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Outline 
q  Basis of Compressive Sensing (CS)  

q  Motivation of CS for Cognitive Radio (CR)  

q  Compressive Spectrum Sensing for CR 
Ø Compressive sampling of sparse signals 
Ø Multi-CR cooperative compressive sensing  
Ø Compressive cyclic feature detection  
Ø Compressive sensing framework for random processes   

q  Sparsity-constrained Dynamic Resource Allocation and 
Waveform Design 

q  References 
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Outline 

q  Basis of Compressive Sensing (CS)  
Ø Motivating applications 
Ø Theory 
Ø Algorithms 

q  Motivation of CS for Cognitive Radio (CR)  

q  Compressive Spectrum Sensing for CR 

q  Sparsity-constrained Dynamic Resource Allocation and 
Waveform Design 

q  References 
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Sparse Signals & Underdetermined Systems 

q  Many signals are sparse in some basis 
Ø medical imaging 
Ø  biosensing for DNA microarray 
Ø  remote sensing, astronomy 
Ø  target tracking 

Broadly, how useful is it to study signal sparsity?  

imagery and 
tomography 

remote sensing 
and astronomy  

DSP and 
communication 

event detection 
target tracking 
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lowpass filtering 
for reconstruction 

DSP 101: Nyquist-rate Sampling 

Ø  Sampled signal: 

Q: How fast shall we sample (ADC)? How to recover (DAC)? 

A: Nyquist theorem; linear interpolation formula 

Ø  Recovered signal: 
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q  State of the Art in DSP 
Ø Trends and demands: wider spectrum; higher data dimension 
Ø Limitations: high-speed, high-resolution ADC is costly or infeasible 
   Ex: some signals are band-limited, but with spectrum holes 

             Q: What is the minimum # samples needed?  
                    How to sample?         How to recover?  

Compressive Sampling in DSP 
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Lowest frequency Highest frequency 
Overall nonzero frequency band: WNZ << W 
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Statistics 101: Linear Regression 

q  Linear subset regression  
Ø Goal: find important regressors/predictors/bases 
Ø Assumption: some regressors are irrelevant 

 

Ø Approach: look for sparse x by solving L1-regularized least squares  
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Regressor 

b = A x + e 

Data Model 

Regression Matrix 

Regression Coefficients 
Noise 

q  Applications: gene selection in microarray data analysis, 
                             medical diagnosis, stock selection, …… 
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Sparse Model Selection: Factors That Cause Diabetes 

q  Goal: which are the major risk factors for diabetes 
q  Output: quantitative measure of disease progression 
q  Input: data collected from K = 442 patients 

Ø  can be over-determined (interpretability desired), or under-
determined (e.g., gene expression analysis) 
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Test Data 

Predictors 
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JPEG Compression 

Image Compression 101 
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2.5% allowed (within 2 digits in MSE)  
Scaled K-Term Approximation Error 
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Traditional Compression 

q  Typical Signal Acquisition Scenario  

9 

Q: Can we sample less data in acquisition, with accurate recovery? 

q This 6.1 Mega-Pixels digital camera senses 
6.1e+6 samples to construct an image. 

q The image is then compressed using JPEG 
to an average size smaller than 1MB –        
a compression ratio of ~20. 

Ø Costs in Storage? Processing? Transmission?  Acquisition? 

Sense all the 
n samples 

Compress 
raw data 

Decompress 
for later 

processing nx ℜ∈
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Compression in Acquisition 

q  Compressive Sampling: combine sensing with compressing 
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Single-pixel 
camera @ Rice 
University 
Ø  Single photon        
detector/sensor 

Sense       
K<<n values 

 

Reconstruct x    
from              for 
later processing nx ℜ∈

These K values 
x in a 

compressed 
form 
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What is Compressed Sensing (CS)? 

     Q1: how to design the sampling matrix A for perfect recovery? 
     Q2: how to optimize the non-convex program? 

q  CS gives the design rule of the (non-adaptive) sampling matrix 
q  CS shows when the following programs are equivalent  

          [Chen-Donoho-Saunders’98], [Candès et al’04-06] 
11 

Sparse 
Signal 

Measurement Matrix Measurement 

Sparsity-enforcing: 
Measurement equation: 

Non-Convex Convex 
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Sparsifying Dictionary Sensing matrix 

x Ψ Φ	
 b 

Sparse Signal 
to be recovered 

Compressed 
Measurements 

A = ΦΨ	
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Sampling via Linear Projections 

q  Sparsity on Transform Domain (Sparsifying Dictionary)   

Ø  sparsity measure:  
Ø  exactly S-sparse signal r (l = 0):  

q  Measurements collected from linear projections  
Ø Compressive (linear) Sampling: 

b     =               φ                   r 

r    =     ψ           x	


K x 1 K x N 
N x 1 

locations of  
non-zero entries 
are unknown 

||x||l � R, for some l ⌅ [0, 2), 0 < R⇥⇤
S := ||x||0 � N

K � N

b = Ax

r = �x � RN

b = �r � RK

r or r(t) 

Input signal 
(signal of interest) 
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CS Theory 

q  Restricted Isometric Property (RIP)  
Ø Conditions on A for noise-free, 

compressible and noisy signals 
v Sparsity of signal: local, coherent 
v Incoherence of measurements: 

global, incoherent 
Ø RIP implies tractable, robust and 

stable recovery  

q  Random matrices satisfy the RIP with 
high probability 
Ø  each sample picks up a little (new) 

info about each signal component 
13 

(P0) 

(P1) 

(True x) 

Noise-free case  

(P2) 
min ⇤x⇤1
s.t. ⇤Ax� b⇤22 ⇥ �

   Q: what sampling functions to choose and how many    
      measurements to take so as to enable error-free recovery?  

Noisy case  
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Example: Fourier Measurements  

14 

Sampling basis: Time Domain Sparsity basis: Frequency Domain 

Measure K Samples out 
of N Nyquist samples  

S Nonzero Components 

F (⇥) =
S�

i=1

xi�(⇥ � ⇥i)f(t) =
S�

i=1

xie
j�it t1, . . . , tK
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Example: Fourier Measurements (cont’d)  
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Number of Measurements K (N=256) 

q  Performance (Prob. of inexact recovery) vs. # measurements K 

Ø  (K; N, S): depends on measurement matrix and recovery method 
Ø  RIP conditions are sufficient rather than necessary 
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CS Algorithms (1)  
q  Optimization-based algorithms  

Ø  Lp-norm minimization: (P1), (P2) 

v p = 0: exact sparsity; but requires combinatorial search 
v sparsity weakens as p increases, until p < 2    
v p in [0, 2):    p: [0,1) à nonconvex;    p ≥1 à convex  

Ø  computational load: O(N3); # measurements: O(S log(1+N/S)) 

16 

Ø  Least-absolute shrinkage selection operator (Lasso) 

Ex. (scalar case) closed-form solution 

 Sparse regression [Tibshirani’96], [Tipping’01] 

variable selection + estimation  

min ||x||pp, Ax = b
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CS Algorithms (2)  

17 

q  Greedy algorithms  
Ø Matching Pursuit and its variants (MP, OMP, TOMP, ….) 
Ø  Idea: iteratively identify columns of A (atoms) that  
              are associated with non-zero entries of x 
Ø  Suboptimal performance, low complexity, more samples needed 

v Complexity: O(NS2);   # measurements: O(S logN) 
q  Sparse Bayesian learning  
q  Fast algorithms  

Ø  Iterative reweighted algorithms  
Ø  Iterative shrinkage/thresholding  
Ø  Iterative support detection  

=

significant atoms 

b A 

€ 

x

b = Ax+w

x̂ = CS(b;A)

r̂ =  x̂A = � 
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Quiz: True or False 

1. [T]  [F]  Given a vector signal u, its sparsity order is fixed 

18 

2. [T]  [F]  Compressed Sensing is a new technology that can offer 
stronger compression than traditional compression techniques 

 3. [T]  [F]  CS theory on the RIP conditions reveals the minimal number 
of measurements for recovering a sparse signal from any 
measurement systems  

 4. [T]  [F]  To compress during the sensing process, the sensing matrix 
needs to be random 

 5. [T]  [F]  A random measurement matrix is likely to enable signal 
recovery from compressed samples 

 6. [T]  [F]  When using L1-minimization to recover an unknown vector 
x from b = A x, the formulation works under two conditions: 1) x is 
sparse, 2) A is a fat matrix (under-determined) and satisfies RIP 



Compressive Sensing for Cognitive Radio Zhi Tian, Michigan Tech 

19 



Compressive Sensing for Cognitive Radio Zhi Tian, Michigan Tech 

Outline 

q  Basis of Compressive Sensing (CS)  

q  Motivation of CS for Cognitive Radio (CR)  
Ø  Introduction to CR 
Ø Technical challenges in wideband spectrum sensing 
Ø Roadmap 

q  Compressive Spectrum Sensing for CR 

q  Sparsity-constrained Dynamic Resource Allocation and 
Waveform Design 

q  References 
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Introduction on CR: Spectrum Scarcity 

L  fixed spectrum access policies have 
useful radio spectrum pre-assigned 

US FCC 

inefficient utilization 

0       1        2       3        4       5      6GHz 

P
S

D
 

“Scarcity vs. Underutilization Dilemma” 

Source: Spectrum Sharing Inc.  

J  at any time and location,  
     most spectrum is unused 

21 
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Spectrum Opportunities & Sparsity  
q  Spectrum usage measurements averaged over six locations [SSC] 

Ø  average occupancy over all of the locations: 5.2%; Jan.’04-Aug.’05 

•  max total spectrum occupancy:  
   13.1% (New York City)  
•  min occupancy: 1% (National  
   Radio Astronomy Observatory) 
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Licensed networks  

Unlicensed networks 

Cellular, PCS band 

Improved spectrum 
efficiency 

Improved capacity 

Secondary markets 

Public safety band 

Voluntary agreements 
between licensees 
and third party 

Limited QoS 

Third party access in 
licensed networks 

TV bands (400-800 MHz) 
Non-voluntary third party 
access  

Licensee sets a protection 
threshold 

Automatic frequency 
coordination  

Interoperability 

Co-existence 

ISM, UNII, Ad-hoc 

 √ more users/services  √ higher rates   √ better quality   √ less interference 

Motivating Applications 
q  Future pervasive networks: dynamic spectrum access (DSA) 



Compressive Sensing for Cognitive Radio Zhi Tian, Michigan Tech 

24 

DSA under User Hierarchy  

q  DSA access models for SUs 
Ø  Spectrum Underlay 

v restriction on transmit-power levels  
v operation over ultra wide bandwidths 

Ø  Spectrum Overlay 
v constraints on when and where to transmit 
v avoid interference to PUs via sensing and adaptive allocation  

2nd-ary 
User 

2nd-ary 
User 

Licensee Spectrum Sharing 

QoS guarantees 
FCC diagram 

Secondary User (SU) 

Primary User (PU) 

min rate, prob. of collisions, 
interference, outage rate  
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Underlay vs. Overlay 

q  Spectrum Underlay (UWB) 
Ø  regulatory and dynamic 

spectrum masks 

PSD 

f

PSD 

f

q  Spectrum Overlay (CR) 
Ø  Opportunistic:  
     spectrum is used when PU is idle 
Ø  Cooperative:  
     real-time negotiation with PU 

 

SU SU 

PU1 

PU2 

PU3 
PU1 

PU2 
PU3 

noise 
floor 

US FCC: 3.1-10.6GHz US FCC: 54-700 MHz 
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Cognitive Radio (CR) 
q  CRs opportunistically use the spectrum 

q  Cognitive radio network problems 
Ø  Finding holes in the spectrum: wideband spectrum sensing 
Ø Allocating the open spectrum: dynamic resource allocation 
Ø Adjusting the transmit waveforms: waveform adaptation 

legacy users 

frequency 

po
w

er
 

cognitive radios 

 legacy users cognitive radio 
Secondary User (SU) Primary User (PU) 
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DSA Implications on CR Capabilities 

RX 
TX 

CR 

Dynamic   
Resource 

Access 

RF 
Environment 

- sensing 
- learning 

-  adapting to spectrum 

 
q  Cognizant receiver 

Ø  Observe: sensing with high sensitivity and over wide freq. range  
Ø  Learn: radio etiquettes, traffic pattern, spectrum opportunities statistics  

q  Agile transmitter 
Ø  Act: wideband frequency agility, fast adaptation, dynamic range 

q  Intelligent DRA  
Ø  Decide, plan, & negotiate: spectrum access and radio re-configuration  
Ø  MAC and networking capabilities that support DRA intelligence  



Compressive Sensing for Cognitive Radio Zhi Tian, Michigan Tech 

28 

Challenge 1: Wideband Signal Acquisition 

Ø multiple RF chains, BPFs 
Ø  number of bands fixed  
Ø LO filter range is preset 
Ø  simple (energy/feature) 

detection within each BPF 

Ø  single RF chain   
Ø  flexible to dynamic PSD 
Ø  burden on A/D: fs ~ GHz 
Ø  complex wideband sensing 

q Choices for RF Circuits: multiple NB or single WB ? 

•  Effective SNR (SNReff) for DSP determined by front-end circuits 

Freq. 

A/D LNA AGC 

 LO1 
A/D LNA AGC 

A/D LNA AGC 

 LO2 

 LON 

Band 1 

Band 2 

Band N 

 multiple narrowband (NB) circuits 

NB filter SNReff 

wideband (WB) circuit 
  A/D LNA AGC 

 Fixed LO 

Wideband 
Sensing 

WB filter 

SNReff 

A. Sahai and D. Cabric, IEEE DySpan 2005 Q: How can we alleviate DSP burden on wideband circuit design?  
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Challenge 2: User Hierarchy 

  “IEEE 802.22 requires CRs to sense PU signals as low as -114dBm” 
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Operating Conditions Technical Challenges 

 
Protection of primary 

systems  

Sensing at low SNR  

Modulation classification 

Short sensing time 

Random sources of 
interference and noise   

Robustness to noise uncertainty  

Interference identification  

Q: How can we alleviate noise uncertainty effects at low SNR? 



Compressive Sensing for Cognitive Radio Zhi Tian, Michigan Tech 

Challenge 3: Wireless Fading 
q  If no energy detected on a band, can CR assume PU is absent?   

Ø Detection performance limited by received signal strength 
Ø Wireless: deep fading, shadowing, local interference 

                missed detection, hidden terminal problem 

CR
1 

f multiple (random) paths unlikely  
to fade simultaneously 

Spatial diversity against fading 

f 
PUs f 

CR
2 

f 

Q: How can we collect cooperation gain at affordable overhead?   
30 
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Road Map for Wideband Sensing 

q  Compressed Sensing with sub-Nyquist-rate sampling    
Ø Exploiting the Sparsity in the received signal (in freq. domain) 
Ø Making use of Compressive Sampling to reduce sampling rates 

q  Multiple-CR Cooperative Sensing 
Ø Centralized vs. distributed; with vs. without channel knowledge 

q  Compressed Cyclic Feature based Sensing    
Ø Exploiting the Sparsity in both freq. & cyclic-freq. domains 
Ø Making use of Cyclic Statistics for robustness to noise 

uncertainty and low SNR conditions  

q  Compressive sensing for non-sparse, random signals  

Local Compression +  Network Cooperation 

31 
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Outline 
q  Basis of Compressive Sensing (CS)  
q  Motivation of CS for Cognitive Radio (CR)  
q  Compressive Spectrum Sensing (CSS) for CR 

Ø Compressive sampling of sparse signals  
Ø Multi-CR cooperative compressive sensing  

v Consensus-based distributed optimization 
v Cooperative support detection (MRM, row-Lasso) 

Ø Compressive cyclic feature detection  
Ø Compressive sensing framework for random processes   

v Direct extraction of useful 2nd-order statistics  
v Sampler design  

q  Sparsity-constrained Dynamic Resource Allocation and 
Waveform Design 

q  References 
32 
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1.   Compressive Sampling of Analog Signals  
q  Context: Wideband Spectrum Sensing in Cognitive Networks 

 
q  Goal: recover frequency spectrum xf from samples bt  

Ø  lower-than-Nyquist-rate sampling 
Ø  recovery without distortion or losing frequency resolution    

33 

F-1 

xf rt bt 

Ø  How to sample? 
Ø  How to compress? 
Ø  What is minimum fs  for 

Ø  reconstruct CR signals? 
Ø  identify spectrum bands?  
Ø  extract useful statistics? 

   x(f) Spectrum occupancy ratio 
PSD 

f
wide band of interest 

B1 B2 BN BN-1 

wideband of interest: BW = B 

rnz = Beff/B � 1

local, sparse global, incoherent 

CS-ADC 

1 
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q  Received signal 
Ø  Fine-resolution (Nyquist-rate) representation:  

Ø  Sparsity in frequency:  

q  Linear sampling 
Ø  Compression in time (M/N): 

Ø  Various designs of random samplers 

Sub-Nyquist-rate Sampling 

34 

F-1 
rf rt xt 

Sc 
CS 

recovery 

r(t) 
f 

xt = Scrt

A = ScF�1 is rank-deficient

xt(k) =
�

Sc,i(t)r(t)dt

analog input digital samples 

discrete representation 

CS-ADC 
rf 

rf : N � 1

Sc : K �N

Nnz = ⇥rf⇥0 � N

Nnz � K � N

r(t) : t � [0, NTs]

[Kirolos etal’06, Hoyos etal’08, 
Mishali-Eldar’10]  
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CS for Frequency Spectrum Recovery 

q  Sparse spectrum recovery  
Ø  Sub-Nyquist rate random sampling: 
Ø  Sparse signal recovery 

35 

wideband frequency spectrum 

Compressive samples 

F-1 
rf rt 

xt 
Sc 

CS 
recovery 

r(t) 
f 

analog input digital samples 

discrete representation 

CS-ADC rf 

�
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CS – Sensing Matrix (1)  

q  Measurement matrix A: Random Fourier Measurements 
Ø  Sparsifying Matrix: Ψ = F-1 (DFT) 
Ø  Sensing matrix: Φ ={0,1}KxN that takes K samples out of N 
                              Nyquist samples in time  

36 

Sparsifying Dictionary Sensing matrix 

x Ψ	
 Φ	
 b 

Sparse Signal 
to be recovered 

Compressed 
Measurements A 

Non-uniform sampling: avg. rate reduced, but peak rate = Nyquist  
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CS – Sensing Matrix (2)  

37 

Sensing: tradeoffs in RIP/incoherence and hardware constraints 

q  Sensing matrix Φ: Analog to Information Converter (AIC) 
Ø  Pseudo-random modulation with maximal-length PN sequence, 

followed by low-pass filter and down-sampler [Kirolos etal 2006] 
Ø Uniform reduced-rate sampling; w/ wideband filtering 

Dsp.rice.edu/CS 

banded structure for 
real-time streaming 
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CS – Sparsifying Matrix (1) 

q  Let’s say that the spectrum is localized over sub-bands 
Ø  Spectral hole detection in cognitive radio applications: how to 

coarsely identify which sub-bands are occupied? 

38 

F-1 

xf rt 
bt 

Sc 

zs 

Ψ	


Q: Given the signal of interest, is the sparsifying matrix fixed?  

PSD 

f
wide band of interest 

B
n

Q:  how can we rapidly estimate  

A: (spectral) edge detection + CS via wavelets  

Ø Modeling assumption: spectrum is block sparsity or approx. 
piecewise smooth à sparse in the wavelet domain   
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CS – Sparsifying Matrix (2) 

q  Multi-Step CS (MSCS) – estimating spectrum rf  then zs 
Ø  compression ratio K/M determined by effective bandwidth Beff/B 

39 

q  One-Step CS (OSCS) – directly estimating edges zs 

xf 

zs 

 
Ø  Permissible compression ratio K/M is determined by #bands  
Ø  Improved performance and convergence given the same #samples 
Ø  Simple to implement 

Useful to identify a good sparsifying matrix 
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F-1 
rf rt 

xt 
Sc 

CS 
recovery 

r(t) 
analog input digital samples 

discrete representation 

CS-ADC zs 

2   CS for Edge Spectrum Recovery  

Edge detection 
Wavelet Diff 

zs 

Ø  Frequency spectrum rf 

Ø  Edge Spectrum zs 

Ø  bypasses spectral estimation 
Ø  effects stronger compression 

 40 
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[Tian-Giannakis’2007]; [Polo-Wang-Pandharipande-Leus’2009] 

OSCS: Spectrum hole detection 
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3  Cooperative Spectrum Sensing 

q  Reconstruction of sparse spectrum at individual CRs 
Ø  Spectrum reconstruction for received signal (without CSI) 

Ø  Spectrum reconstruction for transmitted (PU) signals 
v Assumes channel knowledge/estimation (with CSI) 

 

ŝp,f = CS
�
x(j)

t ;S(j)
c F�1H(j)

p,f

⇥

r̂(j)
f = CS

�
x(j)

t ;S(j)
c F�1

⇥

42 

Fading 
Channel 

Hp,f
(j)

 

Tx PU 
spectrum 

Rx CR 
spectrum 

 compressive 
samples 

N x 1 K x 1 
sp,f F-1

 

Rx CR 
signal 

 
r(j)f r(j)t

x

(j)
t

Sc
(j)

 

CS-ADC 

N x 1 N x 1 

CSI j Sparse, 
common 

Sparse, CR dependent 

CR 
j 

Q: How to cooperative with or without CSI? 

3 
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f 

Signal Model 
     “Frequency-domain” 

PU Tx signals Channels 
(PUàCR) Innovation + Noise  

X 

+ 

+ = 

w(j)
fr(j)

c,fh(i,j)
p,f

s(i)
p,f

CR 
j 

f 
f

f

f
X 

  0 0 1 1 0 0 0 1 
Freq occupancy state d(j) 

SU Received Signal  

Ø  i :  1..I  PU Tx 
Ø  j :  1..J CR Rx Ø  m: 1.. M freq slots at  fm  

r(j)
f =

�I
i=1 diag

⇥
h(i,j)

p,f

⇤
s(i)
p,f + r(j)

c,f + w(j)
f

= H(j)
p,fsp,f + r(j)

c,f + w(j)
f

f 

CR j: 

43 
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Centralized Cooperative Sensing 
q  Take incoherent measurements at each CR 

q  Reconstruct independently           Independent CS 
Ø Local CR receiver j makes local decision on the sparse spectrum 
Ø  FC makes global decision via averaging all local decisions 

q  Reconstruct jointly                        Joint CS 
Ø  FC acquires all local compressive measurements            
Ø  FC performs joint sparse spectrum reconstruction: 

v FC needs to know all measurement matrices and channel info 

globally optimal; but, issues in robustness, complexity & power costs 

min
sp,f

⇥sp,f⇥1 +
J⇥

j=1

�j

���x(j)
t � S(j)

c F�1
M H(j)

p,fsp,f

���
2

2

A(j)
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Consensus-based Distributed Sensing 

Decentralized 

Scalability 
Robustness 
Lack of infrastructure 

q  Centralized Lasso: 

q  Decentralized equivalence 

Ø  Constraints impose consensus across the network 

 solvable locally 

Exchange of local  
   estimates       

45 

ŝ(j)
p,f : min

s(j)
p,f

⇥

⌅
J⌃

j=1

�
���x(j)

t �A(j)s(j)
p,f

���
2

2
+

1
J

���s(j)
p,f

���
1

⇤

⇧

ŝp,f : min
sp,f

⇥

⌅
J⌃

j=1

�
���x(j)

t �A(j)sp,f

���
2

2
+

1
J
⇥sp,f⇥1

⇤

⇧

s.t. s(j)
p,f = s(k)

p,f ⇥k � Nj

s.t. s(j)
p,f =

�
k�Nj

�jks
(k)
p,f

ŝ(j)
p,f = ŝp,f , �j

ŝ(j)
p,f
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q  Alternating-direction method of multipliers (ADMoM) 
Ø Augmented Lagrange function 

Ø  Iterative implementation 
v Each CR j reconstructs locally: 
 

v Each CR j updates multipliers: 

    and broadcasts one-hop:   
    

Decentralized Joint CS Algorithm 

s(j)
p,f (t + 1) = arg min

s(j)
p,f

L
�
s(j)
p,f ;�, zj(t), c,

⇤
s(k)
p,f (t)

⌅

k�N(j)

⇥

zj(t + 1) = zj(t) +
c

2

�

⇤s(j)
p,f (t + 1)�

⇧

k�N(j)

wjks
(k)
p,f (t + 1)

⇥

⌅

L
⇥
s(j)
p,f ;�, zj , c, {s̄(k)

p,f}k�N(j)

⇤
=

���s(j)
p,f

���
1

+ �
���x(j)

t �A(j)s(j)
p,f

���
2

2

+ zT
j s(j)

p,f + c
2

���s(j)
p,f �

⇥
k�N(j) wjks̄

(k)
p,f

���
2

2

s(j)
p,f (t + 1) �⇥ CR k, ⌅k ⇤ N (j)

Ø  Scalable: one-hop communication, local computation  
Ø  Globally optimal: guaranteed if the network is connected  
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Cooperative Compressed Sensing 
P

ro
b.

 o
f D

et
ec

tio
n 

Prob. of False Alarm  

Independent CS:  
majority vote 

Joint CS:  
decentralized consensus 

2 PUs, 3 CRs, SNR=-5 dB;  compression = 50%, with CSI 

Ø  Performance gain by decentralized fusion over majority vote 
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q  Idea: CRs collaborate to form a spatial map of the spectrum 
 

 

Ø Goal:  

Ø  Specifications: coarse approx. suffices 

Ø Approach: basis expansion of  

Ø Compressive Sampling possible 
    to form the PSD data 

4  Spectrum Cartography 

given the PSD �r(f) = �(f ; vr) at position vr, find �(v, f), �v

48 

�(v, f), �v

�(v, f)

[Bazerque-Giannakis etal.; Asilomar’2008, T-SP’2010, ICASSP’2011] 

4 
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Modeling  

" Transmitters           

" Sensing CRs           

" Frequency bases          

" Sensed frequencies          

Sparsity present in space and frequency          
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" Superimposed Tx spectra measured at CR r 
   

 

Ø Average path-loss 
Ø Frequency bases 
 

" Linear model in        and       

 
 
 

Space-Frequency Basis Expansion 

yi Hi
= Hsy =

�s� �2
r

⇥vs � vr⇥
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ŝ� : min
s

1
2

Nr�

i=1

⇥yi �His⇥2
2 + �

N�

j=1

sj

51 

Sparse Regression 
q  Seek a space s to capture the spectrum measured at all CRr 

Ø Lasso:  

           Soft threshold shrinks noisy estimates to zero 
           Similar to Akaike’s Information Criterion,  
           it penalizes the number of parameters 
           spectrum selection + estimation via || . ||1 penalty 

q  Power spectrum is non-negative           non-negativity constraints 

 

q  Decentralized cooperation: distributed consensus optimization 
  

s.t. sj � 0, j = 1 . . . N := NsNb + Nr
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Power Spectrum Cartography  

  NNLS    Lasso 

 
"  5 sources 
"  Ns = 121 candidate locations,  Nr = 50 CRs 

 

Ø   Sparsity-unaware NNLS is prone to false alarms 
Ø  As a byproduct, Lasso localizes all sources via variable selection 
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Tracking Capabilities 

q  Adaptive implementation via recursive Lasso  
     [Giannakis etal.; ICASSP’09, TSP’12] 

53 

" Normalized error 

" Non-stationarity:  one Tx exits at time-slot  t=650  

 batch  solutions 
one per time-slot  

path of distributed  
online updates  

 time-slot t 

⇥ŝ� s⇥ /⇥s⇥
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q  Cooperative spectrum sensing without CSI 
Ø CRs recover signals of different amplitudes, but common support 
Ø No need for channel or location information 

 
 

5   Cooperative Spectrum Support Detection 

²  Unknown environments 
²  Known sampling strategy  

5 
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Objective of Cooperation 

q  Tradeoff between diversity vs. complexity gains 
Ø To find cooperative sensing solutions with desired tradeoff 
Ø To delineate the tradeoffs in cooperative CR sensing 

Multi-CR 
Cooperation Gain  

competing 

SNR Gain  

Sensing Time 

Compression 

Complexity Gain  
to reduce per-CR costs 

Diversity Gain  
to combat fading 
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System Model 

Ø  #channels: N 
Ø  spectrum sparsity: I <N 
Ø  # CRs: J  
Ø  # channels/CR: M<N 

q  Wideband spectrum: freq. selective in wide band, flat per channel 
q  Channel assignment: M out of N channels per CR, uniformly assigned 

56 
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Signal Model 

q  Spectrum perceived at individual CR 
Ø  fading channel matrix (CSI): diagonal, unknown  

q  Received spectrum after selective filtering 
Ø  channel selection matrix: binary-valued (M<N)  

q  Discrete-time samples  
Ø  (random) sampling matrix (K ≤ M): 

q  Cooperative spectrum sensing (CSS): decides PU freq. occupancy 
Ø  cooperative estimation à cooperative support detection 

{ }0,1B M N
j

×
∈

r H sj j f= ,r B rs j j j=

F: DFT matrix 

Fading 
Channel 

Hj 

Selective 
Filtering 

Bj 

Compressive 
Sampling 

Φj 

r H sj j f=

,r B rs j j j=

-1x F B r wj j j j j=Φ +

Tx PU 
spectrum 

Rx CR 
spectrum 

monitored 
channels 

sf xj

 samples 
 (in time) 

N x 1 M x 1 K x 1 

Hj 2 CN⇥N

�j 2 CK⇥M
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CSS via a Separate Approach (SA) 

q  Step 1: (sparse) spectrum recovery per-CR 
Ø  recover partial received spectrum: 
Ø  make local (binary) decisions for the monitored M channels 

v  Per-CR samples are incomplete: only captures partial spectrum  
v CRs are separable: no cooperation during recovery 

q  Step 2: decision fusion at Fusion Center  
Ø  do majority vote: each channel is monitored by avg. J(M/N) CRs 

v reduction in sampling costs: M/N; additional K/M compression 
v detection diversity: J(M/N)  

xj �⇥ rs,j

r H sj j f= ,r B rs j j j=

Fading 
Channel 

Hj 

Selective 
Filtering 

Bj 

Compressive 
Sampling 

Φj 

Tx PU 
spectrum 

Rx CR 
spectrum 

monitored 
channels 

sf xj

 samples 
 (in time) 
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q  Key observation: received spectrum matrix is low rank 
Ø  Rank order = size of the nonzero support of the wide spectrum 

Joint CSS: Low Rank Property 

Channel H1 Filtering B1 Sampling Φ1 Tx PU 
Rx CR 

sf

samples 

Channel HJ Filtering BJ Sampling ΦJ 

x1

xJrJ

r1 rs,1

rs,J

: : : : 

is sparse is low rank 
59 

Rf = [r1, . . . , rJ ]
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CSS based on MRM 

q  Task: joint spectrum recovery prior to decision making 
Ø  capitalize on the low rank property 
Ø  recover Rf  of all J CRs:  

 
q  Matrix rank minimization (MRM) 

 

Ø Rank function rank(.): # of nonzero singular values of matrix  

xj = �jF�1Bj⇤ ⇥� ⌅
Aj

rj + wj

�J
j=1 ⇥xj �Ajrj⇥2

2

min
Rf

rank(Rf ) + � kxt �Avec(Rf )k22

A = diag {A1, . . . ,AJ} w̃ =
⇥
wT

1 , . . . ,w
T
J

⇤T

xt =
⇥
x

T
1 , . . . ,x

T
J

⇤T
= Avec(Rf ) + w̃
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CSS based on MRM (Cont.) 

q  Reformulation of MRM 
Ø  the function rank(.) is combinational, NP hard 
Ø  rank(.) can be relaxed by nuclear norm 

v Nuclear norm || . ||*: sum of singular values of the matrix 

q  CSS via Nuclear norm minimization 

q  Sensing decision 

user cooperation  
during reconstruction 

convex 

min
Rf

kRfk⇤ + � kxt �Avec(Rf )k22

min
Rf

rank(Rf ) + � kxt �Avec(Rf )k22

d̂f [n] =

0

@
JX

j=1

|rj [n]|2 � ⌘

1

A , 8n 2 [1, N ]

61 



Compressive Sensing for Cognitive Radio Zhi Tian, Michigan Tech 

The Role of Low-Rank Property  

q  If the nuclear norm term is absent …. 
Ø MRM reduces to conventional least-squares (LS) 

 

v error penalty terms are completely separable 
    à no mechanism to enforce user cooperation 
v The wideband spectrum rj is partially unobservable from xj  

q  Low rank property enables cooperation from measurements 
that are otherwise non-coupling and incomplete 

min
rs,j

⇥xj ��jF�1rs,j⇥2
2, j = 1, . . . , J

min
Rf

8
<

:kxt �Avec(Rf )k22 =
JX

j=1

kxj �Ajrjk22

9
=

;
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Simulations – Cooperative Support Detection 

q  ROC curves (N=20, I=2, J=20, M=4, SNR = -20, -15, -10dB)  

Ø  MRM makes better use of user diversity 
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Ø  MRM is robust to compression 
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Tradeoff Analysis 

q  Detection diversity  
     [Daher-Adve, T-AES’10] 

 
 
q  Sampling cost 

Ø Given user diversity, hardware complexity is measured by M 
Ø  Smaller M results in lower sampling cost per CR 
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0
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traditional SA, M=6
traditional SA, M=7
traditional SA, M=8
traditional SA, M=9
proposed MRM, M=4

Pd = 0.5
MRM-based approach has 
better capability in collecting 
effective detection diversity 
than separate approach (SA), 
given the same user diversity SA (M = 4…9) 

MRM (M = 4) 

D =
@ Pd

@ SNR

����
Pd=0.5
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Tradeoff Results 

q  Tradeoff in diversity gain vs. complexity gain 
Ø Detection diversity & sampling cost are competing elements 
Ø Given same sampling costs, MRM attains higher diversity gain 
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q  Cooperation as a multiple measurement vector (MMV) problem  
q  Row Lasso for the MMV problem 

Ø  Similar to Group Lasso in centralized form [Yuan-Lin’06] 
Ø Coupled variables in mixed-norm  

 
 

6  Decentralized Support Detection  

Q: What to consent on?  

 
q  Distributed Implementation 

6 

66 

[Ling-Tian; ICASSP’2011] 
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q  Energy-based Consensus 
Ø Energy vector 

Ø Consensus optimization formulation 

 
 

Consensus-based Support Detection  

Centralized 
R-Lasso: 

solved locally 

exchange 
in one-hop 
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q  Alternating-direction method of multipliers (ADMoM) 
Ø Augmented Lagrange function 

Ø  Iterative implementation 
v each CR i reconstructs locally: 

v each CR i updates multipliers: 

v broadcasts local decision one-hop:   
    

Decentralized Algorithm 

68 

fast convergence 
w/ thresholding 
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Cooperative Support Detection 
q  20 channels, 5 PUs, 6 cooperative CRs, SNR = 5dB, 25% compression 

69 69 
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7  Compressive Cyclic Feature Detection 

Cyclic Feature Detection and Classification 
using Compressive Sampling 

q  Issues with cyclic feature detection  

 

✘ Cyclostationarity is induced by OVER-sampling  
   à excessive sampling-rate requirements  
✘ Cyclic statistics converge slowly with finite samples  

   à long sensing time 

 
q  Cyclostationarity-based approach for detection  
✔ insensitive to unknown signal parameters 
✔ cyclic statistics robust to multipath  
✔ resilient against Gaussian noise 
✔ can differentiate modulation types and separate interferences 
 

7 
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Cyclostationarity in Modulated Signals 
q  Modulated signals are cyclostationary processes 

Ø Cyclic features reveal critical signal parameters:    
           - carrier frequency  
           - symbol rate  
           - modulation type 
           - timing, phase etc.  
Ø Non-cyclic signals (e.g. noise) do not possess cycle frequencies  
 

t t t+τ 
τ τ 

t+T0 t+T0+τ T0 

τ+T0 

t1 t1+τ 
τ 

),(),( 0 ττ TtRtR xx +=

x(t) 
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Why Cyclic Statistics (1) 
q  Energy detection vs. feature detection  

  

 

spectrum density (α = 0) spectral correlation density (SCD) 

mkfα =
High SNR 

Low SNR 

Multi-harmonics 
peaks at 

f 

α	


α	


f 

no noise components when α ≠ 0  

[Sahai-Cabric’05] 

f 

f 
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Why Cyclic Statistics (2) 

Magnitudes of estimated SCD 
a)  a BPSK signal corrupted by white noise 

and five AM interferences  
b)  the BPSK signal alone 
c)  the white noise and five AM interferences 

(a) 
(b) 

(c) 

✔  overlapping in PSD, separable in SCD 

Spectral Correlation Density (SCD) 
 [Gardner’88] 
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Wideband Cyclic Feature Detection 

q  Cyclic feature detection over a wide band 
Ø Goal is to perform simultaneous detection of multiple sources 
Ø Need to alleviate the sampling rates and sensing time 

q  Exploiting signal sparsity in two dimensions 
Ø  Sparsity in frequency domain  ß low spectrum utilization 
Ø  Sparsity in cyclic-freq. domain ß modulation-dependent cycles 

74 



Compressive Sensing for Cognitive Radio Zhi Tian, Michigan Tech 

Signal Model 

Ø Wide band of interest: 

Ø Multiple PU signals: 

Ø Received signal:  

Ø Cyclic spectrum (SCD):  

Ø  Folded SCD of sampled signal: 

v Aliasing-free condition: 
Cyclic spectrum               of digital 
samples. The central diamond region 
is the non-zero support [Gardner’91] 

max2
f fα
+ ≤

x(t) =
�I

i=1 xi(t) + w(t)

xi(t), i = 1, . . . , I

[�fmax, fmax]

fs = 1/Ts � 2fmax

S(�, f) nonzero for

cyclic-freq 

freq 

S(↵, f) =
1

Ts

1X

m,n=�1
S

✓
↵+

m

Ts
, f � m

2Ts
� n

Ts

◆
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Problem Setup 

q  Cyclostationarity in communication signals  
Ø  time-varying (TV) covariance is period in time 

q  Sparse signal recovery 
Ø  to reconstruct Sx(α,f) from samples z[n] at sub-Nyquist rate  

CS-ADC 
(sub-Nyquist) compressive 

samples 
Sx(α,f) sparse 

Sparse Signal 
Recovery recovered 

SCD 

Sx(α, f)  

zt = Axt

rx(n, �) = E{x(nTs)x(nTs + �Ts)} = E{xt(n)xt(n + �)}
rx(n, �) = rx(n + kP, �), �n, k, �

✘  2D cyclic spectrum is NOT LINEAR in the time-domain samples         
        à CS framework not immediately applicable  

x(t)� xt zt : {z[n]}

M

N
fs
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Defining Cyclic Spectrum  

q  2nd-order Statistics: covariance and spectra  

Time-varying Covariance  

Cyclic Covariance  Time-varying Spectrum  

Cyclic Spectrum SCD  

r̃(c)
x (a, �)

a ⌅ [0, N�1]⇥⇤ � =
1

NTs
a

s(c)
x (a, b)

sx(n, b)

rx(n, �)

b ⌅ [0, N�1]⇥⇤ f =
1

NTs
(b� N � 1

2
) ⌅(�fs

2
,
fs

2
)

Ø  Cyclic-frequency:  
Ø  Frequency:  

FT in n (shifted) 

FT in v 

Q: How can we relate sub-Nyquist data and sparse SCD linearly?  

zt = Axt

E{xt(n)xt(n + �)}

77 



Compressive Sensing for Cognitive Radio Zhi Tian, Michigan Tech 

Vector-form Relationship (1) 

q  Linking time-varying covariance matrix with cyclic spectrum 
Ø TV covariance matrix: 

Ø Degree of freedom: N(N + 1)/2 

Ø Vectorized cyclic spectrum   

 

rx = [rx(0, 0), rx(1, 0), · · · , rx(N � 1, 0), rx(0, 1), rx(1, 1),

· · · , rx(N � 2, 1), · · · · · · , rx(0, N � 1)]T ⇥ R
N(N+1)

2 .

Rx =

�

⇧⇧⇧⇧⇧⇤

rx(0, 0) rx(0, 1) rx(0, 2) · · · rx(0, N�1)
rx(0, 1) rx(1, 0) rx(1, 1) · · · rx(1, N�2)
rx(0, 2) rx(1, 1) rx(2, 0) · · · rx(2, N�3)

...
. . .

...
rx(0, N�1) · · · · · · · · · rx(N�1, 0)

⇥

⌃⌃⌃⌃⌃⌅

Rx = E{xtxT
t }

s(c)
x = vec{S(c)

x } = (I� F)
�N�1

�=0 (DT
� �G�)BT

⌅ ⇤⇥ ⇧
:=T

rx
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Vector-form Relationship (2) 

q  Linking time-varying covariance matrices 
Ø TV covariance of compressed data 

v Finite-sample estimate: 

Ø Degree of freedom: M(M + 1)/2 

Ø Relationship:  

q  Linear representation for compressed covariance 
 

 

rz = [rz(0, 0), rz(1, 0), · · · , rz(M � 1, 0), rx(0, 1), rz(1, 1),

· · · , rz(M � 2, 1), · · · · · · , rz(0, M � 1)]T .

rz = QMvec{ARxAT } = QM (A�A)vec{Rx} = �rx

Rz = E{ztzT
t } �R M�M

zt = Art �⇥ Rz = ARxAT

N(N + 1)
2

� 1
M(M + 1)

2
� 1

R̂z = 1
L

�
lzt,lzT

t,l
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Sparse Cyclic Spectrum Recovery 
q  Reformulated linear relationship 

Ø                                                 under-determined  

q  Prior Information 
Ø           is highly sparse  
Ø           is positive semi-definite (psd) 

rz = �rx

� : M(M+1)
2 � N(N+1)

2

s(c)
x = Trx

s(c)
x

Rx

min
rx

⇥Trx⇥1 + � ⇥rz ��rx⇥2
2

s.t. Rx is psd, with vec{Rx} = PNrx. Convex! 

q  L1-norm regularized LS (LR-LS) 
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Summary of Reconstruction Steps 

  
TV Covariance 

Estimation 
 

Sparse Signal 
Recovery 

LR-LS 

Cyclic SCD 
estimation 

 

r̂x
r̂z

ŝ(c)
x = Tr̂x

ŝ(c)
x

R̂z = 1
L

�
lzt,lzT

t,l

{zt,l}l
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   Spectrum Occupancy Estimation 
q  Band-by-band estimation 

Ø Region of relevance 

Ø Relevant SCD vector for band n 

fs

2
�fs

2

�fs

fs

ff (n)

�

(�, f) :

�
⌅⇤

⌅⇥

f +
�

2
= f (n)

|f | +
|�|
2
� fmax

(ai, bi) :

⇥
⇧⌅

⇧⇤

bi +
ai

2
= n

��bi�N�1
2

�� +
|ai|
2
⇥ fmaxN

fs
⇥N

2

f (n) =
n� N�1

2

N
fs ⇥

�
�fs

2
,
fs

2

⇥

Is f (n) occupied or not?

ĉ(n) :
�

ŝ(c)
x (ai, bi)

⇥

i
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Multi-Cycle GLRT 
q  Binary hypothesis test on band n 

 
Ø                                 : unknown true SCD; multiple cyclic freq. 
Ø                        : noise statistics determined mainly by  
                             finite-sample effects, not ambient noise     

q  GLRT formulation 
Ø Test statistics: 
Ø Binary decisions by thresholding 

q  A single wideband DSP, as opposed to multiple NB filters 

83 

�
H1 : ĉ(n) = c(n) + �
H0 : ĉ(n) = �

T (n) = (ĉ(n))H��
�1ĉ(n)

c(n):
�
s(c)

x (ai, bi)
⇥

i

� : N (0,��)

q  Fast algorithms possible based on  
     modulation type, say, for BPSK  
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Simulation: Robustness to Rate Reduction 
Probability of Detection vs. Compression Ratio (PFA= 0.1, N=32, L=200 blocks) 

Ø  Monitored band |fmax| < 300 MHz 
Ø  2 sources (noise-free): PU1 - BPSK at 150MHz;  
    PU2 - QPSK at 225MHz; Ts=0.02667µs 
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Ø  Cisco 802.11 DSSS 
     Spread spectrum 

50% compression 50% compression 

84 



Compressive Sensing for Cognitive Radio Zhi Tian, Michigan Tech 

Simulation: Robustness to Noise Uncertainty  

Ø  outperforms energy detection (ED) 

Receiver Operating Characteristic (ROC): PD vs PFA (SNR=5dB, 50% compression) 

Ø  insensitive to noise uncertainty 

ED  
(noise uncertainty = 0, 1, 2, 3dB) 

cyclic 
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Classification using Cyclic Statistics 
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c fI αα @Ø  1D: cyclic-frequency domain profile (CDP) 

Ø  2D: Spectral Correlation Density (SCD) 

[Kim etal. 2007] 
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Simulations: Classification 

Confusion Matrix (SVM Classifier) 

Ø When compression ratio is adequate for detection, 
classification accuracy is comparable to non-compression 

Ø Good separation of narrowband from spread spectrum 
Ø Considerable confusion among spread spectrum signals   

BPSK QPSK DS-BPSK DS-QPSK 

BPSK 95.45% 0% 4.55% 0% 

QPSK 0% 90.9% 9.09% 0% 

DS-BPSK 9.09% 0% 59.09% 31.82% 

DS-QPSK 4.5% 4.5% 36.46% 54.54% 
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Power Spectrum Recovery 

q  Stationary processes as a special case of cyclostationary ones 
        [Tian etal. (JSTSP’2012); Leus etal. (SPL’2011)] 

Ø  2D cyclic spectrum reduces to 1D power spectrum  

 

Ø  # measurements rz generated by cross-correlations: M(M+1)/2 
Ø  #unknowns {rx(v)} in power spectrum Rx: N  

8 
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Power Spectrum Blind Sampling 

M(M + 1)
2

� 1

q  Minima sampling rates for non-sparse signals 
Ø Lossless recovery of power spectrum as long as M(M+1)/2 ≥ N 
Ø Asymptotic compression ratio 
 

N

N-1 M M/N 
1 2 1 
5 4 0.667 
9 5 0.5 
49 12 0.24 
128 20 0.156 

 
q  Sampler design [DSP’2011] 

Ø minimal sparse rulers 
[Leech’1956]  

q  Stronger compression allowed 
for sparse signals  
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9  CS Framework for Random Processes 
q  CS for linear deterministic systems  

Ø Goal is perfect signal reconstruction [Venkataramani-Bresler’2001; 
Donoho etal.; Candes etal.; Mishali-Eldar’2010] 

q  CS for random processes  
Ø  Perfect recovery of original signals using existing CS is over-kill  


✗ high computation costs   ✗  wasteful of sampling resources  
Ø Goal: direct extraction of useful (2nd-order) statistics, which has 

less degrees of freedom than the random signal itself  
     ✔ stronger compression allowed for sparse signals 
     ✔ enables compression for non-sparse signals  
     ✔ reduced computational load, bypassing signal recovery 
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Intuition for Stationary Signals  

q  Linear measurement systems 
Ø Measurements: cross-correlation of compressive samples z[k] 
Ø Unknowns: cross-correlation or cyclic statistics of input x[n] 

91 

x[ν]	  
x[n]	  

A	  
z[µ]	  
z[k]	  

K	  samples	  in	  TB 

N	  samples	  in	  TB 
ν 

µ 
k 

	  n 

Input signal: stationary 
Ø  #cross-correlation = N 

CS-ADC output: cyclostationary 
Ø  Compression ratio: K/N 
Ø  #cross-correlation = K2 

Over-determined when N ≤ K2  

even when x(t) is non-sparse  

   CS for random processes: extract 2nd-order statistics directly! 
   à sub-Nyquist-rate sampling is feasible for non-sparse signals  
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Intuition for Cyclostationary Signals 

Overdetermined when N2 ≤ K2L, even when cyclic spectrum is non-sparse 

q  Compressed cyclic feature based wideband sensing 
      [ICC’2011, JSTSP’2012] 

Ø CS with time span over multiple cyclic periods [CAMSAP’11] 
Ø  Simple reconstruction of cyclic power spectrum  
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x[ν]	  
x[n]	  

A1 

z[l]	  
z[k]	  

K	  sub-‐Nyquist	  samples	  per	  block,	  L	  blocks	  
	  

N	  samples	  per	  block,	  L	  blocks	  

A2 A3 A	  

ν 

l 
k 

	  n 

Cyclostationary, 
with period N 
Ø  N(NL)  

Cyclostationary, 
with period KL 
Ø (KL)2 
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Sampler Design 

q  Sampler structure for periodic sampling 
Ø  Sampling devices with M branches [Mishali etal.; Hoyos etal.] 
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Alternative View of Periodic Sampling 

q  The sampling device can also be viewed as [Leus etal.’2011] 
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2nd-order Statistics in Periodic Sampling 
q  The relationship between cross-correlations             and 

auto-correlation          can be perceived as: 

Ø Every block of               values leads to                   values! 
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Reconstruction 

q  Collecting all the correlation values              and          into 
vectors      and     , it holds that [Leus etal.’2011] 

Ø Rc: a collection of the deterministic correlation values  

q  Allow rate compression without sparsity constraint on x(t) 
Ø  If Rc has full column rank à solvable using least squares (LS)  

v Necessary condition: 
q  Sparse power spectrum 

Ø  exploiting the sparsity will lead to even further compression 

 

r
y

= R
c

r
x

ry r
x

ryiyj [k]

rcicj [n]

r
x

[n]

M2 � N
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Multi-Coset Sampling Problem 

q  Goal: select M rows of identity matrix IN to form the sampler 
coefficients ci[n] that guarantee the full column rank property  
of Rc 

Ø Every row of Rc will have only a single one.  

q  To achieve full column rank Rc à select proper combination 
of rows of IN , such that every column of Rc has at least a 
single one.   
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Multi-Coset Sampling - Example 

Rc is full 
rank! 

First 4 columns have 1’s! 

Automatically, last 3 
columns have 1’s! 

Single one at each row, 
all columns have one(s) 

Minimal solution can be approached by   
minimal length-           sparse rule problem! bN/2c
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Multi-Coset Sampling using Sparse Ruler 
0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 5 6 8 10

Length-10 ruler with complete marks

Length-10 sparse ruler

0 1 2 3 6 10
Minimal length-10 sparse ruler

Ø Connection between multi-coset design and sparse ruler problem 
guarantees the full rank property of Rc 

 à uniqueness of the estimates as solutions to simple LS problems 

Ø Adopting minimal length-            sparse rules  
      à reaching the possible minimum compression rate 

bN/2c
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Outline 

q  Basis of Compressive Sensing (CS)  

q  Motivation of CS for Cognitive Radio (CR)  

q  Compressive Spectrum Sensing for CR 

q  Sparsity-constrained dynamic resource allocation and 
waveform design 
Ø Transceiver structure for joint DRA and waveform adaptation 
Ø Multi-user DRA game formation  
Ø  Sparse channel estimation and interference sensing  
Ø  Sparsity-constrained DRA games 

q  References 
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Options for Waveform Adaptation 

q  Multi-Carrier Methods 
Ø  dynamic subcarrier selection 
Ø  adaptive power loading 

PU PU 
SU SU SU 

q  Digital filterbank pulse shaping 
for serial transmissions 
Ø  dynamic spectral mask 
Ø  adjustable filter weights 

q  Waveform library 

f 

[T-SP’06] 
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Setup for Dynamic Resource Management 

f 

Tx1

Rx2

Tx2
Rx1

TxNu
RxNu

PSD 2 

PSD 1 

f 

f 
Spectral leakage 

Spectrum opportunities 

q  A unified treatment of sensing, adaptation and decision at PHY 
crucial for practical QoS guarantees 

Ø DRA: Dynamic Resource Allocation among multiple CR users 
Ø  FAWA: Frequency Agile Waveform Adaptation in dynamic channels 
Ø Cognition: identification of RF resources in various domains  
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Basic CR Transceiver Model  
q  Generalized Signal Expansion Framework  [JSTSP’2011] 

Ø OFDM-like: digital subcarriers replaced by expansion functions 
v representation and utilization of radio resources  

Ø  enable diverse radio platforms and combinations 
v FDM (OFDM), TDM (SCCP), CDM (DS-CDMA) 

Channel 
Estimation 

Detection  

or  

DRA 
: 
: 

: 
: : 

 

Channel 
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Goal and Design Parameters per CR  

q  Design parameters 
Ø Tx: linear precoding 
Ø Tx: power loading 
Ø Rx: linear MMSE, capacity-preserving 

q  DRA Objective: spectral efficiency 

q  Transmission Constraints 
Ø Transmitted PSD: 
Ø Average power constraint (PCq): 
Ø  Spectral mask constraint (MCq): 

q  Sensing requirements: channel Hq, interference covariance Rq  

SINR-related: 
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Multi-User DRA Game  
q  Centralized global optimization 

q  Distributed game formulation 
Ø  Per-user basis 

v Self-interested local optimization 
v No knowledge of other CRs’ actions  

Ø  Iterative implementation  
      for each CR in its turn to take action: 

v Dynamic sensing: estimate channel & sum interference 
v DRA optimization: find best response strategy 

q  Best response via diagonalization and power water-filling 
v Waveform adaptation: update PSD at TX  
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Sparse Channel Estimation  
q  Channel Parameters 

: 
: 

: 
: : 

 

Channel 

 
q  Sparsity  

Ø  Sparse multipath gq
 

Ø Oversampling by 
multiple Rx bases 

q  Ideas: 
Ø Estimate gq, then Hq 

Ø Compress by turning 
off some basis filters 

    [SPAWC’10] 
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Sparse Interference Sensing 

q  Interference sensing task 

q  Sparsity: representation of the composite interference on 
sparsifying basis 

q  Idea: use of auxiliary filter for compressive sampling 
 
Ø  Sparse recovery 

Channel 
Estimation 

Detection  

or  

DRA 
: 
: 

: 
: : 

 

Channel 
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Flexible Waveform Adaptation and DSA 

Strong interference case  
à (O)FDMA type; overlay 

Weak interference case  
à SS type; underlay 
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Sparsity-constrained Waveform Adaptation 

q  Sparsity in the signal expansion model 
Ø Available resources are large in a wideband network à large K  
Ø Effective resources needed per CR are small 

v expansion functions may be redundant to induce flexibility 

q  Sparsity-constrained optimization   
Ø Approach: limit the number of active expansion functions 
Ø Benefits 

v  little or no performance loss  
v reduced computation and implementation costs 
v fast convergence of iterative DRA games 
v facilitates limited-rate feedback  
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Capacity under Sparsity Constraints 

lower sparsity à less hardware costs, faster convergence, less feedback 
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Outline 

q  Basis of Compressive Sensing (CS)  

q  Motivation of CS for Cognitive Radio (CR)  

q  Compressive Spectrum Sensing for CR 

q  Sparsity-constrained Dynamic Resource Allocation and 
Waveform Design 

q  References (Tian etal., Giannakis etal., Leus etal.)  
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