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 Concluding remarks  
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                                                            MIMO in Wireless Communication:   
A Brief Overview      

  Point-to-Point MIMO 
 MIMO channel capacity, space-time code, MIMO precoding, MIMO detection, 

MIMO equalization, limited-rate MIMO feedback, MIMO-OFDM …  
  

  Multi-User MIMO (Single Cell)  
 SDMA, MIMO-BC precoding, uplink-downlink duality, opportunistic 

beamforming, MIMO relay, distributed antenna, resource allocation … 
   

  Multi-User MIMO (Multi-Cell)  
 network MIMO/CoMP, coordinated beamforming, MIMO-IC, interference 

management, interference alignment …    
 

MIMO in emerging wireless systems/applications 
 cognitive radio networks, ad hoc networks, secrecy communication, two-way 

communication, full-duplex communication, compressive sensing, MIMO radar, 
wireless power transfer …   
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                                                            Talk Overview (1): Cognitive MIMO   
 

  Exploiting MIMO in Cognitive Radio Networks  
 How to optimize secondary MIMO transmissions subject to interference power 

constraints at all nearby primary receivers? 
 

 How to practically obtain the channel knowledge from secondary transmitter to 
primary receivers?  

  

 How to optimally set the interference power levels at different primary receivers? 

PU-Tx 

PU-Rx 

SU-Tx 

SU-Rx 

Secondary/Cognitive 
Radio Link 

Interference 
Temperature 
Constraint  

Spectrum Sharing Cognitive Radio 
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                                                            Talk Overview (2): Multi-Cell MIMO  
 

  Cooperative Interference Management in Multi-Cell MIMO  
 Network MIMO (CoMP) with baseband signal-level coordination among BSs  

 How to design the optimal (linear/non-linear) joint downlink precoding with per-
BS power constraints? 

 Coordinated downlink beamforming for inter-cell interference control  
 How to jointly design beamforming and power control at all BSs to achieve 

optimal rate tradeoffs among different cells? 
 How to achieve optimal distributed beamforming with only local CSI at each BS?   

Inter-Cell Interference  

Universal Frequency Reuse in Cellular network   





BS-1 

BS-K 

MS 

backhaul 
 links  

MS 

MS 

MS 



Multi-Cell Cooperative MIMO (Downlink)  
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                                                            Talk Overview (3): Two-Way Relay 
Beamforming for Wireless Network Coding  
 

  Exploiting Multi-Antenna Relay in Two-Way Communication 
 

 How to optimally design the linear  beamforming matrix at R to maximize two-way 
information exchange rates between S1 and S2?   
 

 How is the optimal design fundamentally different from traditional one-way relay 
beamforming (S1-R-S2 and S2-R-S1 alternatively)?    

Two-Way Relay System  
(with analogue network coding)   

Two-Way Multi-Antenna Relay System   

X1 X2 

S1 R  S2 X1+X2 X1+X2 
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                                                            Talk Overview (4): Power Minimization in 
MIMO Cellular Networks  

  Power Minimization in MU-MIMO given Rate Constraints  
 

 How to characterize MU power region to achieve minimum power consumption 
tradeoffs in cellular uplink?    
 

 How to achieve minimal BS power consumption in cellular downlink?  
 

 What is the fundamental relationship between MU capacity region and power region?    

Power Minimization in Cellular Networks    

Electricity Grid  

Power Region  
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                                                            Talk Overview (5): MIMO Broadcasting for 
Wireless Information and Power Transfer  

  Exploiting MIMO in Wireless Information and Power Transfer  
 

 How to optimally design MIMO transmissions to achieve simultaneously maximal 
information and power transfer?    
 

 How to characterize the achievable rate-energy tradeoffs?  
 

 What are practical design issues due to energy harvesting circuit limitations?    

RF-based Wireless Power Transfer     MIMO Broadcasting for Information and Power Transfer  

Energy Transmitter  Energy Receiver   
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                                                            Agenda      

  Cognitive Radio Networks 
  Cooperative Multi-Cell    
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 Concluding remarks  

 Overview of the talk       
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Topic #1: Cognitive MIMO Systems   
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Operation Models of Cognitive Radio    

  
 

 
 

 
 

• Dynamic Spectrum Access 
– Orthogonal transmissions: exploiting 
on-off activity of  primary links   

• Spectrum Sharing  
– Simultaneous transmissions: 

exploiting performance 
margin of primary links   

PU-Tx 

PU-Rx 

SU-Tx 

SU-Rx 
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                                                             Spectrum Sharing Cognitive Radio   
  

 
 
 

 
 

Primary 
Radio 

Transmitter 

Primary 
Radio 

Receiver 

Cognitive 
Radio 

Transmitter 

Cognitive 
Radio 

Receiver 

• Information-theoretic approach:  
–Cognitive Relay [DevroyeMitranTarokh06] [JovicicViswanath06] 

• Pragmatic approach: 
–Interference Temperature [Gastpar07] [GhasemiSousa07] 
 
 
 



NUS Presentation Title 2001 

13 
 
 

                                                            Cognitive MIMO: Enabling Spatial 
Spectrum Sharing   

  
 

 
 

 
 













? 

Two main issues: 

1. How to optimally design secondary transmissions (precoding, power control) given  
interference temperature constraints? 

2. How to practically obtain secondary-to-primary channels? 

Cognitive/Secondary Radio   

Primary Radio  
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                                                            Outline for Cognitive MIMO  
  

 
 
 

 
 

• Part I: Fundamental Limits  
– Assume perfect secondary-to-primary CSI 
– Characterize cognitive radio (CR) MIMO channel capacity subject to 
interference-temperature constraints in  

• CR point-to-point MIMO channel 
• CR MIMO broadcast channel (BC) 

 
  

• Part II: Practical Designs 
– Assume no prior knowledge of secondary-to-primary CSI 
– Propose practical “cognitive beamforming” schemes via 

• CR self-learning 
• Primary radio (PR) collaborative feedback 
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Part I: Capacity Limits of Cognitive MIMO  
(with perfect CR-to-PR CSI) 
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                                                            CR Point-to-Point MIMO Channel  
  

 
 
 

 
 

Secondary/CR Link 
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                                                            Problem Formulation [ZhangLiang08]  

  
 

 
 

 
 

• Problem is convex, and thus solvable by convex optimization techniques, e.g., the 
interior-point method, the Lagrange duality method (more details given later) 

  
• Suboptimal low-complexity solution: “generalized” zero-forcing (see [ZhangLiang08]) 

[ZhangLiang08]: R. Zhang and Y. C. Liang, “Exploiting multi-antennas for opportunistic spectrum sharing 
in cognitive radio networks,” IEEE Journal on Selected Topics in Signal Processing, Feb. 2008.  

generalized linear transmit 
power constraint 
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                                                            Special Case: CR MISO Channel  
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                                                            Optimal Solution  
  

 
 
 

 
 

Conventional 
maximal-ratio 
transmission (MRT) 

“Cognitive 
beamforming (CB)”  



NUS Presentation Title 2001 

20 
 
 

                                                            CR MIMO-BC  
  

 
 
 

 
 

• Problem is non-convex, thus not 
solvable by standard convex 
optimization techniques 
 

• Optimal solution is obtained via  
generalized BC-MAC duality [Zhang et 
al. 12] (more details given later)  
 
 [Zhang et al. 12]: L. Zhang, R. Zhang, Y. C. Liang, Y. Xin, and H. V. Poor, “On the Gaussian MIMO BC-

MAC duality with multiple transmit covariance constraints,” IEEE Transactions on Information Theory, 
April 2012.  
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                                                            Other Topics on Cognitive MIMO   
  

 
 
 

 
 

• Robust cognitive beamforming  
– e.g., [ZhangLiangXinPoor09], [ZhengWongOttersten10] 

 
• CR MIMO interference channel (MIMO-IC) 

– e.g., [KimGiannakis08], [ScutariPalomarBarbarossa08], [TajerPrasadWang10] 
 

 
 
  

• A recent survey on related works available at  
– [ZhangLiangCui10] 
 

 
 
  

[ZhangLiangCui10]: R. Zhang, Y. C. Liang, and S. Cui, “Dynamic resource allocation in cognitive 
radio networks,” IEEE Signal Processing Magazine, special issue on convex optimization for signal 
processing, June 2010.  
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Part II: Practical Designs for Cognitive MIMO 

(without prior knowledge of CR-to-PR CSI) 
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                                                            Learning-Based MIMO CR 
[ZhangGaoLiang10]  

  
 

 
 

 
 

Secondary link 

Primary link 
(TDD) 

[ZhangGaoLiang10]: R. Zhang, F. Gao, and Y. C. Liang, “Cognitive beamforming made 
practical: effective interference channel and learning-throughput tradeoff,” IEEE Transactions 
on Communications, Feb. 2010. 
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                                                            Protocol for Learning-Based MIMO CR   
  

 
 
 

 
 

• Two-phase protocol: 
– 1st phase: observe PR transmissions, compute PR signal sample covariance 

matrix, and then estimate CR-to-PR effective interference channel (EIC);  
– 2nd phase: transmit with (zero-forcing) precoding orthogonal to the EIC  

• Joint design of learning time and precoding matrix to 
– Maximize CR link throughput 
– Minimize leakage interference to PR link 
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                                                            Learning-Throughput Tradeoff 
  

  
 

 
 

 
 

optimal learning time 

Interference power  
constraint proportional 

to learning time 

CR throughput loss 
proportional to 
learning time 
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                                                            Primary Radio Collaborative Feedback 
[HuangZhang11]  

  
 

 
 

 
 

[HuangZhang11]: K.-B. Huang and R. Zhang, “Cooperative feedback for multi-antenna 
cognitive radio network”, IEEE Transactions on Signal Processing, Feb. 2011.   
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                                                            Protocol for PR Collaborative Feedback   
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                                                            CR Link Outage Probability vs.  
Transmit Power Constraint (assuming 
perfect IPC feedback) 
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                                                            IPC and CDI Feedback Bit Allocation 
(assuming fixed sum feedback bits)   
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                                                            Concluding Remarks on Cognitive MIMO   

  
 

 
 

 
 

• Capacity limits of Cognitive MIMO channels  
– Transmit covariance optimization under generalized linear transmit 
power constraints (more details given later)   

• Practical designs for Cognitive MIMO systems  
–Learning-based cognitive radio 

• Learning-throughput tradeoff 
–Primary radio (PR) collaborative feedback  

• IPC vs. CDI feedback bit allocation       
• How to set Interference Temperature (IT) in practice?  

– Interference Diversity: “Average” IT constraint (over time, frequency, 
space) better protects PR links than “Peak” counterpart [Zhang09]   
– Active IT Control: a new approach to optimal interference 
management in wireless networks, e.g.,     

• Cooperative multi-cell downlink beamforming (to be shown later)  
   

 
 

[Zhang09]: R. Zhang “On peak versus average interference power constraints for protecting primary users in 
cognitive radio networks,” IEEE Transactions on Wireless Communications, April 2009. 
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                                                            Agenda      

  Cognitive Radio Networks 
  Multi-Cell Cooperation   

  Two-Way Relay Networks  
  Green Cellular Networks  
  Wireless Information and Power Transfer 

 Exploiting multi-antennas in 

 Concluding remarks  

 Overview of the talk       
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Topic #2: Multi-Cell Cooperative MIMO   
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                                                            A New Look at Cellular Networks  

Future trends: universal/opportunistic frequency reuse  
 Pros: more abundant/flexible bandwidth allocation  
 Cons: more severe/dynamic inter-cell interference (ICI)  
 Need more advanced cooperative interference management among BSs       
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                                                            Multi-Cell Cooperative MIMO (Downlink) 

 Network MIMO/CoMP  
 Global transmit message sharing across all BSs     
 ICI utilized for coherent transmissions: baseband signal-level coordination (high complexity) 
 MIMO Broadcast Channel (MIMO-BC) with per-BS power constraints     

 Interference Coordination   
 Local transmit message known at each BS    
 ICI controlled to the best effort: interference management (relatively lower complexity) 
 MIMO Interference Channel (MIMO-IC) or partially interfering MIMO-BC 
 
 

 
 

 Hybrid Models: clustered network MIMO, MIMO X channel… 
 

 
 





BS-1 

BS-K 

MS 

backhaul links  

MS 

MS 

MS 


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                                                            Outline for Multi-Cell MIMO  
  

 
 
 

 
 

• Part I: Network MIMO Optimization   
–MIMO BC with per-BS power constraints  
–Weighted sum-rate maximization (WSRMax)   

• Optimal non-linear precoding with “dirty-paper coding (DPC)” 
• Optimal linear precoding with “block diagonalization (BD)”    

• Part II: Optimal Coordinated Downlink Beamforming    
–MISO Interference Channel (MISO-IC) 
–Characterization of Pareto-optimal rates 

• Centralized algorithms with global CSI at all BSs    
• Distributed algorithms with local CSI at each BS  
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Part I: Network MIMO Optimization  
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                                                            System Model of Network MIMO   

Equivalent to a MIMO-BC with per-BS power constraints   

Assumptions: 

 global channel knowledge 

 global transmit message knowledge 

 ideal backhaul links to all BSs  




 

BS-1 

BS-2 

BS-A 

MS-1 

MS-2 

MS-K 

Central 
Controller  


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                                                            Network MIMO: Capacity Upper Bound    
MIMO-BC with per-BS power constraints  
 Nonlinear dirty-paper precoding (DPC)   
 Optimality of DPC [CaireShamai03] [ViswanathTse03] [YuCioffi04] [WeingartenSteinbergShamai06] 
 DPC region characterization (via WSRMax) 

• BC-MAC duality for sum-power constraint [VishwanathJindalGoldsimith03]  
• Min-Max duality for sum-/per-antenna power constraints [YuLan07] 
• Generalized BC-MAC duality for arbitrary linear power constraints: [Zhang et al. 12]   

 Linear zero-forcing (ZF) or BD precoding   
 Sum-power constraint (MIMO-BC): [WongMurchLetaief03], [SpencerSwindlehurstHaardt04]  
 Per-antenna power constraint (MISO-BC): [WieselEldarShamai08] [HuhPapadopoulosCaire09] 
 Arbitrary linear transmit power constraints (MISO-/MIMO-BC): [Zhang10]   

 
 
 

 
 

[Zhang10]: R. Zhang, “Cooperative multi-cell block diagonalization with per-base-station power constraints,” 
IEEE Journal on Selected Areas in Communications, Dec. 2010.  

[Zhang et al. 12]: L. Zhang, R. Zhang, Y. C. Liang, Y. Xin, and H. V. Poor, “On the Gaussian MIMO BC-MAC 
duality with multiple transmit covariance constraints,” IEEE Transactions on Information Theory, April 2012. 
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                                                            Channel Model (1)  

• MIMO-BC baseband signal model: 
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                                                            Channel Model (2) 

• Per-BS power constraints:  

• Precoding (linear/nonlinear) matrix:  
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                                                            WSRMax in Network MIMO   
• Nonlinear DPC precoding: 

• Linear BD precoding: 

non-convex problem, 
with the same structure 
as CR MIMO-BC 
optimization 

convex problem 
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                                                            Nonlinear DPC Precoding Optimization 
with Per-BS Power Constraints   
• WSRMax problem (PA):  

 

• Auxiliary problem (PA-1): 

per-BS power 
constraints  
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                                                            Algorithm for Solving (PA)    

• Easy to verify the upper bound   
 

• Interestingly, the upper bound is also tight (see [Zhang et al. 12])     

• (PA) is solved by an iterative inner-outer-loop algorithm: 
 Outer loop: Solve the above minimization problem via sub-gradient 

based methods, e.g., the ellipsoid method 
 Inner loop: Solve the maximization problem (PA-1) via the 

generalized MIMO BC-MAC duality (shown in next slide). 



NUS Presentation Title 2001 

44 
 
 

                                                            Generalized BC-MAC Duality  

• (PA-1) is equivalent to WSRMax in dual  MIMO-MAC: 
 

convex problem,  
solvable by e.g. the 
interior-point method   
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                                                            Two-User MISO-BC with Per-Antenna 
Power Constraints (DPC Precoding)  
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                                                            Linear BD Precoding Optimization with 
Per-BS Power Constraints   

• WSRMax problem (PB):    
 

(PB) is convex, thus solvable by convex optimization techniques    

ZF constraints 

per-BS power 
constraints  
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                                                            Remove ZF Constraints (1)   

Assume M ≥ NK 
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                                                            Remove ZF Constraints (2)   

• Using Lemma 1, (PB) is reduced to  

(PB-1) is convex, thus solvable by Lagrange duality method 
 (PB-1) has the same structure as CR point-to-point MIMO optimization if K=1  

 

generalized linear transmit 
power constraint 
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                                                            Algorithm for Solving (PB-1)   

(PB-1) is solvable by an iterative inter-outer loop algorithm, similarly as (PA) 
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                                                            Optimal BD Precoding Matrix    

• Combining Lemmas 1 & 2 yields   

Optimal precoding vectors for each user are non-orthogonal   
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                                                            Properties of Optimal BD Precoding   

• Channel diagonalization:    

• Precoding matrix in traditional sum-power constraint case:     

Linear (orthogonal) precoding vectors for each user are optimal  

Linear (non-orthogonal) precoders achieve per-user MIMO capacity  
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                                                            Special Case: MISO-BC with Per-Antenna 
Power Constraints   

• Optimal ZF precoding vector:    

 can be shown equivalent to generalized channel inverse [WieselEldarShamai08]  

• Sum-power constraint case:     

 can be shown equivalent to channel pseudo inverse 
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                                                            Separation Approach (suboptimal)   

• First, apply “orthogonal” BD precoders for the 
sum-power constraint case: 

• Second, optimize power allocation for WSRMax 
under per-BS power constraints:  
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                                                            Two-User MISO-BC with Per-Antenna 
Power Constraints (ZF Precoding)    
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                                                            Summary of Part I   

• Network MIMO Optimization  
–WSRMax for MIMO-/MISO-BC with linear (per-BS, 
per-antenna, sum-antenna) power constraints  
–Nonlinear DPC precoding  

• Generalized MAC-BC duality 
–Linear ZF/BD precoding 

• Joint precoder and power optimization     
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Part II: Optimal Coordinated Downlink 
Beamforming   
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                                                            System Model of Coordinated Downlink 
Beamforming   







 

BS-1 

BS-2 

BS-K 

MS-1 

MS-K 

MS-2 

MISO-IC with partial transmitter-side cooperation 

Assumptions: 

 limited-rate backhaul links 

 local transmit message at each BS  

 one active user per cell (w.l.o.g.)  

 ICI treated as Gaussian noise    
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                                                            Related Work on Gaussian Interference 
Channel (selected)  

  
 

 
 

 
 

 Information-Theoretic Approach    
 Capacity region unknown in general  
 Best known achievability scheme: [HanKobayashi81] 
 Capacity within 1-bit: [EtkinTseWang08]  

 Pragmatic Approach (interference treated as Gaussian noise)     
 Interference alignment  [Jafar et al.] 

  DoF optimality at asymptotically high SNR 
  New ingredients: improper complex Gaussian signaling, time symbol extension, non-
separability of parallel Gaussian ICs 

 MISO-IC (finite-SNR regime, proper complex Gaussian signaling, no time symbol extension ) 
  Achievable rate region characterization [JorswieckLarssonDanev08], [ZakhourGesbert09] 
  Power minimization with SINR constraints [DahroujYu10] 
  Optimality of beamforming (rank-one transmit covariance matrix) [ShangChenPoor11] 

 WSRMax via “Monotonic Optimization” 
 SISO-IC (“Mapel” algorithm) [QianZhangHuang09]  
MISO-IC [JorswieckLarsson10], [UtschickBrehmer12], [BjornsonZhengBengtssonOttersten12]  

 WSRMax for MIMO-IC  
 [PetersHeath10], [RazaviyaynSanjabiLuo12]…. 
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                                                            Channel Model  

• MISO-IC baseband signal model: 
 
 

Assumed proper/circularly-symmetric complex 
Gaussian signaling (for the time being)   
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Pareto Optimal Rates in MISO-IC  
 
 
 
  
 
 

   Achievable user rate (with interference treated as noise):  

   Achievable rate region (without time sharing):  

   Pareto rate optimality:   
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WSRMax for MISO-IC  

Non-convex problem, thus cannot be solved directly by convex optimization 
techniques     
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                                                            SINR Feasibility Problem  
 
 
 
  
 
 

Convex problem, can be solved efficiently via convex Second Order Cone 
Programming (SOCP) feasibility problem    

Question: Can we solve WSRMax via SINR-Feas. problem for ICs?  
[LiuZhangChua12]: L. Liu, R. Zhang, and K. C. Chua, “Achieving global optimality for weighted sum-rate 
maximization in the K-user Gaussian interference channel with multiple antennas,” IEEE Transactions on 
Wireless Communications, May 2012.  (also see [UtschickBrehmer12], [BjornsonZhengBengtssonOttersten12])  
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 Rate-Profile Approach   
 
 
 
  
 
 

Two-User MISO-IC 
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                                                            Sum-Rate Maximization with Rate-
Profile Constraints [ZhangCui10]   
 
 
  
 
 

Non-convex problem, but efficiently solvable via a sequence of convex SINR-Feas. problems    

SINR-Feas. Problem  

[ZhangCui10]: R. Zhang and S. Cui, “Cooperative interference management with MISO 
beamforming,” IEEE Transactions on Signal Processing, Oct. 2010. 
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                                                            Monotonic Optimization   
 
 
 
  
 
 

Monotonic optimization problem (maximizing a strictly increasing function 
over a “normal” set), thus solvable by e.g. the “outer polyblock 
approximation” algorithm (shown in next slide)    

Key observation: Maximize WSR in MISO-IC rate region directly! 
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Outer Polyblock Approximation 
 
 
 
  
 
 

 Guaranteed convergence 
 
 Controllable accuracy 

 
 Complexity: ??? 
 
 Key step in each iteration:  

Find intersection point with 
Pareto boundary given a rate 
profile, which is solved by 
Sum-Rate Maximization with 
Rate-Profile Constraints 
 

 Rate Profile + Monotonic Optimization   
solves WSRMax for MISO-IC 
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Numerical Example  
 
 
 
  
 
 

 Benchmark scheme: “price-based” algorithm [Schmidt et al.09] 
 MISO-IC: Mk=2, K=4, i.i.d. Rayleigh fading, SNRk=3, wk=1 
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                                                            Distributed Beamforming for MISO-IC   
 
 
 
  
 
 

 Distributed Algorithms for Coordinated Downlink Beamforming    
 low-rate information exchange across BSs 
 only “local” (BS-side or MS-side) channel knowledge available at each BS 







 

BS-1 

BS-2 

BS-K 

MS-1 

MS-K 

MS-2 

Question: Can we archive distributed (Pareto-rate) optimal beamforming?   
[ZhangCui10]: R. Zhang and S. Cui, “Cooperative interference management with MISO beamforming,” 
IEEE Transactions on Signal Processing, Oct. 2010.  (with BS-side CSI) 

MS-side CSI      

BS-side CSI      

[QiuZhangLuoCui11]: J. Qiu, R. Zhang, Z.-Q. Luo, and S. Cui, “Optimal distributed beamforming for 
MISO interference channels,” IEEE Transactions on Signal Processing, Nov. 2011. (with MS-side CSI) 
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                                                            Exploiting Relationship between MISO-IC 
and MISO CR Channel [ZhangCui10] 







 

Secondary User Link 

Primary 
Users  

• For the kth MISO CR link: 

Interference 
power from 
other BSs 

Interference 
power to 

other MSs 

(PA): “Cognitive beamforming (CB)” problem subject 
to “Interference Temperature (IT)” constraints 
(considered in Topic #1) 

[ZhangCui10]: R. Zhang and S. Cui, “Cooperative interference management with MISO beamforming,” 
IEEE Transactions on Signal Processing, Oct. 2010. 
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Optimal Cognitive Beamforming (CB)   
 
 
 
  
 
 

A semi-closed-form solution, which is efficiently solvable by an 
iterative inner-outer-loop algorithm 
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                                                            Interference Temperature (IT) Approach to 
Characterize MISO-IC Pareto Boundary   
 
 
  
 
 

A new parametrical characterization of MISO-IC Pareto boundary in 
terms of BSs’ mutual IT levels, which constitute a lower-dimensional 
manifold than original transmit covariance matrices 
 
 Optimality of beamforming for MISO-IC is proved  
     (see an alternative proof given by [ShangChenPoor11])  
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Necessary Condition of Pareto Optimality 
 
 
 
  
 
 

where  
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                                                            Optimal Distributed Beamforming 
based on CB and “Active IT Control”  
 BS pair-wise IT update:  

step size 

fairness control  

exchange two 
scalars per update 

 Distributed algorithm for coordinated downlink beamforming: 
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                                                            Numerical Example  

Two-User MISO-IC 

MISO-IC: M1 =M2=3, K=2, i.i.d. Rayleigh fading, SNR1=5, SNR2=1 
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Distributed Beamforming via Alternating 
or Cyclic Projection [QiuZhangLuoCui11]      

[QiuZhangLuoCui11]:  J. Qiu, R. Zhang, Z.-Q. Luo, and S. Cui, “Optimal distributed beamforming for 
MISO interference channels,” IEEE Transactions on Signal Processing, Nov. 2011.  

• Recall SINR feasibility problem: 

SINR target of MS i  

• Problem reformulated as (solvable by centralized SOCP):                                       

 Question: Can we solve SINR feasibility problem in a distributed way?  
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                                                            Alternating Projection  

• Distributed beamforming computation at each BS (via SOCP):   

• Average operation at a central computer:   

Similar to “Cloud 
Computing”  

local SINR constraint 
for MS i  only   
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                                                            Cyclic Projection 

 
 

• Cyclic beamforming computation at each BS (via SOCP):   

local SINR constraint 
for MS i  only 
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                                                            Numerical Example 

Alternating Projection  Cyclic Projection  

3-user MISO-IC, SNR target = 10 dB (feasible) 
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                                                            Recap of Part II 
 
 
 
  
 
 

 Pareto rate characterization for MISO-IC (with interference treated as noise)  
 non-convex problems in general  
 rate profile vs. WSRMax    
 rate-profile: polynomial complexity, scalable with # of users   
 WSRMax: unknown complexity, non-scalable with # of users 

 similar results hold for SISO-IC or SIMO-IC (see [LiuZhangChua12])  
  

 A new general framework for non-convex utility optimization in multiuser 
systems via rate profile + monotonic optimization, provided    
 utility region is a normal set  
 problem size is not so large   
 finding intersection points with Pareto boundary is efficiently solvable  

 

 Optimal distributed beamforming for MISO-IC     
 Approach 1: cognitive beamforming + active IT control 
 Approach 2: (reduced) SOCP + alternating/cyclic projection  
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                                                            Extension: Improper Gaussian Signaling   
 
 
 
  
 
 

 Joint covariance and pseudo-covariance optimization  
 Two-User SISO-IC [Zeng et al. 12] 

[Zeng et al. 12]: Y. Zeng, C. M. Yetis, E. Gunawan, Y. L. Guan, and R. Zhang, “Improving achievable rate for 
the two-user SISO interference channel with improper Gaussian signaling,” IEEE Asilomar Conference on 
Signals, Systems and Computers, 2012.  (Invited Paper, Available Online at  http://arxiv.org/abs/1205.0281) 
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                                                            Concluding Remarks on Cooperative 
Multi-Cell MIMO    
 Fundamental limits   

 Capacity region characterization for interfering MIMO-MAC (uplink), and interfering 
MIMO-BC (downlink) 
 In general, very difficult (non-convex) optimization problems  

 Interference alignment (IA) techniques  
 Provide optimal signal dimension sharing at high-SNR: DoF optimality 
 Reveal new design principles for K-user Gaussian ICs at finite-SNR, e.g., 

 improper complex Gaussian signaling 
 symbol extension 
 non-separability of parallel Gaussian channels 

 open challenge: How to optimally exploit IA gains in practical wireless systems?            

 Other issues  
 imperfect backhaul/feedback links   
 channel estimation error  
 interference cancelation (not treating interference as noise?) 
 cooperation in heterogeneous networks        
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                                                            Agenda      

  Cognitive Radio Networks 
  Cooperative Multi-Cell    

  Two-Way Relay Networks  
  Green Cellular Networks  
  Wireless Information and Power Transfer 

 Exploiting multi-antennas in 

 Concluding remarks  

 Overview of the talk       
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Topic #3: Two-Way Relay Beamforming  
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                                                            Two-Way Relay System (1)      

S1 R  S2 

 Two source nodes (S1 and S2) exchange information via a relay node (R) 
 all nodes operate half-duplex 
 no direct channel between S1 and S2    

 Traditional orthogonal approach (4 slots needed) 

 Question: How many time slots needed for one round of information 
exchange between S1 and S2?  

S1 R  S2 

 Wireless network coding (3 slots needed) [WuChouKung05] 

S1 R  S2 

X1 X2 

X1  X2  X1  X2  

X1 X1 

X2 X2 
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                                                            Two-Way Relay System (2)      

 Physical-Layer Network Coding (2 slots needed) [ZhangLiewLam06] 

 Question: Can we do better?  

 Analogue Network Coding (2 slots needed) [KattiGollakota Katabi07]   

S1 R  S2 

X1 X2 

X1  X2  X1  X2  

X1 X2 

S1 R  S2 X1+X2 X1+X2 

 Other related work  
 information-theoretic study [OechteringSchnurrBjelakovicBoche08] 
  two-way amplify-and-forward (AF) relaying [RankovWittneben05] 
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                                                            Two-Way Relay Beamforming [Zhang et al. 09]       

 Consider analogue network coding (or two-way AF relaying)   
 Assume single-antenna source, multi-antenna relay, channel reciprocity   

 Related work  
 one-way AF MIMO relay [TangHua07], [MunozVidalAgustin07]  
 two-way distributed relay beamforming [HavaryShahGrami10], [ZengZhangCui11] 

[Zhang et al. 09]: R. Zhang, Y. C. Liang, C. C. Chai, and S. Cui, “Optimal beamforming for two-
way multi-antenna relay channel with analogue network coding,” IEEE Journal on Selected 
Areas in Communications, June 2009.  
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                                                            Signal Model of Two-Way Relay BF     

• At 1st time-slot, R receives 

• R linearly processes (AF relaying) received signal as 

• At 2nd time-slot, S1 (similarly as for S2) receives 

Assumed perfect “self-interference” cancellation  
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                                                            Achievable Rate Region 

• Achievable rates at S1 and S2: 

• Relay power consumption: 

• Achievable rate region given p1, p2, and PR : 

 (2)  (1) 

• “Capacity region” (assuming AF relaying)  
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                                                            Dimension Reduction on Optimal BF 
Matrix A     

non-convex 
rate region 
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                                                            Rate Profile Approach      

rate-profile vector  
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                                                            Problem Reformulation     
Sum-Rate Max. with Rate-Profile Constraints  

PMin-SNR (power minimization with SNR constraints) 

SNR targets 
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                                                            Solve PMin-SNR by SDP        

Semi-Definite Programming (SDP) with rank-one constraint:  
non-convex! 
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                                                            SDP Relaxation     

removing 
rank-one 
constraint  

SDP in standard form, 
solvable by e.g. CVX  

[Ye&Zhang03] 
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                                                             Low-Complexity Suboptimal Schemes   

• Maximal-Ratio (MR) Relay Beamforming  

• Zero-Forcing (ZF) Relay Beamforming  
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                                                             Performance Comparison (1)     

Optimal 

ZF 

MR 
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                                                             Performance Comparison (2)      

Optimal 

MR 

ZF 
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                                                            Performance Comparison (3)    

ZF 

Optimal 

MR 
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                                                            Concluding Remarks on Two-Way Relay 
Beamforming       

Optimal two-way relay beamforming for analogue network coding 
 

Rate region characterization: non-convex problem 
 

Global optimal solution achieved via rate-profile + SDP relaxation 
 

Low-complexity schemes: MR performers better than ZF 
 non-wise to suppress interference at relay due to source self-interference cancellation  

 

Similar results hold for non-reciprocal source-relay channels   
 

 Many possible extensions 
 multiple relays 
 multi-antenna source nodes 
 multiple source nodes   
 multi-hop    
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                                                            Extension: Collaborative BF for Distributed 
Two-Way Relay Networks  [ZengZhangCui11]     

• Case of Reciprocal Source-Relay Channel 
   only relay power allocation needs to be optimized    

 • Case of Non-Reciprocal Source-Relay Channel 
   both relay power and phase need to be optimized    

 

individual -power constraint 
or sum-power constraint  

[ZengZhangCui11]: M. Zeng, R. Zhang, and S. Cui, “On design of collaborative beamforming for 
two-way relay networks,” IEEE Transactions on Signal Processing, May 2011.  
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                                                            Agenda      

  Cognitive Radio Networks 
  Cooperative Multi-Cell    

  Two-Way Relay Networks  
  Green Cellular Networks  
  Wireless Information and Power Transfer 

 Exploiting multi-antennas in 

 Concluding remarks  

 Overview of the talk       
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Topic #4: Power Minimization in MU-MIMO    
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                                                             “Green” Cellular Networks      

Electricity Grid  

• Energy consumption reduction at base station 
– electricity cost, environmental concerns 

• Energy consumption reduction at mobile terminals  
– limited battery capacity, operation time maximization   

• A design paradigm shift in wireless communication   
– from “throughput/rate maximization” to “energy/power minimization”  
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                                                             Fundamental Limits      
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                                                            Power Minimization in MU-MMO 
[MohseniZhangCioffi06]     

• Power Region Characterization for Cellular Uplink (MIMO-MAC) 
– weighed sum-power minimization (W-SPmin) 
 AWGN channel 
 fading channel  

    

• BS Power Minimization for Cellular Downlink (MIMO-BC) 
–  apply uplink results with MIMO MAC-BC duality (details omitted)      

[MohseniZhangCioffi06]: M. Mohseni, R. Zhang, and J. M. Cioffi, “Optimized transmission of 
fading multiple-access and broadcast channels with multiple antennas,’’ IEEE Journal on 
Selected Areas in Communications, Aug. 2006.  
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                                                            Channel Model of AWGN MIMO-MAC     
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                                                             Assumption      
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                                                             Special Case: SISO-MAC      
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                                                             Power Region of MIMO-MAC     
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                                                             Capacity Polymatroid (convex set)      
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                                                             Power Region Definition    
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                                                            Power Region Characterization via W-SPmin   
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                                                             W-SPmin Problem Formulation     

•  Convex problem, but not directly solvable due to implicit rate constraints   

implicit rate constraints   
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                                                             Heuristic Approach    
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                                                             Proposed Optimal Solution     
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                                                            Capacity Region under W-SP Constraint    



NUS Presentation Title 2001 

116 
 
 

                                                             Power/Capacity Region Duality    
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                                                             Lagrange Duality    
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                                                             Lagrangian     
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                                                             Dual Function      
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                                                             Polymatroid Structure of      
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                                                             Obtain    

•  Solvable by using gradient-based method, e.g., Newton’s method 
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                                                             Dual Problem     
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                                                             Algorithm      
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                                                             Illustration via Lagrange Duality     
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                                                             Optimal Decoding Order (K=2)      
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                                                             Optimal Decoding Order (arbitrary K)     
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                                                            Power Region Characterization via  
Power Profile Approach   
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                                                            Sum-Power Minimization under Power 
Profile Constraints      
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                                                             Illustration via Lagrange Duality    
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                                                             Admission Problem      
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                                                            Feasibility Test for Admission Problem      

Solvable by Lagrange duality, similarly as Sum-Power Minimization under Power 
Profile Constraints   
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                                                             Extension: Fading MIMO-MAC     

fading state  
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                                                             Channel Model of Fading MIMO-MAC     
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                                                             W-SPmin for Fading MIMO-MAC       
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                                                             Lagrange Dual Decomposition       
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                                                            Power Region Comparison:  
SDMA vs. TDMA  

TDMA SDMA 
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                                                            Concluding Remarks on Power 
Minimization in MU-MIMO        

• Power region characterization for MIMO-MAC via 
– W-SPmin 
– power profile 

 
• Power/capacity region duality via Lagrange duality  
 
• Lagrange dual decomposition 

– a general tool for optimal resource allocation over parallel (e.g., fading, 
multi-carrier) channels 
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  Cognitive Radio Networks 
  Cooperative Multi-Cell    
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 Exploiting multi-antennas in 

 Concluding remarks  

 Overview of the talk       
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Topic #5: MIMO Broadcasting for Wireless 

Information and Power Transfer   



NUS Presentation Title 2001 

140 
 
 

                                                             RF-Based Wireless Power Transfer  

Energy Transmitter  Energy Receiver  

RF Energy Receiver Architecture    

 Why RF-based Wireless Power Transfer (WPT)? 
 longer transmission distance than near-field WPT (e.g., RFID) 
 many advantages over traditional batteries and energy harvesting       

 lower cost: no need to replace/dispose batteries 
 safer: in e.g. toxic environment  
 more robust: overcome lack of light, temp. diff., or vibration (for energy harvesting) 
 more convenient: controllable, continuous, schedulable on demand   

 abundant applications in emerging wireless sensor networks  
 building automation, healthcare, smart grid, structural monitoring….. 

 current limitation 
 low received power (<1uW at distance > 5m and transmit power <1W)  
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                                                            High-Efficiency WPT: An Energy 
Beamforming Approach  

Energy Receiver   

Energy   
Transmitter 

Energy Beamforming 
 

G 

 Transmit covariance matrix:  
 

 Optimization problem (convex):   
 

 Beamforming is optimal:     
 

 Maximum received power:     
 

beamforming gain 
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                                                            Wireless Information and Power Transfer: A 
Unified Study   

Wireless Sensor 
w/o embedded 
power  supply   

Base Station  
w/ constant power 

supply  

Energy Flow  

Information Flow   

 RF-Powered Wireless Sensor Network   
Downlink (Base Station → Sensors)  
Uplink (Sensors → Base Station)  
 
  

   

 Hybrid Information/Energy Flow:   
 “asymmetric” downlink/uplink transmissions   

 Technical Challenges:   
 joint energy and communication scheduling  

 energy-aware communication   
 communication-aware energy transfer  

 information and power transfer (downlink) 
 orthogonal transmissions   
 simultaneous transmissions (more efficient) 

 circuit limitation: existing energy receivers  
 cannot decode information directly 
 possible solutions:  

 MIMO broadcasting [ZhangHo11]  
 “opportunistic” energy harvesting [LiuZhangChua12] 
“integrated” energy/information receivers [ZouZhangHo12] 

[ZhangHo11]: R. Zhang and C. K. Ho, “MIMO broadcasting for simultaneous wireless information and power transfer,” 
IEEE Globecom, 2011. (Available Online at http://arxiv.org/abs/1105.4999 )  

[LiuZhangChua12]: L. Liu, R. Zhang, and K. C. Chua, “Wireless information transfer with opportunistic energy 
harvesting,” IEEE ISIT, 2012. (Available Online at http://arxiv.org/abs/1204.2035)  

[ZouZhangHo12]: X. Zhou, R. Zhang, and C. K. Ho, “Wireless information and power transfer: architecture design and rate-
energy tradeoff,”  submitted to IEEE Globecom, 2012. (Available Online at http://arxiv.org/abs/1205.0618) 
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                                                            MIMO Broadcasting for Wireless Information 
and Power Transfer [ZhangHo11] 

G 

H 

A three-node MIMO broadcast system with 
perfect CSIT/CSIR    

 Two scenarios:  
 separated receivers: G ≠ H  
 co-located receivers: G = H 

 Objective: characterize “rate-energy” region 
 extension of capacity-energy function of SISO 
AWGN channels [Varshney08], [GroverSahai10]  

 Optimization problem (convex): 

generalized linear transmit power 
constraint  
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                                                             Separated Receiver Case (G ≠ H)   

• Optimal solution obtained by Lagrange duality method 

• Semi-closed-form optimal solution:  
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                                                            Rate-Energy Region (Separated Receiver)    

energy beamforming  

spatial multiplexing   



NUS Presentation Title 2001 

146 
 
 

                                                             Co-Located Receiver Case (G=H)   

• Optimal solution obtained by Lagrange duality method 
 

• Question: Is the corresponding R-E region achievable by 
practical receivers?   

• Optimal solution simplified as   
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                                                             Practical Receivers   
 Circuit Limitation  
 Existing RF-based EH circuits cannot decode information directly  
 Thus, previously established  rate-energy region only provides 
performance upper bound   

 Practical Receiver Design  
 Time switching 
 Power splitting  
 Antenna switching (a special case of power splitting)  
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                                                             Special Case: SISO AWGN Channel   

R
ate (bits/sec/H

z) 

Energy (joules/sec)  

? 

Time Switching  

Power Splitting 

   Rate-Energy Region   
R-E Region Upper Bound  
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                                                             MIMO Case   

 Power Splitting   
 
 
 
 

  
 Two Special Cases: 
 Uniform Power Splitting:  
 On-Off Power Splitting (Antenna Switching):  

 Time Switching   
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                                                            Rate-Energy Region (Co-Located Receiver)  
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Outer Bound
Time Switching 
Uniform Power Splitting 
Antenna Switching 
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                                                            Concluding Remarks on Wireless 
Information and Power Transfer  
 Exploit MIMO broadcasting for wireless information and 
power transfer   
 wireless power transfer: energy beamforming is optimal 
 wireless information transfer: spatial multiplexing is optimal 
 fundamental tradeoff: rate-energy region 
 separated vs. co-located receivers 
 “useful” interference (from viewpoint of wireless power transfer)      

 Practical circuit limitation 
 existing energy receiver cannot decode information directly     
 practical receiver designs: time switching vs. power splitting   
 how to close the gap from R-E region outer bound? (an open problem) 
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  Cognitive Radio Networks 
  Cooperative Multi-Cell    

  Two-Way Relay Networks  
  Green Cellular Networks  
  Wireless Information and Power Transfer 

 Exploiting multi-antennas in 

 Concluding remarks  

 Overview of the talk       
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                                                             Concluding Remarks       
  MU-MIMO Optimization 

 New applications 
 cognitive radio networks, cooperative multi-cell, two-way relay networks, green cellular 

networks, wireless information and power transfer…. 
 Main challenges  

 generalized linear transmit power constraint: interference-power constraint, per-antenna 
power constraint, per-BS power constraint, harvested power constraint… 

 non-convex rate maximization: broadcast channel, interference channel, relay channel… 
 distributed implementation: imperfect sensing/estimation, limited-rate feedback/backhaul, 

limited computing power…. 
 Useful tools     

 optimization theory:  Lagrange duality, nonlinear programming (GP, QCQP, SOCP, SDP), 
non-convex optimization (branch & bound, monotonic optimization, outer polyblock 
approximation, sequential convex programming…), alternating/cyclic projection, sub-
gradient, ellipsoid method, SDP relaxation, dual decomposition, robust optimization…    

 communication and signal processing: cognitive transmission, cooperative feedback, 
interference diversity, active interference control, uplink-downlink duality,  interference 
alignment, improper complex Gaussian signaling, symbol extension, rate/power profile 
approach, power/rate region duality, network coding, compressive sensing…  

 An ongoing very active area of research   
 coherently integrating expertise from multiple fields such as optimization, signal processing, 

communication theory, information theory, and circuit theory    
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