)M_{B}}, \underbrace{1, \cdots, 1}_{M_{B}}, \underbrace{0, \cdots, 0}_{(A-a)M_{B}} \right)$$

WSRMax in Network MIMO

• Nonlinear DPC precoding:

$$\begin{array}{ll} (\text{PA}): & \underset{1,\cdots,S_{K}}{\text{max.}} & \sum_{k=1}^{K} w_{k} \log \frac{\left|I + H_{k}\left(\sum_{i=k}^{K} S_{i}\right) H_{k}^{H}\right|}{\left|I + H_{k}\left(\sum_{i=k+1}^{K} S_{i}\right) H_{k}^{H}\right|} \\ & \text{s.t.} & \sum_{k=1}^{K} \operatorname{Tr}\left(B_{a}S_{k}\right) \leq P, \ \forall a \\ & S_{k} \succeq 0, \ \forall k \end{array}$$

non-convex problem, with the same structure as CR MIMO-BC optimization

• Linear BD precoding:

(PB):
$$\max_{S_1,\dots,S_K} \sum_{k=1}^K w_k \log |I + H_k S_k H_k^H|$$

s.t. $H_j S_k H_j^H = 0, \forall j \neq k$
$$\sum_{k=1}^K \operatorname{Tr} (B_a S_k) \leq P, \forall a$$

 $S_k \succeq 0, \forall k$
convex problem

Nonlinear DPC Precoding Optimization with Per-BS Power Constraints

• WSRMax problem (PA):

$$J^{(\text{PA})} := \max_{\mathbf{S}_{1}, \cdots, \mathbf{S}_{K}} \sum_{k=1}^{K} w_{k} \log \frac{\left| \mathbf{I} + \mathbf{H}_{k} \left(\sum_{i=k}^{K} \mathbf{S}_{i} \right) \mathbf{H}_{k}^{H} \right|}{\left| \mathbf{I} + \mathbf{H}_{k} \left(\sum_{i=k+1}^{K} \mathbf{S}_{i} \right) \mathbf{H}_{k}^{H} \right|}$$
s.t. Tr $\left(\mathbf{B}_{a} \sum_{k=1}^{K} \mathbf{S}_{k} \right) \leq P, \forall a$ per-BS power constraints
 $\mathbf{S}_{k} \succeq \mathbf{0}, \forall k$

• Auxiliary problem (PA-1):

$$F(\lambda_1, \dots, \lambda_A) := \max_{\mathbf{S}_1, \dots, \mathbf{S}_K} \sum_{k=1}^K w_k \log \frac{\left| \mathbf{I} + \mathbf{H}_k \left(\sum_{i=k}^K \mathbf{S}_i \right) \mathbf{H}_k^H \right|}{\left| \mathbf{I} + \mathbf{H}_k \left(\sum_{i=k+1}^K \mathbf{S}_i \right) \mathbf{H}_k^H \right|}$$

s.t. Tr $\left(\mathbf{B}_\lambda \sum_{k=1}^K \mathbf{S}_k \right) \le P_\lambda$
 $\mathbf{S}_k \succeq \mathbf{0}, \ \forall k$

Algorithm for Solving (PA)

• Easy to verify the upper bound

$$F(\lambda_1,\ldots,\lambda_A) \ge J^{(\mathrm{PA})}, \forall \boldsymbol{\lambda} \triangleq [\lambda_1,\ldots,\lambda_A]^T \succeq 0$$

• Interestingly, the upper bound is also tight (see [Zhang et al. 12])

$$J^{(\mathrm{PA})} = \min_{\boldsymbol{\lambda} \succeq 0} F(\lambda_1, \dots, \lambda_A)$$

- (PA) is solved by an iterative inner-outer-loop algorithm:
 - Outer loop: Solve the above minimization problem via sub-gradient based methods, e.g., the ellipsoid method
 - Inner loop: Solve the maximization problem (PA-1) via the generalized MIMO BC-MAC duality (shown in next slide).

Generalized BC-MAC Duality

convex problem, solvable by e.g. the interior-point method

• (PA-1) is equivalent to WSRMax in dual MIMO-MAC:

$$\begin{array}{l} \max_{\mathbf{Q}_{1},\cdots,\mathbf{Q}_{K}} & \sum_{k=1}^{K-1} (w_{k} - w_{k+1}) \log \left| \mathbf{B}_{\lambda} + \sum_{i=1}^{k} \mathbf{H}_{i}^{H} \mathbf{Q}_{i} \mathbf{H}_{i} \right| + w_{K} \log \left| \mathbf{B}_{\lambda} + \sum_{i=1}^{K} \mathbf{H}_{i}^{H} \mathbf{Q}_{i} \mathbf{H}_{i} \right| \\ \text{s.t.} & \sum_{k=1}^{K} \operatorname{Tr} \left(\mathbf{Q}_{k} \right) \leq P_{\lambda} \\ & \mathbf{Q}_{k} \succeq \mathbf{0}, \ \forall k \end{array}$$

Two-User MISO-BC with Per-Antenna Power Constraints (DPC Precoding)

Linear BD Precoding Optimization with Per-BS Power Constraints

• WSRMax problem (PB):

(PB):
$$\begin{array}{ll} \max \\ \mathbf{S}_{1}, \cdots, \mathbf{S}_{K} \end{array} & \sum_{k=1}^{K} w_{k} \log \left| \mathbf{I} + \mathbf{H}_{k} \mathbf{S}_{k} \mathbf{H}_{k}^{H} \right| \\ \text{s.t.} & \mathbf{H}_{j} \mathbf{S}_{k} \mathbf{H}_{j}^{H} = 0, \ \forall j \neq k \end{array} \\ & \sum_{k=1}^{K} \operatorname{Tr} \left(\mathbf{B}_{a} \mathbf{S}_{k} \right) \leq P, \ \forall a \end{array} \begin{array}{l} \text{zF constraints} \\ \text{per-BS power constraints} \\ \text{s.t.} \end{array}$$

(PB) is convex, thus solvable by convex optimization techniques

Assume $M \ge NK$

- Denote $\boldsymbol{G}_k = [\boldsymbol{H}_1^T, \cdots, \boldsymbol{H}_{k-1}^T, \boldsymbol{H}_{k+1}^T, \cdots, \boldsymbol{H}_k^T]^T, k = 1, \cdots, K, \boldsymbol{G}_k \in \mathbb{C}^{L \times M}$ with L = N(K-1).
- Denote the (reduced) singular value decomposition (SVD) of G_k as $G_k = U_k \Sigma_k V_k^H$.
- Define the projection matrix: $P_k = (I V_k V_k^H)$.
- Rewrite P_k as $P_k = \tilde{V}_k \tilde{V}_k^H$, $\tilde{V}_k \in \mathbb{C}^{M \times (M-L)}$ with $V_k^H \tilde{V}_k = 0$.

Lemma 1: The optimal solution of (PB) has the following structure: $S_k = \tilde{V}_k Q_k \tilde{V}_k^H, \ k = 1, \cdots, K$ where $Q_k \in \mathbb{C}^{(M-L) \times (M-L)}$ and $Q_k \succeq 0$.

Remove ZF Constraints (2)

• Using Lemma 1, (PB) is reduced to

$$\begin{array}{ll} (\mathrm{PB}-1): & \max_{\boldsymbol{Q}_{1},\cdots,\boldsymbol{Q}_{K}} & \sum_{k=1}^{K} w_{k} \log \left| \boldsymbol{I} + \boldsymbol{H}_{k} \tilde{\boldsymbol{V}}_{k} \boldsymbol{Q}_{k} \tilde{\boldsymbol{V}}_{k}^{H} \boldsymbol{H}_{k}^{H} \right| \\ & \text{s.t.} & \sum_{k=1}^{K} \mathrm{Tr} \left(\boldsymbol{B}_{a} \tilde{\boldsymbol{V}}_{k} \boldsymbol{Q}_{k} \tilde{\boldsymbol{V}}_{k}^{H} \right) \leq P, \ \forall a \\ & \boldsymbol{Q}_{k} \succeq \boldsymbol{0}, \ \forall k \end{array}$$

(PB-1) is convex, thus solvable by Lagrange duality method

✓ (PB-1) has the same structure as CR point-to-point MIMO optimization if K=1

Algorithm for Solving (PB-1)

- Introduce a set of dual variables for (PB-1), μ₁,..., μ_A, corresponding to individual per-BS power constraints.
- Denote $\boldsymbol{B}_{\mu} = \sum_{a=1}^{A} \mu_a \boldsymbol{B}_a$.
- Apply the following SVD: $\boldsymbol{H}_k \tilde{\boldsymbol{V}}_k (\tilde{\boldsymbol{V}}_k^H \boldsymbol{B}_\mu \tilde{\boldsymbol{V}}_k)^{-1/2} = \hat{\boldsymbol{U}}_k \hat{\boldsymbol{\Sigma}}_k \hat{\boldsymbol{V}}_k^H$.
- Denote $\hat{\Sigma}_k = \text{Diag}(\hat{\sigma}_{k,1}, \cdots, \hat{\sigma}_{k,N}).$
- Obtain $\Lambda_k = \text{Diag}(\lambda_{k,1}, \cdots, \lambda_{k,N}), \lambda_{k,i} = \left(w_k \frac{1}{\hat{\sigma}_{k,i}^2}\right)^+, i = 1, \dots, N,$ with $(x)^+ \triangleq \max(0, x).$

Lemma 2: The optimal solution of (PB-1) is give by $\boldsymbol{Q}_{k}^{\star} = (\tilde{\boldsymbol{V}}_{k}^{H}\boldsymbol{B}_{\mu}\tilde{\boldsymbol{V}}_{k})^{-1/2}\hat{\boldsymbol{V}}_{k}\boldsymbol{\Lambda}_{k}\hat{\boldsymbol{V}}_{k}^{H}(\tilde{\boldsymbol{V}}_{k}^{H}\boldsymbol{B}_{\mu}\tilde{\boldsymbol{V}}_{k})^{-1/2}, \ k = 1, \cdots, K.$

(PB-1) is solvable by an iterative inter-outer loop algorithm, similarly as (PA)

Optimal BD Precoding Matrix

• Combining Lemmas 1 & 2 yields

Theorem: The optimal solution of (PB) is given by $S_k^{\star} = \tilde{V}_k (\tilde{V}_k^H B_{\mu}^{\star} \tilde{V}_k)^{-1/2} \hat{V}_k \Lambda_k \hat{V}_k^H (\tilde{V}_k^H B_{\mu}^{\star} \tilde{V}_k)^{-1/2} \tilde{V}_k^H, \ k = 1, \cdots, K$ where $B_{\mu}^{\star} = \sum_{a=1}^{A} \mu_a^{\star} B_a$.

Corollary: The optimal BD precoding matrix is given by $T_k^{\star} = \tilde{V}_k (\tilde{V}_k^H B_{\mu}^{\star} \tilde{V}_k)^{-1/2} \hat{V}_k \Lambda_k^{1/2}, \ k = 1, \dots, K.$

Optimal precoding vectors for each user are non-orthogonal

Properties of Optimal BD Precoding

• Channel diagonalization:

$$\hat{oldsymbol{U}}_k^H oldsymbol{H}_k oldsymbol{T}_k^\star = \hat{oldsymbol{\Sigma}}_k oldsymbol{\Lambda}_k^{1/2}$$

Linear (non-orthogonal) precoders achieve per-user MIMO capacity

• Precoding matrix in traditional sum-power constraint case:

$$\boldsymbol{T}_k^{\star\star} = \frac{1}{\sqrt{\mu^\star}} \tilde{\boldsymbol{V}}_k \hat{\boldsymbol{V}}_k \boldsymbol{\Lambda}_k^{1/2}$$

Linear (orthogonal) precoding vectors for each user are optimal

Special Case: MISO-BC with Per-Antenna Power Constraints

• Optimal ZF precoding vector:

$$\boldsymbol{t}_{k}^{\star} = \lambda_{k}^{1/2} \hat{\sigma}_{k}^{-1} \tilde{\boldsymbol{V}}_{k} (\tilde{\boldsymbol{V}}_{k}^{H} \boldsymbol{B}_{\mu}^{\star} \tilde{\boldsymbol{V}}_{k})^{-1} \tilde{\boldsymbol{V}}_{k}^{H} \boldsymbol{h}_{k}, \ k = 1, \dots, K$$

✓ can be shown equivalent to generalized channel inverse [WieselEldarShamai08]

• Sum-power constraint case:

$$\boldsymbol{t}_{k}^{\star\star} = \lambda_{k}^{1/2} \hat{\sigma}_{k}^{-1} (\boldsymbol{\mu}^{\star})^{-1} \tilde{\boldsymbol{V}}_{k} \tilde{\boldsymbol{V}}_{k}^{H} \boldsymbol{h}_{k}, \ k = 1, \dots, K$$

 \checkmark can be shown equivalent to channel pseudo inverse

Separation Approach (suboptimal)

• First, apply "orthogonal" BD precoders for the sum-power constraint case:

$$\bar{\boldsymbol{S}}_k = \boldsymbol{V}_k^{\perp} \bar{\boldsymbol{\Lambda}}_k (\boldsymbol{V}_k^{\perp})^H$$

with $\boldsymbol{H}_k \boldsymbol{P}_k = \boldsymbol{U}_k^{\perp} \boldsymbol{\Sigma}_k^{\perp} (\boldsymbol{V}_k^{\perp})^H, k = 1, \dots, K.$

• Second, optimize power allocation for WSRMax under per-BS power constraints:

$$\bar{\lambda}_{k,i} = \left(\frac{w_k}{\sum_{a=1}^A \mu_a \|\boldsymbol{v}_k^{\perp}[a,i]\|^2} - \frac{1}{(\sigma_{k,i}^{\perp})^2}\right)^+$$

Two-User MISO-BC with Per-Antenna Power Constraints (ZF Precoding)

Summary of Part I

Network MIMO Optimization

–WSRMax for MIMO-/MISO-BC with **linear** (per-BS, per-antenna, sum-antenna) power constraints

-Nonlinear DPC precoding

- Generalized MAC-BC duality
- -Linear ZF/BD precoding
 - Joint precoder and power optimization

Part II: Optimal Coordinated Downlink Beamforming

System Model of Coordinated Downlink Beamforming

- Assumptions:
- □ limited-rate backhaul links
- □ local transmit message at each BS
- □ one active user per cell (w.l.o.g.)
- **ICI treated as Gaussian noise**

MISO-IC with partial transmitter-side cooperation

Related Work on Gaussian Interference Channel (selected)

> Information-Theoretic Approach

- Capacity region unknown in general
- Best known achievability scheme: [HanKobayashi81]
- Capacity within 1-bit: [EtkinTseWang08]

> Pragmatic Approach (interference treated as Gaussian noise)

- □ Interference alignment [Jafar *et al.*]
 - DoF optimality at asymptotically high SNR
 - New ingredients: improper complex Gaussian signaling, time symbol extension, nonseparability of parallel Gaussian ICs

□ MISO-IC (finite-SNR regime, proper complex Gaussian signaling, no time symbol extension)

- Achievable rate region characterization [JorswieckLarssonDanev08], [ZakhourGesbert09]
- Power minimization with SINR constraints [DahroujYu10]
- Optimality of beamforming (rank-one transmit covariance matrix) [ShangChenPoor11]
- □ WSRMax via "Monotonic Optimization"
 - SISO-IC ("Mapel" algorithm) [QianZhangHuang09]

MISO-IC [JorswieckLarsson10], [UtschickBrehmer12], [BjornsonZhengBengtssonOttersten12]
 WSDMax for MIMO IC

- □ WSRMax for MIMO-IC
 - [PetersHeath10], [RazaviyaynSanjabiLuo12]....

Channel Model

• MISO-IC baseband signal model:

$$y_k = h_{kk}^H x_k + \sum_{j \neq k}^K h_{jk}^H x_j + z_k, \quad k = 1, \dots, K$$

- y_k : received signal at the kth MS
- $x_k \in \mathbb{C}^{M_k \times 1}$: transmitted signal from the kth BS, $M_k \ge 1$
- $h_{kk}^H \in \mathbb{C}^{1 \times M_k}$: direct-link channel for the kth BS-MS pair
- $h_{jk}^H \in \mathbb{C}^{1 \times M_j}$: cross-link channel from the *j*th BS to *k*th MS, $j \neq k$
- z_k : receiver noise at the the kth MS, $z_k \sim \mathcal{CN}(0, \sigma_k^2)$
- x_k 's are independent over k: no message sharing among BSs
- $S_k \triangleq \mathbb{E}[x_k x_k^H]$: transmit covariance matrix for the kth BS, $S_k \succeq 0$

Assumed proper/circularly-symmetric complex Gaussian signaling (for the time being)

Pareto Optimal Rates in MISO-IC

Achievable user rate (with interference treated as noise):

$$R_k(\boldsymbol{S}_1,\ldots,\boldsymbol{S}_K) = \log\left(1 + \frac{\boldsymbol{h}_{kk}^H \boldsymbol{S}_k \boldsymbol{h}_{kk}}{\sum_{j \neq k} \boldsymbol{h}_{jk}^H \boldsymbol{S}_j \boldsymbol{h}_{jk} + \sigma_k^2}\right), \ k = 1,\ldots,K$$

Achievable rate region (without time sharing):

$$\mathcal{R} \triangleq \bigcup_{\{s_k\}: \operatorname{Tr}(s_k) \le P_k, \forall k} \left\{ (r_1, \dots, r_K) : 0 \le r_k \le R_k(\boldsymbol{S}_1, \dots, \boldsymbol{S}_K), k = 1, \dots, K \right\}$$

> Pareto rate optimality:

Definition: A rate-tuple (r_1, \ldots, r_K) is *Pareto optimal* if there is no other rate-tuple (r'_1, \ldots, r'_K) with $(r'_1, \ldots, r'_K) \ge (r_1, \ldots, r_K)$ and $(r'_1, \ldots, r'_K) \ne (r_1, \ldots, r_K)$ (the inequality is component-wise).

WSRMax for MISO-IC

Non-convex problem, thus cannot be solved directly by convex optimization techniques

SINR Feasibility Problem

Assuming transmit beamforming *i.e.*
$$S_k = v_k v_k^H, \forall k$$

$$\begin{array}{ll} (\text{SINR} - \text{Feas.}): & \texttt{find} & \{ \boldsymbol{v}_k \} \\ & \texttt{s.t.} & \frac{1}{\bar{\gamma}_k} \| \boldsymbol{h}_{kk}^H \boldsymbol{v}_k \|^2 \geq \sum_{j \neq k} \| \boldsymbol{h}_{jk}^H \boldsymbol{v}_j \|^2 + \sigma_k^2, \quad \forall k \\ & \| \boldsymbol{v}_k \|^2 \leq P_k, \forall k \end{array}$$

Convex problem, can be solved efficiently via convex Second Order Cone Programming (SOCP) feasibility problem

Question: Can we solve WSRMax via SINR-Feas. problem for ICs?

[LiuZhangChua12]: L. Liu, R. Zhang, and K. C. Chua, "Achieving global optimality for weighted sum-rate maximization in the K-user Gaussian interference channel with multiple antennas," *IEEE Transactions on Wireless Communications*, May 2012. (also see [UtschickBrehmer12], [BjornsonZhengBengtssonOttersten12])

Rate-Profile Approach

Sum-Rate Maximization with Rate-Profile Constraints [ZhangCui10]

Given a rate-profile vector $\boldsymbol{\alpha} = [\alpha_1, \dots, \alpha_K] \succeq 0, \sum_{k=1}^K \alpha_k = 1$

$$\begin{array}{c|c} \max_{R_{sum}, \{\boldsymbol{w}_k\}} & R_{sum} \\ \text{s.t.} & \log\left(1 + \gamma_k(\boldsymbol{w}_1, \dots, \boldsymbol{w}_K)\right) \ge \alpha_k R_{sum}, \quad \forall k \\ & \|\boldsymbol{w}_k\|^2 \le P_k, \quad \forall k \end{array}$$
find $\{\boldsymbol{w}_k\}$
s.t. $\log\left(1 + \gamma_k(\boldsymbol{w}_1, \dots, \boldsymbol{w}_K)\right) \ge \alpha_k r_{sum}, \quad \forall k \\ & \|\boldsymbol{w}_k\|^2 \le P_k, \quad \forall k \end{array}$
SINR-Feas. Problem

Non-convex problem, but efficiently solvable via a sequence of convex SINR-Feas. problems

[ZhangCui10]: R. Zhang and S. Cui, "Cooperative interference management with MISO beamforming," *IEEE Transactions on Signal Processing*, Oct. 2010.

Monotonic Optimization

Key observation: Maximize WSR in MISO-IC rate region directly!

$$\begin{array}{ll} (\text{WSRMax}): & \underset{\boldsymbol{r}=[R_1,\ldots,R_K]}{\text{max.}} & U(\boldsymbol{r}):=\sum_{k=1}^K \mu_k R_k \\ & \text{s.t.} & \boldsymbol{r}\in\mathcal{R} \end{array}$$

Monotonic optimization problem (maximizing a strictly increasing function over a "normal" set), thus solvable by *e.g.* the "outer polyblock approximation" algorithm (shown in next slide)

Outer Polyblock Approximation

- Guaranteed convergence
- Controllable accuracy
- ➤ Complexity: ???
- Key step in each iteration: Find intersection point with Pareto boundary given a rate profile, which is solved by Sum-Rate Maximization with Rate-Profile Constraints

Rate Profile + Monotonic Optimization solves WSRMax for MISO-IC

Numerical Example

> Benchmark scheme: "price-based" algorithm [Schmidt et al.09] \blacktriangleright MISO-IC: $M_k=2$, K=4, *i.i.d.* Rayleigh fading, $SNR_k=3$, $w_k=1$

Distributed Beamforming for MISO-IC

> Distributed Algorithms for Coordinated Downlink Beamforming

- Iow-rate information exchange across BSs
- only "local" (BS-side or MS-side) channel knowledge available at each BS

Question: Can we archive distributed (Pareto-rate) optimal beamforming?

[ZhangCui10]: R. Zhang and S. Cui, "Cooperative interference management with MISO beamforming," *IEEE Transactions on Signal Processing*, Oct. 2010. (with BS-side CSI)

[QiuZhangLuoCui11]: J. Qiu, R. Zhang, Z.-Q. Luo, and S. Cui, "Optimal distributed beamforming for MISO interference channels," *IEEE Transactions on Signal Processing*, Nov. 2011. (with MS-side CSI)

Exploiting Relationship between MISO-IC and MISO CR Channel [ZhangCui10]

[ZhangCui10]: R. Zhang and S. Cui, "Cooperative interference management with MISO beamforming," *IEEE Transactions on Signal Processing*, Oct. 2010.

Optimal Cognitive Beamforming (CB)

Theorem: The optimal solution for S_k in (PA) is *rank-one*, i.e., $S_k = w_k w_k^H$, and

$$\boldsymbol{w}_{k} = \left(\sum_{j \neq k} \lambda_{kj} \boldsymbol{h}_{kj} \boldsymbol{h}_{kj}^{H} + \lambda_{kk} \boldsymbol{I}\right)^{-1} \boldsymbol{h}_{kk} \sqrt{p_{k}}$$

where λ_{kj} , $j \neq k$, and λ_{kk} are non-negative constants (solutions for the dual problem of (PA)); and p_k is given by

$$p_{k} = \left(\frac{1}{\ln 2} - \frac{\sum_{j \neq k} \Gamma_{jk} + \sigma_{k}^{2}}{\|\boldsymbol{A}_{k} \boldsymbol{h}_{kk}\|^{2}}\right)^{+} \frac{1}{\|\boldsymbol{A}_{k} \boldsymbol{h}_{kk}\|^{2}}$$

where $\boldsymbol{A}_{k} \triangleq \left(\sum_{j \neq k} \lambda_{kj} \boldsymbol{h}_{kj} \boldsymbol{h}_{kj}^{H} + \lambda_{kk} \boldsymbol{I}\right)^{-1/2}$ and $(x)^{+} \triangleq \max(0, x)$.

A semi-closed-form solution, which is efficiently solvable by an iterative inner-outer-loop algorithm

Interference Temperature (IT) Approach to Characterize MISO-IC Pareto Boundary

Proposition: For any rate-tuple (R_1, \ldots, R_K) on the Pareto boundary of the MISO-IC rate region, which is achievable with a set of transmit covariance matrices, S_1, \ldots, S_K , there is a corresponding interferencepower/interference-temperature constraint vector, $\Gamma \ge 0$, with $\Gamma_{kj} = h_{kj}^H S_k h_{kj}, \forall j \neq k, j \in \{1, \ldots, K\}$, and $k \in \{1, \ldots, K\}$, such that $R_k = C_k(\Gamma_k), \forall k$, and S_k is the optimal solution of (PA) for the given k.

□A new parametrical characterization of MISO-IC Pareto boundary in terms of BSs' mutual IT levels, which constitute a lower-dimensional manifold than original transmit covariance matrices

Optimality of beamforming for MISO-IC is proved (see an alternative proof given by [ShangChenPoor11])

Necessary Condition of Pareto Optimality

Theorem: For an arbitrarily chosen $\Gamma = [\Gamma_1, \ldots, \Gamma_K] \ge 0$, if the optimal rate values for all k's, $C_k(\Gamma_k)$'s, are Pareto-optimal on the boundary of the MISO-IC rate region, then for any pair of $(i, j), i \in \{1, \ldots, K\}, j \in \{1, \ldots, K\}$, and $i \neq j$, it must hold that $|D_{ij}| = 0$, where $D_{ij} = \begin{bmatrix} \frac{\partial C_i(\Gamma_i)}{\partial \Gamma_{ij}} & \frac{\partial C_i(\Gamma_i)}{\partial \Gamma_{ji}} \\ \frac{\partial C_j(\Gamma_j)}{\partial \Gamma_{ij}} & \frac{\partial C_j(\Gamma_j)}{\partial \Gamma_{ji}} \end{bmatrix} := \begin{bmatrix} a & b \\ c & d \end{bmatrix}.$

where

$$\begin{aligned} \frac{\partial C_i \left(\boldsymbol{\Gamma}_i \right)}{\partial \Gamma_{ij}} &= \lambda_{ij} \\ \frac{\partial C_i \left(\boldsymbol{\Gamma}_i \right)}{\partial \Gamma_{ji}} &= \frac{-\boldsymbol{h}_{ii}^H \boldsymbol{S}_i^{\star} \boldsymbol{h}_{ii}}{\ln 2 (\sum_{l \neq i} \Gamma_{li} + \sigma_i^2) (\sum_{l \neq i} \Gamma_{li} + \sigma_i^2 + \boldsymbol{h}_{ii}^H \boldsymbol{S}_i^{\star} \boldsymbol{h}_{ii})} \end{aligned}$$
Optimal Distributed Beamforming based on CB and "Active IT Control"

BS pair-wise IT update:

where
$$d_{ij} = \operatorname{sign}(ad - bc) \cdot [\alpha_{ij}d - b, a - \alpha_{ij}c]^T$$
 step size
 $\Gamma_{ij}, \Gamma_{ji}]^T \leftarrow [\Gamma_{ij}, \Gamma_{ji}]^T + \delta_{ij} \cdot d_{ij}$ fairness control

Distributed algorithm for coordinated downlink beamforming:

Numerical Example

►MISO-IC: $M_1 = M_2 = 3$, K = 2, *i.i.d.* Rayleigh fading, $SNR_1 = 5$, $SNR_2 = 1$

Distributed Beamforming via Alternating or Cyclic Projection [QiuZhangLuoCui11]

• Recall SINR feasibility problem:

$$\max_{\{\boldsymbol{\omega}_i\}} \quad 0 \quad \text{SINR target of MS } i$$

s.t. $\|\boldsymbol{h}_{ii}^H \boldsymbol{\omega}_i\|^2 \ge \beta_i \left(\sum_{j=1, j \ne i}^M |\boldsymbol{h}_{ji}^H \boldsymbol{\omega}_j|^2 + \sigma_i^2 \right), \ i = 1, \dots, M,$
 $\|\boldsymbol{\omega}_j\| \le \sqrt{P_j}, \ j = 1, \dots, M.$

• Problem reformulated as (solvable by centralized SOCP):

$$\begin{aligned} \max_{\boldsymbol{x}} & 0 \\ s.t. & \sqrt{\beta_i} \|\boldsymbol{A}_i \boldsymbol{x} + \boldsymbol{n}_i\| \leq \sqrt{1 + \beta_i} \left(\boldsymbol{h}_{ii}^H \boldsymbol{S}_i \boldsymbol{x}\right), \ i = 1, \dots, M, \\ \boldsymbol{x} = [\boldsymbol{\omega}_1; \boldsymbol{\omega}_2; \cdots; \boldsymbol{\omega}_M; 0] \ \boldsymbol{p}^T \boldsymbol{x} = 0, \\ \|\boldsymbol{S}_j \boldsymbol{x}\| \leq \sqrt{P_j}, \ j = 1, \dots, M. \end{aligned}$$

Question: Can we solve SINR feasibility problem in a distributed way?

[QiuZhangLuoCui11]: J. Qiu, R. Zhang, Z.-Q. Luo, and S. Cui, "Optimal distributed beamforming for MISO interference channels," *IEEE Transactions on Signal Processing*, Nov. 2011.

Alternating Projection

• Distributed beamforming computation at each BS (via SOCP):

$$\min_{\boldsymbol{x}} \quad \|\boldsymbol{x} - \tilde{\boldsymbol{x}}_{n-1}\|$$

$$s.t. \quad \sqrt{\beta_i} \|\boldsymbol{A}_i \boldsymbol{x} + \boldsymbol{n}_i\| \leq \sqrt{1 + \beta_i} (\boldsymbol{h}_{ii}^H \boldsymbol{S}_i \boldsymbol{x})$$

$$\boldsymbol{p}^T \boldsymbol{x} = 0,$$

$$\|\boldsymbol{S}_j \boldsymbol{x}\| \leq \sqrt{P_j}, j = 1, \dots, M.$$

local SINR constraint for MS *i* only

• Average operation at a central computer:

$$\tilde{\boldsymbol{x}}_{n-1} = \frac{1}{M} \sum_{i=1}^{M} \boldsymbol{x}_{n-1}^{(i)}$$

Cyclic Projection

• Cyclic beamforming computation at each BS (via SOCP):

$$\min_{\boldsymbol{x}} \quad \left\| \boldsymbol{x} - \boldsymbol{x}_{n}^{(i-1)} \right\|$$
s.t.
$$\sqrt{\beta_{i}} \|\boldsymbol{A}_{i}\boldsymbol{x} + \boldsymbol{n}_{i}\| \leq \sqrt{1 + \beta_{i}} (\boldsymbol{h}_{ii}^{H}\boldsymbol{S}_{i}\boldsymbol{x}),$$

$$\boldsymbol{p}^{T}\boldsymbol{x} = 0,$$

$$\|\boldsymbol{S}_{j}\boldsymbol{x}\| \leq \sqrt{P_{j}}, \ j = 1, \dots, M.$$

local SINR constraint for MS *i* only

Numerical Example

3-user MISO-IC, SNR target = 10 dB (feasible)

Recap of Part II

Pareto rate characterization for MISO-IC (with interference treated as noise)
 non-convex problems in general

- rate profile vs. WSRMax
 - \checkmark rate-profile: polynomial complexity, scalable with # of users
 - ✓ WSRMax: unknown complexity, non-scalable with # of users
- similar results hold for SISO-IC or SIMO-IC (see [LiuZhangChua12])

> A new general framework for *non-convex* utility optimization in multiuser systems via rate profile + monotonic optimization, provided

- utility region is a normal set
- problem size is not so large
- finding intersection points with Pareto boundary is efficiently solvable
- > Optimal distributed beamforming for MISO-IC
 - Approach 1: cognitive beamforming + active IT control
 - Approach 2: (reduced) SOCP + alternating/cyclic projection

Extension: Improper Gaussian Signaling

- > Joint covariance and pseudo-covariance optimization
 - Two-User SISO-IC [Zeng et al. 12]

$$R_{r} = \underbrace{\log\left(1 + \frac{|h_{rr}|^{2}C_{x_{r}}}{\sigma^{2} + |h_{r\overline{r}}|^{2}C_{x_{\overline{r}}}}\right)}_{R_{r}^{\text{proper}}(C_{x_{1}}, C_{x_{2}})} + \frac{1}{2}\log\frac{1 - C_{y_{r}}^{-2}|\widetilde{C}_{y_{r}}|^{2}}{1 - C_{s_{r}}^{-2}|\widetilde{C}_{s_{r}}|^{2}}.$$

[Zeng et al. 12]: Y. Zeng, C. M. Yetis, E. Gunawan, Y. L. Guan, and R. Zhang, "Improving achievable rate for the two-user SISO interference channel with improper Gaussian signaling," *IEEE Asilomar Conference on Signals, Systems and Computers*, 2012. (Invited Paper, Available Online at http://arxiv.org/abs/1205.0281)

Concluding Remarks on Cooperative Multi-Cell MIMO

Fundamental limits

 Capacity region characterization for interfering MIMO-MAC (uplink), and interfering MIMO-BC (downlink)

In general, very difficult (non-convex) optimization problems

> Interference alignment (IA) techniques

- Provide optimal signal dimension sharing at high-SNR: DoF optimality
- Reveal new design principles for K-user Gaussian ICs at finite-SNR, e.g.,
 - ✓ improper complex Gaussian signaling
 - \checkmark symbol extension
 - \checkmark non-separability of parallel Gaussian channels
- open challenge: How to optimally exploit IA gains in practical wireless systems?

Other issues

- imperfect backhaul/feedback links
- channel estimation error
- Interference cancelation (not treating interference as noise?)
- cooperation in heterogeneous networks

Agenda

• Overview of the talk

Exploiting multi-antennas in

- Cognitive Radio Networks
- Cooperative Multi-Cell
- > Two-Way Relay Networks
- Green Cellular Networks
- Wireless Information and Power Transfer
- Concluding remarks

Topic #3: Two-Way Relay Beamforming

Two-Way Relay System (1)

 \succ Two source nodes (S1 and S2) exchange information via a relay node (R)

- \checkmark all nodes operate half-duplex
- \checkmark no direct channel between S1 and S2

➤ Question: How many time slots needed for one round of information exchange between S1 and S2?

Traditional orthogonal approach (4 slots needed)

Wireless network coding (3 slots needed) [WuChouKung05]

$$\begin{array}{c} X_1 \\ \hline X_1 \\ \hline X_1 \\ \hline X_2 \\ \hline X_2 \\ \hline X_1 \\ \hline X_2 \\ \hline X_2 \\ \hline X_2 \\ \hline X_1 \\ \hline X_2 \\ \hline X_2 \\ \hline X_2 \\ \hline X_1 \\ \hline X_2 \\ \hline X_2 \\ \hline X_1 \\ \hline X_2 \\ \hline X_2 \\ \hline X_1 \\ \hline X_2 \\ \hline X_2 \\ \hline X_1 \\ \hline X_2 \\ \hline X_2 \\ \hline X_1 \\ \hline X_2 \\ \hline X_2 \\ \hline X_1 \\ \hline X_2 \\ \hline X_2 \\ \hline X_1 \\ \hline X_2 \\ \hline X_2 \\ \hline X_2 \\ \hline X_2 \\ \hline X_1 \\ \hline X_2 \\$$

Two-Way Relay System (2)

> Question: Can we do better?

Physical-Layer Network Coding (2 slots needed) [ZhangLiewLam06]

$$\begin{array}{c} X_1 \\ \hline X_1 \\ \hline X_1 \\ \hline X_2 \\ \hline X_2 \\ \hline X_1 \\ \hline X_2 \\ \hline X_2 \\ \hline X_2 \\ \hline X_2 \\ \hline X_1 \\ \hline X_2 \\$$

> Analogue Network Coding (2 slots needed) [KattiGollakota Katabi07]

$$\underbrace{X_1}_{S1} \underbrace{X_1+X_2}_{R} \underbrace{X_2}_{R} \underbrace{X_2}_{X_1+X_2} \underbrace{X_2}_{S2} \underbrace{X_1+X_2}_{S2} \underbrace{X_2}_{S2} \underbrace{X_2}_{S2} \underbrace{X_1+X_2}_{S2} \underbrace{X_2}_{S2} \underbrace{X_2} \underbrace{X_2}_{S2} \underbrace{X_2}_{S2} \underbrace{X_2}_{S2} \underbrace{X_2}_{S2} \underbrace{X_2}_{S2} \underbrace{X_2$$

➢ Other related work

✓ information-theoretic study [OechteringSchnurrBjelakovicBoche08]

✓ two-way amplify-and-forward (AF) relaying [RankovWittneben05]

Two-Way Relay Beamforming [Zhang et al. 09]

- Consider analogue network coding (or two-way AF relaying)
- > Assume single-antenna source, multi-antenna relay, channel reciprocity

- ≻ Related work
 - ✓ one-way AF MIMO relay [TangHua07], [MunozVidalAgustin07]
 - ✓ two-way *distributed* relay beamforming [HavaryShahGrami10], [ZengZhangCui11]

[Zhang et al. 09]: R. Zhang, Y. C. Liang, C. C. Chai, and S. Cui, "Optimal beamforming for twoway multi-antenna relay channel with analogue network coding," *IEEE Journal on Selected Areas in Communications*, June 2009.

Signal Model of Two-Way Relay BF

• At 1st time-slot, **R** receives

$$\boldsymbol{y}_R(n) = \boldsymbol{h}_1 \sqrt{p_1} \boldsymbol{s}_1(n) + \boldsymbol{h}_2 \sqrt{p_2} \boldsymbol{s}_2(n) + \boldsymbol{z}_R(n)$$

• **R** linearly processes (AF relaying) received signal as

$$oldsymbol{x}_R(n) = oldsymbol{A} oldsymbol{y}_R(n)$$

 $oldsymbol{A} \in \mathbb{C}^{M imes M}$

• At 2nd time-slot, **S1** (similarly as for **S2**) receives

$$y_1(n) = h_1^T x_R(n) + z_1(n) = h_1^T A h_1 \sqrt{p_1} s_1(n) + h_1^T A h_2 \sqrt{p_2} s_2(n) + h_1^T A z_R(n) + z_1(n)$$

Assumed perfect "self-interference" cancellation

Achievable Rate Region

• Achievable rates at **S1** and **S2**:

$$r_{21} \leq \frac{1}{2} \log_2 \left(1 + \frac{|\boldsymbol{h}_1^T \boldsymbol{A} \boldsymbol{h}_2|^2 p_2}{\|\boldsymbol{A}^H \boldsymbol{h}_1^*\|^2 + 1} \right) \quad (1) \quad r_{12} \leq \frac{1}{2} \log_2 \left(1 + \frac{|\boldsymbol{h}_2^T \boldsymbol{A} \boldsymbol{h}_1|^2 p_1}{\|\boldsymbol{A}^H \boldsymbol{h}_2^*\|^2 + 1} \right) \quad (2)$$

• Relay power consumption:

$$p_R(\boldsymbol{A}) = \|\boldsymbol{A}\boldsymbol{h}_1\|^2 p_1 + \|\boldsymbol{A}\boldsymbol{h}_2\|^2 p_2 + \operatorname{tr}(\boldsymbol{A}\boldsymbol{A}^H)$$

• Achievable rate region given p_1 , p_2 , and P_R :

$$\mathcal{R}(p_1, p_2, P_R) \triangleq \bigcup_{p_R(\mathbf{A}) \le P_R} \{(r_{21}, r_{12}) : (1), (2)\}$$

• "Capacity region" (assuming AF relaying)

$$\mathcal{C}(P_1, P_2, P_R) \triangleq \bigcup_{(p_1, p_2): p_1 \le P_1, p_2 \le P_2} \mathcal{R}(p_1, p_2, P_R)$$

Dimension Reduction on Optimal BF Matrix A

Theorem 1: The optimal relay beamforming matrix, A, that attains a boundary rate-pair of $\mathcal{R}(p_1, p_2, P_R)$ has the following structure:

$$A = U^* B U^H$$

where $m{B} \in \mathbb{C}^{2 imes 2}$ is an unknown matrix, $m{U} \in \mathbb{C}^{M imes 2}$ is obtained from SVD of $H_{UL} = [h_1, h_2] \in \mathbb{C}^{M \times 2}$, i.e., $H_{UL} = U \Sigma V^H$.

Corollary 1: $\mathcal{R}(p_1, p_2, P_R)$ can be equivalently expressed as $\bigcup_{B: \ p_R(B) \le P_R} \left\{ (r_{21}, r_{12}) : r_{21} \le \frac{1}{2} \log_2 \left(1 + \frac{|g_1^T B g_2|^2 p_2}{\|B^H g_1^*\|^2 + 1} \right), \right.$ non-convex rate region $r_{12} \leq \frac{1}{2} \log_2 \left(1 + \frac{|\boldsymbol{g}_2^T \boldsymbol{B} \boldsymbol{g}_1|^2 p_1}{\|\boldsymbol{B}^H \boldsymbol{a}_2^*\|^2 + 1} \right) \right\}^{\boldsymbol{\ell}}$ where $p_R(B) = ||Bg_1||^2 p_1 + ||Bg_2||^2 p_2 + \operatorname{tr}(BB^H)$.

Rate Profile Approach

Problem Reformulation

Sum-Rate Max. with Rate-Profile Constraints

Solve PMin-SNR by SDP

SDP Relaxation

Low-Complexity Suboptimal Schemes

• Maximal-Ratio (MR) Relay Beamforming

$$\boldsymbol{A}_{\mathrm{MR}} = \boldsymbol{H}_{\mathrm{DL}}^{H} \begin{bmatrix} a_{\mathrm{MR}} & 0 \\ 0 & b_{\mathrm{MR}} \end{bmatrix} \boldsymbol{H}_{\mathrm{UL}}^{H}$$

$$oldsymbol{H}_{ ext{UL}} = [oldsymbol{h}_1, oldsymbol{h}_2] \qquad oldsymbol{H}_{ ext{DL}} = [oldsymbol{h}_2, oldsymbol{h}_1]^T$$

• Zero-Forcing (ZF) Relay Beamforming

$$\boldsymbol{A}_{\mathrm{ZF}} = \boldsymbol{H}_{\mathrm{DL}}^{\dagger} \begin{bmatrix} a_{\mathrm{ZF}} & 0 \\ 0 & b_{\mathrm{ZF}} \end{bmatrix} \boldsymbol{H}_{\mathrm{UL}}^{\dagger}$$

Performance Comparison (1)

Performance Comparison (2)

Performance Comparison (3)

Concluding Remarks on Two-Way Relay Beamforming

- >Optimal two-way relay beamforming for analogue network coding
- ≻Rate region characterization: non-convex problem
- ≻Global optimal solution achieved via rate-profile + SDP relaxation
- ≻Low-complexity schemes: MR performers better than ZF
 - \checkmark non-wise to suppress interference at relay due to source self-interference cancellation
- Similar results hold for *non-reciprocal* source-relay channels
- Many possible extensions
 - \checkmark multiple relays
 - \checkmark multi-antenna source nodes
 - \checkmark multiple source nodes
 - ✓ multi-hop

Extension: Collaborative BF for Distributed Two-Way Relay Networks [ZengZhangCui11]

- Case of Reciprocal Source-Relay Channel
 - only relay power allocation needs to be optimized

Case of Non-Reciprocal Source-Relay Channel

 \checkmark both relay power and phase need to be optimized

[ZengZhangCui11]: M. Zeng, R. Zhang, and S. Cui, "On design of collaborative beamforming for two-way relay networks," *IEEE Transactions on Signal Processing*, May 2011.

of Singapore

Agenda

• Overview of the talk

Exploiting multi-antennas in

- Cognitive Radio Networks
- Cooperative Multi-Cell
- Two-Way Relay Networks
- Green Cellular Networks
- Wireless Information and Power Transfer
- Concluding remarks

Topic #4: Power Minimization in MU-MIMO

- Energy consumption reduction at base station – electricity cost, environmental concerns
- Energy consumption reduction at mobile terminals
 - limited battery capacity, operation time maximization
- A design paradigm shift in wireless communication
 - from "throughput/rate maximization" to "energy/power minimization"

Fundamental Limits

• Capacity Region vs. Power Region

Power Minimization in MU-MMO [MohseniZhangCioffi06]

• Power Region Characterization for Cellular Uplink (MIMO-MAC)

- weighed sum-power minimization (W-SPmin)
 - ✓ AWGN channel
 - ✓ fading channel

• BS Power Minimization for Cellular Downlink (MIMO-BC)

- apply uplink results with MIMO MAC-BC duality (details omitted)

[MohseniZhangCioffi06]: M. Mohseni, R. Zhang, and J. M. Cioffi, "Optimized transmission of fading multiple-access and broadcast channels with multiple antennas," *IEEE Journal on Selected Areas in Communications*, Aug. 2006.

Channel Model of AWGN MIMO-MAC

$$oldsymbol{y} = [oldsymbol{H}_1 \cdots oldsymbol{H}_K] \left[egin{array}{c} oldsymbol{x}_1 \ dots \ oldsymbol{x}_K \end{array}
ight] + oldsymbol{z}$$

- \boldsymbol{y} is $r \times 1$ received signal vector at base station
- H_k is $r \times t_k$ channel matrix for user k
- $\boldsymbol{x_k}$ is $t_k \times 1$ transmitted signal vector for user k
- \boldsymbol{z} is $r \times 1$ additive Gaussian noise vector at receiver. $\boldsymbol{z} \sim \mathcal{CN}(0, \boldsymbol{S}_{\boldsymbol{z}})$

Assumption

- Optimum Gaussian encoder at each transmitter
 - $\boldsymbol{x}_k \sim \mathcal{CN}(0, \boldsymbol{S}_k), \forall k$
 - $-S_k \triangleq \mathbb{E}[x_k x_k^{\dagger}]$: transmit covariance matrix (or spatial spectrum) of user k
- Optimum successive decoder at receiver
 - π : decoding order vector, permutation over $\{1, 2, \cdots, K\}$
 - e.g., user $\pi(1)$ is decoded first , user $\pi(2)$ is decoded second , ...

Special Case: SISO-MAC

- W-SRmax: weighted sum-rate maximization
- W-SPmin: weighted sum-power minimization

Power Region of MIMO-MAC

$$oldsymbol{y} = oldsymbol{H}_1 oldsymbol{x}_1 + oldsymbol{H}_2 oldsymbol{x}_2 + oldsymbol{z}$$

Capacity Polymatroid (convex set)

- *I*: mutual information
- Rate Inequalities for MAC:

$$\sum_{k \in \mathcal{J}} r_k \leq I\left(\{\boldsymbol{x}_k\}_{k \in \mathcal{J}}; \boldsymbol{y} | \{\boldsymbol{x}_{k'}\}_{k' \notin \mathcal{J}}\right), \forall \mathcal{J} \subseteq \{1, \dots, K\}$$

- Ahlswede ('71), Liao ('72), Cover-Wyner ('73)
- Capacity polymatroid given $\{S_1, \cdots, S_K\}$:

$$\mathcal{C}(\{\boldsymbol{S}_k\}) \triangleq \left\{ \boldsymbol{r} \in \mathbb{R}_+^K : \sum_{k \in \mathcal{J}} r_k \le \log \left| \sum_{k \in \mathcal{J}} \boldsymbol{H}_k \boldsymbol{S}_k \boldsymbol{H}_k^{\dagger} + \boldsymbol{S}_z \right|, \forall \mathcal{J} \subseteq \{1, \dots, K\} \right\}$$

Power Region Definition

Definition 1. Given user's rate constraint $\mathbf{R} = (R_1, R_2, \dots, R_K)$, a transmit power-tuple $\mathbf{p} = (p_1, p_2, \dots, p_K)$ is in the power region $\mathcal{P}(\mathbf{R})$ iff there exits a set of $\{\mathbf{S}_k\}$, $k = 1, \dots, K$ such that

- $p_k = \operatorname{Tr}(S_k), \forall k$
- $\boldsymbol{R} \in \mathcal{C}(\{\boldsymbol{S}_k\})$

Power Region Characterization via W-SPmin

• $\boldsymbol{\lambda} = (\lambda_1, \lambda_2, \cdots, \lambda_K) \in \mathbb{R}^K_+$: power prices

W-SPmin Problem Formulation

- Variables:
 - transmit rates: $\boldsymbol{r} = (r_1, r_2, \cdots, r_K)$
 - transmit covariance matrices: $oldsymbol{S}_1, oldsymbol{S}_2, \cdots, oldsymbol{S}_K$
- Problem formulation:

$$\begin{array}{ll} \texttt{Minimize} & \sum_{k=1}^{K} \lambda_k \mathrm{Tr}\left(\boldsymbol{S}_k\right)\\ \texttt{Subject to} & r_k \geq R_k \ \forall k \ \texttt{implicit rate constraints}\\ & \boldsymbol{r} \in \mathcal{C}(\{\boldsymbol{S}_k\})^{\checkmark}\\ & \boldsymbol{S}_k \succeq 0 \ \forall k \end{array}$$

• Convex problem, but not directly solvable due to implicit rate constraints

Heuristic Approach

- Step 1: Fix decoding order π , find $\{S_k\}$ to minimize $\sum_k \lambda_k \operatorname{Tr}(S_k)$
 - For user ${m \pi}(k)$, $r_{{m \pi}(k)}$ is expressed as

$$\log \left| \sum_{i=k}^{K} \boldsymbol{H}_{\boldsymbol{\pi}(i)} \boldsymbol{S}_{\boldsymbol{\pi}(i)} \boldsymbol{H}_{\boldsymbol{\pi}(i)}^{\dagger} + \boldsymbol{S}_{z} \right| - \log \left| \sum_{i=k+1}^{K} \boldsymbol{H}_{\boldsymbol{\pi}(i)} \boldsymbol{S}_{\boldsymbol{\pi}(i)} \boldsymbol{H}_{\boldsymbol{\pi}(i)}^{\dagger} + \boldsymbol{S}_{z} \right|$$

- Caution : Constraint $r_{\boldsymbol{\pi}(k)} \geq R_{\boldsymbol{\pi}(k)}$ is non-convex
- Step 2:

Over all possible (K!) decoding orders, find π to minimize $\sum_k \lambda_k \operatorname{Tr}(S_k)$

- Caution : Excludes time-sharing of decoding orders

Proposed Optimal Solution

- Goal : joint optimization of transmit powers, transmit covariance matrices, decoding orders, and (if necessary) time-sharing factors
- Approach : duality between power region and capacity region under *weighted* sum-power (W-SP) constraint
- Implementation : Lagrange duality

Capacity Region under W-SP Constraint

• Example: 2-user single transmit and multiple receive antenna (SIMO) MAC

 $\lambda_1 p_1 + \lambda_2 p_2 \le p^*$

Power/Capacity Region Duality of Singapore **p**₂ r_2 $\alpha^T \mathbf{r}$ (W-SRmax) $\lambda_1 \boldsymbol{p}_1^* + \lambda_2 \boldsymbol{p}_2^* = \boldsymbol{p}^*$ $\operatorname{Fix}(\boldsymbol{p}_1^*, \boldsymbol{p}_2^*)$ (p_1^*, p_2^*) (R_1, R_2) $\lambda^T p$ (W-SPmin) r **p**1 Power Region: $\mathbf{r}_1 \geq \mathbf{R}_1, \mathbf{r}_2 \geq \mathbf{R}_2$ Dual Capacity Region: $\lambda_1 p_1 + \lambda_2 p_2 \leq p^*$

- W-SPmin in power region \Rightarrow W-SRmax in dual capacity region
- How to find α ? Lagrange duality

Lagrange Duality

Lagrangian

• Primal (original) problem :

- Dual variables: μ_k w.r.t. $r_k \geq R_k$, $k=1,\ldots,K$
- Lagrangian :

$$\mathcal{L}(\{\boldsymbol{S}_k\}, \{r_k\}, \boldsymbol{\mu}) = \sum_{k=1}^{K} \lambda_k \operatorname{Tr}(\boldsymbol{S}_k) - \sum_{k=1}^{K} \mu_k (r_k - R_k)$$

Dual Function

$$g(\boldsymbol{\mu}) = \min_{\{\boldsymbol{S}_k\}, \{r_k\}} \mathcal{L}(\{\boldsymbol{S}_k\}, \{r_k\}, \boldsymbol{\mu})$$

$$= \min_{\{\boldsymbol{S}_k\}, \{r_k\}} \sum_{k=1}^{K} \lambda_k \operatorname{Tr}(\boldsymbol{S}_k) - \sum_{k=1}^{K} \mu_k r_k + \sum_{k=1}^{K} \mu_k R_k$$

• Equivalent problem:

Maximize
$$\sum_{k=1}^{K} \mu_k r_k - \sum_{k=1}^{K} \lambda_k \operatorname{Tr}(\boldsymbol{S}_k)$$

Subject to $\boldsymbol{r} \in \mathcal{C}(\{\boldsymbol{S}_k\})$

• Weighted sum-rate maximization (W-SRmax) over $\mathcal{C}(\{S_k\})$

Polymatroid Structure of $C(\{S_k\})$

Lemma 1. [Tse-Hanly('98)] The solution for the W-SRmax over $C({S_k})$:

Maximize $\sum_{k=1}^{K} \mu_k r_k$ Subject to $oldsymbol{r} \in \mathcal{C}(\{oldsymbol{S}_k\})$

is attained by a vertex $r^{(\pi)}$ of $\mathcal{C}(\{S_k\})$, for which

• $\boldsymbol{\pi}$ is given by $\mu_{\boldsymbol{\pi}(1)} \leq \mu_{\boldsymbol{\pi}(2)} \leq \ldots \leq \mu_{\boldsymbol{\pi}(K)}$

•
$$r_{\boldsymbol{\pi}(k)}^{(\boldsymbol{\pi})} = \log \left| \sum_{i=k}^{K} \boldsymbol{H}_{\boldsymbol{\pi}(i)} \boldsymbol{S}_{\boldsymbol{\pi}(i)} \boldsymbol{H}_{\boldsymbol{\pi}(i)}^{\dagger} + \boldsymbol{S}_{z} \right| - \log \left| \sum_{i=k+1}^{K} \boldsymbol{H}_{\boldsymbol{\pi}(i)} \boldsymbol{S}_{\boldsymbol{\pi}(i)} \boldsymbol{H}_{\boldsymbol{\pi}(i)}^{\dagger} + \boldsymbol{S}_{z} \right|$$

Obtain $g(\mu)$

Maximize
$$\sum_{k=1}^{K} \mu_k r_k - \sum_{k=1}^{K} \lambda_k \operatorname{Tr}(\boldsymbol{S}_k)$$
(1)
Subject to $\boldsymbol{r} \in \mathcal{C}(\{\boldsymbol{S}_k\})$

• By Lemma 1 , (1) simplifies as the maximization of

$$\sum_{k=1}^{K} \left(\mu_{\boldsymbol{\pi}(k+1)} - \mu_{\boldsymbol{\pi}(k)} \right) \log \left| \sum_{i=k}^{K} \left(\boldsymbol{H}_{\boldsymbol{\pi}(i)} \boldsymbol{S}_{\boldsymbol{\pi}(i)} \boldsymbol{H}_{\boldsymbol{\pi}(i)}^{\dagger} \right) + \boldsymbol{S}_{z} \right| - \sum_{k=1}^{K} \lambda_{k} \operatorname{Tr}(\boldsymbol{S}_{k})$$

- Twice continuously differentiable and concave function of $\{S_k\}$
- Solvable by using gradient-based method, e.g., Newton's method

Dual Problem

• $\{S'_k\}$ and $\{r'_k\}$ are Lagrangian minimizers:

$$g(\boldsymbol{\mu}) = \sum_{k=1}^{K} \lambda_k \mathrm{Tr}(\boldsymbol{S}'_k) - \sum_{k=1}^{K} \mu_k (r'_k - R_k)$$

• Dual problem:

$$d^* = \max_{\boldsymbol{\mu} \succeq 0} g(\boldsymbol{\mu}) \triangleq g(\boldsymbol{\mu}^*)$$

- Search μ_k towards μ_k^* :
 - $R_{k} r_{k}^{\prime}$ is a sub-gradient for μ_{k} , $k = 1, \ldots, K$
 - Update μ_k by using sub-gradient based method, e.g., Ellipsoid method

Algorithm

$$p^* = d^* = \max_{\boldsymbol{\mu}} \min_{\{\boldsymbol{S}_k\}, \{\boldsymbol{r}_k\}} \sum_{k=1}^K \lambda_k \operatorname{Tr}(\boldsymbol{S}_k) - \sum_{k=1}^K \mu_k (\boldsymbol{r}_k - \boldsymbol{R}_k)$$

- "min": Fix μ , obtain $g(\mu)$
- "max": Update μ towards μ^*
- Iterates the above two until the algorithm converges

Illustration via Lagrange Duality

Lagrange duality: find $\mu^* = \alpha$

Optimal Decoding Order (K=2)

- Case I: $\mu_1^* < \mu_2^*$: $\pmb{\pi}^*$ is $1 \to 2$, e.g., R as Point A

• Case II: $\mu_1^* = \mu_2^*$: π^* is time-sharing of $1 \to 2$ and $2 \to 1$, e.g., R as Point B

Optimal Decoding Order (arbitrary K)

- Case I:
 - If all $\{\mu_k^*\}$ are distinct ...
 - π is given by $\mu^*_{\pi(1)} < \mu^*_{\pi(2)} < \cdots < \mu^*_{\pi(K)}$
- Case II:
 - If $\{\mu_k^*\}$ are equal for all $k \in \mathcal{J}, \mathcal{J} \subseteq \{1, 2, \cdots, K\}$...
 - $\pi_{\mathcal{J}}$ is given by time-sharing of at most $|\mathcal{J}|$ different decoding orders

Power Region Characterization via Power Profile Approach

- Given:
 - rate constraint: R_1, R_2, \ldots, R_K
 - power profile vector : $\boldsymbol{\theta} = (\theta_1, \theta_2, \cdots, \theta_K) \in \mathbb{R}_+^K, \sum_{k=1}^K \theta_k = 1$
- Goal: find minimum $\{p_1, p_2, \cdots, p_k\}$ such that $\frac{p_k}{p_{k'}} = \frac{\theta_k}{\theta_{k'}}$, $\forall k, k' \in \{1, 2, \cdots, K\}$
- Applications: proportionally-fair power consumption

Sum-Power Minimization under Power Profile Constraints

- Solutions implemented via Lagrange duality
- Dual variables:

-
$$\mu_k$$
 w.r.t. $r_k \ge R_k$, $k = 1, \dots, K$
- λ_k w.r.t. $\operatorname{Tr}(S_k) \le \theta_k P$, $k = 1, \dots, K$

Illustration via Lagrange Duality

Lagrange duality: find both λ^* and μ^*

Admission Problem

- Given:
 - rate constraint: R_1, R_2, \ldots, R_K
 - maximum power constraint : $\boldsymbol{P} = (P_1, P_2, \cdots, P_K) \in \mathbb{R}_+^K$
- Goal: check whether $\boldsymbol{P} \in \mathcal{P}(\boldsymbol{R})$
 - If yes, find a feasible set of powers
 - If no, find a proof for infeasibility

Feasibility Test for Admission Problem

Solvable by Lagrange duality, similarly as Sum-Power Minimization under Power Profile Constraints

Extension: Fading MIMO-MAC

Channel Model of Fading MIMO-MAC

$$oldsymbol{y} = [oldsymbol{H}_1(oldsymbol{
u}) \ \cdots oldsymbol{H}_K(oldsymbol{
u}) \] \left[egin{array}{c} x_1 \ dots \ dots \ x_K \ dots \ x_K \end{array}
ight] + oldsymbol{z}$$

 ν : fading state

- state space is continuous and infinite
- state process is stationary and ergodic

W-SPmin for Fading MIMO-MAC

- Both $oldsymbol{S}_{oldsymbol{k}}(
 u)$ and $oldsymbol{r}(
 u)$ depend on u
- Problem formulation:

$$\begin{array}{ll} \text{Minimize} & \sum_{k=1}^{K} \lambda_k \mathbb{E}_{\nu} \left[\text{Tr} \left(\boldsymbol{S}_k(\nu) \right) \right] \\ \text{Subject to} & \mathbb{E}_{\nu} [r_k(\nu)] \geq R_k \ \forall k \\ & \boldsymbol{r}(\nu) \in \mathcal{C}_{\nu} \left(\{ \boldsymbol{S}_k(\nu) \} \right) \quad \forall \nu \\ & \boldsymbol{S}_k(\nu) \succeq 0 \quad \forall \nu, k \end{array}$$

- Solutions implemented via Lagrange dual decomposition
- Dual variables: μ_k w.r.t. $\mathbb{E}_{m{
 u}}[r_k(
 u)] \geq R_k$, $k=1,\ldots,K$

Lagrange Dual Decomposition

• Lagrangian:

$$\mathcal{L}(\{\boldsymbol{S}_{k}(\nu)\},\{r_{k}(\nu)\},\boldsymbol{\mu})=\sum_{k=1}^{K}\lambda_{k}\mathbb{E}_{\nu}\left[\operatorname{Tr}\left(\boldsymbol{S}_{k}(\nu)\right)\right]-\sum_{k=1}^{K}\mu_{k}\left(\mathbb{E}_{\nu}[r_{k}(\nu)]-R_{k}\right)$$

• Dual function:

$$g(\boldsymbol{\mu}) = \min_{\boldsymbol{S}_{k}(\nu), r_{k}(\nu), \forall k, \nu} \mathcal{L}(\{\boldsymbol{S}_{k}(\nu)\}, \{r_{k}(\nu)\}, \boldsymbol{\mu})$$

$$= \mathbb{E}_{\nu} \left[\min_{\boldsymbol{S}_{k}(\nu), r_{k}(\nu), \forall k} \left\{ \sum_{k=1}^{K} \lambda_{k} \operatorname{Tr} \left(\boldsymbol{S}_{k}(\nu)\right) - \sum_{k=1}^{K} \mu_{k} r_{k}(\nu) \right\} \right] + \sum_{k=1}^{K} \mu_{k} R_{k}$$

$$\stackrel{\triangleq g_{\nu}(\boldsymbol{\mu})}{\triangleq}$$

• Dual problem:

$$d^* = \max_{\boldsymbol{\mu} \succeq 0} g(\boldsymbol{\mu})$$

Power Region Comparison: SDMA vs. TDMA

 $\boldsymbol{R} = \begin{bmatrix} 2 & 1 \end{bmatrix}$ nats/sec/Hz 40 35 • Two-user fading MIMO-MAC • Number of transmit antennas: 2, k = 1, 2**SDMA TDMA** • Number of receive antennas: 2 25 (gp) ²⁰ • $H_k(\nu) = H_w R_{tk}^{1/2}, \ k = 1, 2$ 15 $\boldsymbol{R}_{t1} = \left[\begin{array}{cc} 1 & 0.4 \\ 0.4 & 1 \end{array} \right]$ 10 * Equal Time-Slot Duration $\boldsymbol{R}_{t2} = \left[\begin{array}{cc} 1 & 0.5 \\ 0.5 & 1 \end{array} \right]$ 0 25 5 10 15 20 30 35 40 45 p1 (dB)

Concluding Remarks on Power Minimization in MU-MIMO

• Power region characterization for MIMO-MAC via

- W-SPmin
- power profile
- Power/capacity region duality via Lagrange duality

Lagrange dual decomposition

– a general tool for optimal resource allocation over parallel (e.g., fading, multi-carrier) channels

Agenda

• Overview of the talk

Exploiting multi-antennas in

- Cognitive Radio Networks
- Cooperative Multi-Cell
- Two-Way Relay Networks
- Green Cellular Networks
- Wireless Information and Power Transfer
- Concluding remarks

Topic #5: MIMO Broadcasting for Wireless Information and Power Transfer

RF-Based Wireless Power Transfer

RF Energy Receiver Architecture

□ Why **RF-based** Wireless Power Transfer (WPT)?

- Ionger transmission distance than near-field WPT (e.g., RFID)
- > many advantages over traditional batteries and energy harvesting
 - Iower cost: no need to replace/dispose batteries
 - safer: in e.g. toxic environment
 - more robust: overcome lack of light, temp. diff., or vibration (for energy harvesting)
 - more convenient: controllable, continuous, schedulable on demand
- > abundant applications in emerging wireless sensor networks
 - building automation, healthcare, smart grid, structural monitoring.....

current limitation

Iow received power (<1uW at distance > 5m and transmit power <1W)</p>

High-Efficiency WPT: An Energy Beamforming Approach

□ Transmit covariance matrix:

 $\boldsymbol{S} = \mathbb{E}[\boldsymbol{x}(n)\boldsymbol{x}^H(n)]$

Optimization problem (convex):

 $\begin{array}{ll} \max_{\boldsymbol{S}} & Q := \operatorname{tr} \left(\boldsymbol{G} \boldsymbol{S} \boldsymbol{G}^{H} \right) \\ \text{s.t.} & \operatorname{tr}(\boldsymbol{S}) \leq P, \boldsymbol{S} \succeq 0. \end{array}$

Beamforming is optimal: $\boldsymbol{S}_{\rm EH} = P \boldsymbol{v}_1 \boldsymbol{v}_1^H$

 v_1 : eigenvector of $G^H G$ corresponding to the largest eigenvalue g_1

 \Box Maximum received power: beamforming gain $Q_{\rm max} = \widetilde{g_1 P}$

Wireless Information and Power Transfer: A Unified Study

Hybrid Information/Energy Flow:

"asymmetric" downlink/uplink transmissions

Technical Challenges:

➤ joint energy and communication scheduling

- energy-aware communication
- communication-aware energy transfer

> information and power transfer (downlink)

- orthogonal transmissions
- simultaneous transmissions (more efficient)
 - ✓ circuit limitation: existing energy receivers cannot decode information directly
 - \checkmark possible solutions:

* MIMO broadcasting [ZhangHo11]

- * "opportunistic" energy harvesting [LiuZhangChua12]
- * "integrated" energy/information receivers [ZouZhangHo12]

[ZhangHo11]: R. Zhang and C. K. Ho, "MIMO broadcasting for simultaneous wireless information and power transfer," IEEE Globecom, 2011. (Available Online at http://arxiv.org/abs/1105.4999)

[LiuZhangChua12]: L. Liu, R. Zhang, and K. C. Chua, "Wireless information transfer with opportunistic energy harvesting," IEEE ISIT, 2012. (Available Online at http://arxiv.org/abs/1204.2035)

[ZouZhangHo12]: X. Zhou, R. Zhang, and C. K. Ho, "Wireless information and power transfer: architecture design and rateenergy tradeoff," submitted to IEEE Globecom, 2012. (Available Online at http://arxiv.org/abs/1205.0618)

MIMO Broadcasting for Wireless Information and Power Transfer [ZhangHo11]

Two scenarios:

> separated receivers: $G \neq H$

- ➤ co-located receivers: G = H
- Objective: characterize "rate-energy" region
 > extension of capacity-energy function of SISO AWGN channels [Varshney08], [GroverSahai10]

□ Optimization problem (convex):

$$\begin{array}{ll} \max_{\boldsymbol{S}} & \log \left| \boldsymbol{I} + \boldsymbol{H} \boldsymbol{S} \boldsymbol{H}^{H} \right| \\ \text{s.t.} & \operatorname{tr} \left(\boldsymbol{G} \boldsymbol{S} \boldsymbol{G}^{H} \right) \geq \bar{Q} \\ & \operatorname{tr} (\boldsymbol{S}) \leq P \\ & \boldsymbol{S} \succ 0. \end{array}$$

A three-node MIMO broadcast system with perfect CSIT/CSIR

generalized linear transmit power constraint

$$\boldsymbol{G} \in \mathbb{C}^{N_{\mathrm{EH}} imes M}, \, \boldsymbol{H} \in \mathbb{C}^{N_{\mathrm{ID}} imes M}$$

Separated Receiver Case ($G \neq H$)

• Semi-closed-form optimal solution:

$$\boldsymbol{S}^* = \boldsymbol{A}^{-1/2} \tilde{\boldsymbol{V}} \tilde{\boldsymbol{\Lambda}} \tilde{\boldsymbol{V}}^H \boldsymbol{A}^{-1/2}$$

where

- μ^* : optimal dual variable for transmit power constraint
- λ^* : optimal dual variable for receive power constraint
- $\boldsymbol{A} = \mu^* \boldsymbol{I} \lambda^* \boldsymbol{G}^H \boldsymbol{G}$
- $\mu^* > \lambda^* g_1$ (largest eigenvalue of $G^H G$)
- \tilde{V} : obtained from the (reduced) SVD $HA^{-1/2} = \tilde{U}\tilde{\Gamma}^{1/2}\tilde{V}^H$
- $\tilde{\Gamma} = \operatorname{diag}(\tilde{h}_1, \ldots, \tilde{h}_T) \succeq 0, T = \min(M, N_{\operatorname{ID}})$
- $\tilde{\Lambda} = \operatorname{diag}(\tilde{p}_1, \ldots, \tilde{p}_T)$, with $\tilde{p}_i = (1 1/\tilde{h}_i)^+, i = 1, \ldots, T$
- Optimal solution obtained by Lagrange duality method
Rate-Energy Region (Separated Receiver)

$$\mathcal{C}_{\mathrm{R-E}}(P) \triangleq \left\{ (R,Q) : R \le \log |\mathbf{I} + \mathbf{H}\mathbf{S}\mathbf{H}^{H}|, Q \le \operatorname{tr}(\mathbf{G}\mathbf{S}\mathbf{G}^{H}), \operatorname{tr}(\mathbf{S}) \le P, \mathbf{S} \succeq 0 \right\}$$

- $M = N_{\rm EH} = N_{\rm ID} = 4$
- P = 0.1 W (20 dBm)
- $f_c = 900 \text{MHz}, \ B_w = 10 \text{MHz}$
- d = 10m (60dB signal power attenuation)
- G, H: i.i.d Rayleigh fading
- $N_0 = -130 \text{dBm/Hz}$
- per-antenna average received power: 100nW
- per-antenna average received SNR: 20dB
- energy conversion efficiency: 50%

Co-Located Receiver Case (G=H)

• Optimal solution simplified as

$$\boldsymbol{S}^* = \boldsymbol{V}_H \boldsymbol{\Sigma} \boldsymbol{V}_H^H$$

- V_H : obtained from the (reduced) SVD $H = U_H \Gamma_H^{1/2} V_H^H$
- $\Gamma_H = \operatorname{diag}(h_1, \ldots, h_T) \succeq 0, T = \min(M, N_{\mathrm{ID}})$

•
$$\Sigma = \operatorname{diag}(\hat{p}_1, \dots, \hat{p}_T)$$
, with $\hat{p}_i = \left(\frac{1}{\mu^* - \lambda^* h_i} - \frac{1}{h_i}\right)^+$, $i = 1, \dots, T$

•
$$\mu^* > \lambda^* h_1$$

- Optimal solution obtained by Lagrange duality method
- Question: Is the corresponding R-E region achievable by practical receivers?

Practical Receivers

Circuit Limitation

- Existing RF-based EH circuits cannot decode information directly
- ➤ Thus, previously established rate-energy region only provides performance upper bound

Practical Receiver Design

- Time switching
- Power splitting
- Antenna switching (a special case of power splitting)

Special Case: SISO AWGN Channel

Transmitter

Time Switching

$$\begin{aligned} \mathcal{C}_{\mathrm{R-E}}^{\mathrm{TS}}(P) &\triangleq \bigcup_{\alpha: \ 0 \le \alpha \le 1} \left\{ \begin{array}{l} (R,Q) : R \le (1-\alpha) \log |\mathbf{I} + \mathbf{H}\mathbf{S}_{1}\mathbf{H}^{H}|, Q \le \alpha \mathrm{tr}(\mathbf{H}\mathbf{S}_{2}\mathbf{H}^{H}), \\ & \\ \mathrm{tr}(\mathbf{S}_{1}) \le P, \mathrm{tr}(\mathbf{S}_{2}) \le P, \mathbf{S}_{1} \succeq 0, \mathbf{S}_{2} \succeq 0 \right\} \end{aligned}$$

D Power Splitting

$$\begin{split} \mathcal{C}_{\mathrm{R-E}}^{\mathrm{PS}}(P) &\triangleq \bigcup_{\{\rho_i\}: \ 0 \le \rho_i \le 1, \forall i} \left\{ (R, Q) : R \le \log |\mathbf{I} + \bar{\mathbf{\Lambda}}_{\rho}^{1/2} \mathbf{H} \mathbf{S} \mathbf{H}^H \bar{\mathbf{\Lambda}}_{\rho}^{1/2} |, \\ Q \le \operatorname{tr}(\mathbf{\Lambda}_{\rho}^{1/2} \mathbf{H} \mathbf{S} \mathbf{H}^H \mathbf{\Lambda}_{\rho}^{1/2}), \operatorname{tr}(\mathbf{S}) \le P, \mathbf{S} \succeq 0 \right\} \end{split}$$

where
$$\Lambda_{\rho} = \text{diag}(\rho_1, \ldots, \rho_N), \ \bar{\Lambda}_{\rho} = I - \Lambda_{\rho}.$$

➤ Two Special Cases:

- Uniform Power Splitting: $\rho_i = \rho, \forall i, 0 \le \rho \le 1$
- On-Off Power Splitting (Antenna Switching): $\rho_i = 0, i \in \Omega$; $\rho_i = 1, i \in \overline{\Omega}$

Rate-Energy Region (Co-Located Receiver)

$$M_t = N_{\rm EH} = N_{\rm ID} = 2, P = 100 \quad \boldsymbol{G} = \boldsymbol{H} = [1, 0.5; 0.5, 1]$$

Concluding Remarks on Wireless Information and Power Transfer

Exploit MIMO broadcasting for wireless information and power transfer

- wireless power transfer: energy beamforming is optimal
- wireless information transfer: spatial multiplexing is optimal
- fundamental tradeoff: rate-energy region
- Separated vs. co-located receivers
- "useful" interference (from viewpoint of wireless power transfer)

Practical circuit limitation

- existing energy receiver cannot decode information directly
- > practical receiver designs: time switching vs. power splitting
- ➢ how to close the gap from R-E region outer bound? (an open problem)

Agenda

• Overview of the talk

Exploiting multi-antennas in

- Cognitive Radio Networks
- Cooperative Multi-Cell
- Two-Way Relay Networks
- Green Cellular Networks
- Wireless Information and Power Transfer

Concluding remarks

Concluding Remarks

MU-MIMO Optimization

- New applications
 - ✓ cognitive radio networks, cooperative multi-cell, two-way relay networks, green cellular networks, wireless information and power transfer....
- Main challenges
 - ✓ generalized linear transmit power constraint: interference-power constraint, per-antenna power constraint, per-BS power constraint, harvested power constraint...
 - ✓ **non-convex rate maximization:** broadcast channel, interference channel, relay channel...
 - ✓ distributed implementation: imperfect sensing/estimation, limited-rate feedback/backhaul, limited computing power....
- Useful tools
 - ✓ optimization theory: Lagrange duality, nonlinear programming (GP, QCQP, SOCP, SDP), non-convex optimization (branch & bound, monotonic optimization, outer polyblock approximation, sequential convex programming...), alternating/cyclic projection, subgradient, ellipsoid method, SDP relaxation, dual decomposition, robust optimization...
 - ✓ **communication and signal processing**: cognitive transmission, cooperative feedback, interference diversity, active interference control, uplink-downlink duality, interference alignment, improper complex Gaussian signaling, symbol extension, rate/power profile approach, power/rate region duality, network coding, compressive sensing...
- An ongoing very active area of research
 - ✓ coherently integrating expertise from multiple fields such as optimization, signal processing, communication theory, information theory, and circuit theory

Thank you and please direct your inquiries to Rui Zhang (e-mail: elezhang@nus.edu.sg)

