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codes on Rayleigh block-fading channels under delay and maximum energy theé channel gains are independent and identically distributed (i.i.d.)
constraints. Two other explicit bounds, a looser bound and a tight approx- complex normal with zero mean and unit variance.
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mitted throughn transmit antennas.

Let X be ann x L matrix denoting the: L symbols that are trans-

mitted over thetth fading block. The channel output is described as
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|. INTRODUCTION
) _ ) _ Y. = Hi Xk + Zs, E=0,..., K -1 (1)
In this correspondence, a sphere-packing bound (SPB) is derived

on the average word-error probability (WEP) of codes over Rayleigthere { Hi ~ CN (0yxn, Imn)}i—," IS @ Sequence of multivariate
block-fading multiple-input—-multiple-output (MIMO) channels. Thei.i.d. complex-normaln x n channel matrices ovek fading blocks.
SPB defines a bound on the performance (in an average WEP sefi$&) noise{Z; ~ CN'(0mx1, 021,71L)},{f;})‘ is a sequence of multi-
of all possible codes satisfying the design constraints. Thus, it canvagiate i.i.d. complex-normah x L noise matrices.
used to specify the merit of a code in a sense that how far the coddo simplify the notation of the channel equation, we define

performs from the performance limits. Moreover, it can be used to ob-

. o X Z Y
tain some intuition on how system parameters affect the performance XO ZU YO
limits. Because the SPB does not have a closed form, inequalities are xa ! zAa 4 ya !

= . , L= . , = .
Xk VA Yr—i
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whereX is annK x L matrix of symbols denoting the transmitted Proof: See Appendix, Subsection A. g
word. The dimension of the codeis L K" and the data rate B bits per
dimension; thus, the cod¥, consists of\f = [22""**] equiprob-
able codewordX®, X*. ..., X¥~. The codewords are constraine

This theorem states that if the dimension\fis large enough, then
dWith an arbitrarily high probability, the received signals lie inside an

to have a maximum energy &k E,, whereE, denotes the average (m LK)-hyperellipsoidS, (H) € C™"*. SimilarAto the discussions
transmit energy per channel use. In other words, the code is considdfetp: Ch- 5-5], we také — 0 and defineS(H) = lims—o S5 (H).
to be a set of points contained in atv.L K )-hypersphere ic2  The volume ofS(H) is [6]

which is centered at the origin with a radius @i K’ E,, denoted by mLIK
B.rx(0, VLKE,). Vol(S(H)) = LR (mLKo?)™" "
(mLK)!
lll. M AXIMUM -LIKELIHOOD DECODER AND THEBOUNDING REGION Aﬁl det (I By H/>L ©)
. et m — HEllE .
Under the assumption that the channel realization matrix is known k=0 ng

at the receiver and the code hiasequiprobable codewords, the max-

imum-likelihood decoder (MLD) is described as follows. Suppose thgfom now on, the received _sign_al space s cqr_wsidered to be containec_:l in
codewordX’ € X, is transmitted. The probability density function” (H ), and all of the Voronoi regions are modified and bounded by their
(pdf) of the received signaf, conditioned orfl andX", is intersection withS(H ). Therefore, the summation of their volumes is

equal to the volume of (H ).
) 1 _ly—HXY)3,
pYIXNH) = e o (3)
' IV. DERIVATION OF THE SPB

AN2 Ay .
where[| 4| = tr(A4"4) (the Frobenius norm). The MLD decodes the For a given codé€Y, the average WEP is determined by the ensemble

received signal” to X if , average of the conditional WEP givé, i.e.,
VX 0 @
pY|X’, H)

The set of all received signals that satisfy (4) form teronoi re- where Py (=|H) denotes the conditional WEP for codé given H.

H 1 H H i mIL K
gion of codewordX", which is denoted by, v, (H) € C™"". BY  r4ing the minimum of both sides of (7) ovat, we clearly obtain
computing the Voronoi regions for all of the codewords, the MLD

partitions the received signal spa€& ‘" into M disjoint regions ‘ ‘

{A: v, (H)}M ' Becaus€™" " is decomposed into a finite number min Px, (e)>E [I{%}Sn Py, (€|H)] - (8)

of disjoint regions, the Voronoi regions of some of the codewords are

unbounded. To obtain the SPB, the Voronoi regions have to be bound&his means that the minimum of the average WEP is lower-bounded by
This requires the received signal space to be within a bounded regithre expectation of the minimum conditional WEP, where the minimiza-
In the following, itis shown that forany < ¢ < 1 and any > Othere tion is applied over all possible codes satisfying the design constraints.
exists a bounding regia$is (H) such that for sufficiently large dimen- Assuming all the codewords ift; are equiprobablePy, (z|H) is de-

sion, the received signals are contained in this region with an arbitrarilgribed as
high probability(> 1 — ¢). As a result, all Voronoi regions are consid-

ered to be bounded by their intersections Viths_.o Ss(H). For the

sake of completeness, two results on derivation of the bounding region

are stated. These results are direct extensions of the results for single-

input-single-output (SISO) additive white Gaussian noise (AWGN/)/herePXS (¢|X', H) denotes the conditional WEP givéfi' andH .

Vie{o,....M-1}—{i}, o

Px,(¢) = E[Px, (c|H)] ™

s

M—1

Py, (c|H) = 5; > Pr,(e1X', H) (9)
=0

channels, proved in [5]. An error occurs wheX' is transmitted and the received sigialies
Lemma 1: For anyé > 0 and any0 < € < 1, there exists aiv _outsi_de the Voronoi region oX*, A; x,(H). Hence,Px, (z| X", H)
such that for alln LK > N Is written as
- ‘ i ‘
P tr(ZZr) - <8 >1-e Py (| X", H) =/ p(Y|X', H)dY.  (10)
mLK YéA: . (H)

5 CEKZ_)O; The proof is virtually identical to the one given in For most codesy;, a closed-form expression for (10), is unattainable.

[5, Ch. 5.5]. However, since(Y'| X", H) is monotonically decreasing with respect
Lemma 1 states that if the dimensiondfis large enough, then with to||Y — HX" ||+, and it has spherical symmetry arouldX*, we find

an arbitrarily high probability >1 — ¢), the normalized norm of the a simple lower bound on (10) as justified in [7].

noise lies in &-distance fromr=. Now, using Lemma 1, the following Lemma 2: Let Boox (HX', ri x.(H)) be an(mLK)-hyper-

theorem is stated and proven. sphere centered & X' with a radius ofr; x,(H), wherer; x,(H),

Theorem 1: For any0 < ¢ < 1 and anys > 0 there exists av  the equivalent radiusof A; x,(H), is selected such that, v, (H)
such that for alim LK > N, P(Y € Ss(H)) > 1 — ¢, whereSs(H) and B...x(HX", r; x,(H)) have the same volume. By substi-

is defined by tuting A; x,(H) with Borx (HX', i v, (H)), Py, (c|X', H) is
lower-bounded by
Ss(H) 2lyec" e |Y <'mLK((r2 4+ 6) ke »2 . (H) mLK—1 2N
X H) > e > L (i) (11)
‘Pfls(vl b Z e ] o2 .

mLKE -! k=0
4y HH’) Y|<13. (5 _ .
n Proof: See Appendix, Subsection B. d
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Fig. 1. The average WEP of a 64-state TCM developed in [4] compared with SP-Bound 1 (16). The results are shown for a systen2 fiotitwo data rates
of 2 and 3 bits/s/Hz.

Applying Lemma 2 to (9) and taking the minimum over all codesvherer2(H) is given by (14). The right-hand side (RHS) of (15) ex-

Xs C B,rx (0, VLKE,), we obtain presses the conditional SPBQ. For future reference, we denote the con-
vt 2 ditional SPB byP., (mLK, %f))
min Py, (z|H) > min L Z o T SP-Bound 1: Applying (15) to (8) results in the derivation of the
X Xs M~ SPB on average WEP
mLE—1 | 2 v (H) k N
' Z M <71(;42) - (12) n}in Py (g) > E{PSP (mLK, Lo (‘?)>] , (16)
k=0 s =

Because the Voronoi regions are disjoint and bounded it#{@), the  yhere the RHS of (16) is the SPB, called SP-Bound 1 and denoted
minimization of the RHS of (12) is subject to a volume constraint a}i,p(l) (n. m, L. K, R). SP-Bound 1 defines a lower bound on the
sp 9 & 9 4 -

follows. average WEP of all the codes satisfying the design constraints. The
Theorem 2: The minimum of expectation in the RHS of (16) can be numerically computed and used
, ) to determine the performance limits of codes.
1 M—1 B r?, x. (H) mLK—1 1 lf ¥ (H) k
i Z € ? Z ] <T) Example: Fig. 1 shows SP-Bound 1 in comparison with the average
=0 k=0 WEP of the 64-state trellis-coded modulation (TCM) that was devel-

oped in [4]. SP-Bound 1 is computed using a Monte Carlo simulation
with 10’ repetitions. The graphs are shown for a system witk 2,
K = 1,andL = 30 for data rates of 2 and 3 bits/s/Hz. It is observed

with respect to the equivalent radiuges, v, (H)}2; ", subject to the

volume constraint

M—1 ; ] that for an average WEP of 18 at a data rate of 2 bits/s/Hz, the men-
> Vol(Burx (HX', ri x,(H))) = Vol(S(H))  (13) tioned code is about 1.4 dB away from SP-Bound 1, and at a data rate
=0 of 3 bits/s/Hz, it is 2.5 dB away from SP-Bound 1.

occurs when alt; v, (H)'s are equal; i.e., all of the Voronoi regions  This example shows that SPB is useful in determining how far a

have the same volume, equal4p of the volume of the bounding re- code performs from the limits. However, since (16) does not have a

gion S(H). The optimum (minimizing) equivalent square radius is closed-form expression, it is difficult to understand how the system

. parameters affect the performance limits. Therefore, it is of interest to

K—1 , mK obtain simplified closed-form expressions for (16).
(Im + 5 H m)]

H det
h=0 (14)

Proof: See Appendix, Subsection C. O

If n > m (respectivelyp < m)the matriced H, H}}; ' (respec-

tively, { H; Hy } ") have Wishart distributions [8]. The moment-gen-
erating function of the Wishart distribution motivates the approxima-
tion of the determinant functions in (16) with trace functions to obtain

Applying Theorem 2 to (12) with some straightforward manipulaelosed-form expressions for (16). Therefore, two explicit bounds are
tions results in found, namely SP-Bound 2 and SP-Bou_;yd 3.
L1 ) B SP-Bound 2:Because P, (mLK, "0;#) is monotonically

Z 1 (7‘0(5)) (15) decreasing with respect ig(H), the following inequality is used to

EL\ o2 obtain an explicit lower bound for SP-Bound 1.

r2(H) = mLKo?2  mh

_ra(H)
min Py, (z|H) > ¢~
° k=0



2684

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 10, OCTOBER 2003

Proposition 1: Based on the inequality between the geometric awhere

erage and the arithmetic average, the following inequality holds

T H)}_

k=0
K—1
1 E,
<1 t
s+ mK |:;Z—% ’ (n02

m

)] . an

Applying Proposition 1 to (16) results in derivation of a looser lower

1
P(J)(n m, L, K, B) " peaey 4
rndz
2n k
ml K— - 2~ m B LE
TEI: ! (k+nmK —1)! z ,V,szES 1)
—  kl(nmK —1)! 1 2 H R,
= R

denotes SP-Bound 3, WhICh is tighter than SP- Bound 2 (18) in all situ-

bound for average WEP, which is described by (see Appendix, Subs&&y (n, m, L, K. R)

tion D)
n}l{in Py (¢) > ng)(n m, L, K, R)
where

P )(n m, L, K, R)

—mLK2 T R mLK—1

k
A e R
= - E mLI2™
an nmi
2 LE k=0
<1+ I'IO"‘ )
7
_2n
27 'm "LFE,
77(72

k
i=0 <1 + Tﬁ) (mLKQ—%R)

(nmK +1i—1)!
ik — )Y (nmK — 1)!

denotes SP-Bound 2. For the case that

(18)

- HRLE,

and
no?

R> % log, (m LK) > 1
(18) is simplified to
P& (n,m, L, K, R)
~ c_”’r‘l"z_%R (nm[( +mLK —
<1 L W LE )""”\ mLK —1

1) . (19)

SP-Bound 2 is looser than SP-Bound 1 in all situations, but its advan-
tage is its explicit expression, which is helpful to understand the effect

of system parameters on performance limits.

1 nmK +mLK

mLK —1

ations. In the case &7“5 > 1, SP-Bound 3 is simplified to

-1
__2np nmK ( ) (22)
<1 + 2 m;nﬂr;zLEs)

Comparing (19) and (22) shows that SP-Bound 2 and SP-Bound 3 have
similar asymptotic behaviors.

V. ASYMPTOTIC PERFORMANCELIMITS OF SPACE-TIME CODES

It was shown in the preceding section that the minimum conditional
WEP is lower-bounded by the conditional SPB, where the equivalent
square radius of all the Voronoi regions are equal2to ) (Theorem
2). Lemma 1 states that for sufficiently large dimension, the additive
noise lies around the surface of am L I')-hypersphere with radius
vm LK o? with an arbitrarily high probability. Using these two state-
ments, similar to [5, Ch. 5.5], we state the following proposition.

Proposition 3: If r2(H) < mLKq¢?, the conditional SPB con-
verges to one as the dimension of the code increases, and an error will
occur with high probability. On the other handy#(H) > mLKo?,
the conditional SPB converges to zero uniformly and the probability of
error is negligible.

To obtain more intuition on this issue, let us rewrif¢ H ) using two
new variables, namely,

E,

C(Hk)é%mgzdet (LL+ HkH;) bits/dim  (23)

which is theinstantaneous channel capacity #th fading block [1],
and

K—1

Z C(Hy) bits/dim

k=0

C(H) é (24)

SP-Bound 3: Atight approximate lower bound is obtained by using, hich genotes the average of ¢ H,)’s over I consecutive fading

the following proposition.

Proposition 2: Let » = min(n, m). Then, one can apply the ap-

proximate inequality

K—1
|:H det < m

K—-1
1 E,
<z — t -
~rK |:1.Zo ' <n02

)} (20)

blocks. Noting the fact that
det (Im + E—:HkH,'<> = det < Hk)
no
we rewrite (14) using (24). Hence,
v2(H) = mLKo” 295 (CH)—R), (25)

Because”' (H) is a random variable, we partition the rangetfH )
into two parts using the test functiafi( H) E R. This imposes the
following decomposition on SPB (16):

5 (1) -
to (16) and obtain a tight approximate lower bound for SP-Bound 1 inPg; (n,m, L, K, R)

high signal-to-noise ratio (SNR).
Proof: See Appendix, Subsection E. d

By applying Proposition 2 to (16), we obtain the following approx-
imate lower bound for average WEP in high-SNR regimes (see Ap-

pendix, Subsection F):

11)1€in Py (2) 2 féi)(n, m, L, K, R)

As

ro(H)

=P(C(H)>R)E { » <mLK, ) ‘O(H) > R]

7“50(51 )> ‘O(H) < R] (26)

where P(C(H) < R) is the outage probability[2], [3]. Suppose
n, m, and I are fixed. From Proposition 3 and (25), it follows
that as the block lengti. grows to infinity, the conditional SPB,

+P(C(H)<R)E { “p <mLK,
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P, (mLK, ’“ga(#), converges to one (respectively, to zero) ifor the affine transforrY” = HX + Z, the received signal space is
C(H) < R (respectively,C(H) > R). Hence, the average of the (m LI )-hyperellipsoid (30), where its center is translatedzy
P, (mLK, u;(#) over all H with C(H) < R (respectively, Therefore, to find the bounding regidh (H) we find the addition of
C(H) > R) goes to one (respectively, to zero). Thereforel @gows WO sets. One set is described by theL I)-hyperellipsoid (30) and
to infinity, the first term of (26) converges to zero and the second ter€ other one is
converges to the outage probability. Hence, we have
Lli_n;fgll))(n, m, L, K, R) = P(C(H) < R). (27) {Z e Ccmtl < 6}-

In other words, as the block length increases, the SPB converges to the
outage probability. Because does not incorporate in the expressiorf\S the result, we obtain the followingn L K')-hyperellipsoid:
of the outage probability, it is not possible to obtain an arbitrarily smal
average WEP by increasirdg This is also observable from (21) which
consists of two multiplicative terms, where the first term is of orde
O(L™"™") and the second term is of ord@ L"), Thus, (21) is
of orderO(1) with respect taL. N mLKE, HH')il Y) < 1}

To improve the performance, we have to change a parameter that n - ’
reducesP(C(H) < R). Because the pdf of (H) is not explicitly

known, the probability of outage does not have an explicit expreas the bounding regiofis (H ), where, with an arbitrarily high proba-
sion; although it can be computed numerically. However, we can obtaiifity (>1 — ¢), the received signals lie ifis(H), if the dimension is

tr(ZZ')
mLK

2
— g

helpful intuition by studying the mean and varianc€@fH ). Recalling sufficiently large. This concludes the proof of Theorem 1. O
that the channel realization matrices are i.i.d. in all fading blocks and
all subchannels, we have B. Proof of Lemma 2

E[C(H)] = E { 1 Lo, det < 1y B H)] (28) As justfied in [7], if we substiute Aix,(H) by
2n no? Bk (HX',r; x.(H)), we obtain

which is called theergodic capacity1], [3]. It is clearly seen that the

parametet” does not contribute in the expression of the mean value p, (| X', H) > /

of the capacity. However, it plays an important role in the variance of JYGB,, [ (HX, vy x, (H))

the capacity as follows:

p(Y|X', H)dY.

1 1 E Now, using the expression for the surface area ofrail. i) -hyper-
Var[C(H)] = T Var|:% log, det (I,L + = H’Hﬂ . (29) spheres [6], we obtain

no?
It is seen that increasing” does not affecE[C'(H)], but it decreases , o~ 9pmLK 2mLK—1 6—;—2
Var[C(H)] and concentrateS( H) around its mean. Because the vari- Px, (|X", H) > / (LK 1)1 IR gonIi dr
ance ofC'(H) goes to zero with increasing, if R < E[C'(H)], then ri e, (H) AT ST
limg .. P(C(H) < R) = 0. This indicates that if the data rate is _ria D BT 2 (D"
smaller than the ergodic capacity, the outage probability goes to zero = : = <T) :
as K increases, which enhances the performance limits of space-time k=0
codes dramatically. This concludes the proof of Lemma 2. O

VI. CONCLUSION C. Proof of Theorem 2

The performance limits of space-time codes over Rayleigh MIMO Recalling that the volume o (H) is described by (6), we divide
channels were addressed using an SPB approach. Three sphere pabkitigsides of (13) byol(B,.r.« (0, ¢)). Thus, we obtain
lower bounds were derived on average WEP of space—time codes. The

results show that as codes span a larger number of fading blocks, ¥e' /7, x (H) ImLE . mLKE, A\ -
it : . ——— =det (mLKIlx + ———HH | .
performance limits improve dramatically. Moreover, it was shown that- P no?
the performance limits improve marginally &sgrows. In fact, asz =
grows to infinity, the SPB converges to the outage probability, and tier the sake of simplicity, let
asymptotic behavior of the performance limits is determined by outage N
probability. oA (i (H)\™™
e
APPENDIX
and
A. Proof of Theorem 1 L omLK—1
B - - , — 7$m mIIC/K
Under the linear transformatial, an(n L K )-hypersphere gla;) =e " Z i .
k=0 :
B,k (0. VIKE,) € C""" . o
e ( B € We reconfigure the optimization problem as follows:
is transformed into aim L K')-hyperellipsoid centered at origin and M1
characterized by« HH' [6], which is described by the set min % 3" g(xi) subjectto
Ty Tpf 1 LV et

LK mLKE, -t M—1 TR L
{Y € C" " |tr <Y’<THH’> Y) < 1}. (30) 3 = det <,mLKImK L MLEE, HH,) _

. no?
i=0
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Taking the first two derivatives af(«; ) with respect ta;, it can be in-
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One can easily verify that the same result is obtained # m. Re-

spected thag,.7, x (x;) is a convex monotonically decreasing functiorcalling that

for z > 0. Thus, applying Jensen’s inequality, we obtain

M—1 M—1
M Zg(t >g(u Z““)
- L
= ( det <mLKIm1< + MHH/) ) .
M no?

Therefore, to minimize the object function, all's should be equal to

L
<mLIxImA + mLIxE HH> .

Al
—ﬁdet

To

Substituting2®™ ¥ for M (for simplicity we ignore thé-] function),
the optimum (minimizing) equivalent square radius is

Hﬁh)} .

O

—1

H det(I +— E,

This concludes the proof of Theorem 2.

7';2)(H) =mLKo QﬂH|:

D. Proof of (18) and (19)
We rewrite the conditional SPB (15) as

v2(H) mLK—1
002 > —

k=0

1 d*
k! ds*

Py (mL[ﬂ

2 _1
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If n > m (respectivelyp < m), thenH; H|'s (respectivelyH; H,'s)
have Wishart distribution [8]. Without loss of generality, {et> m.
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for the case thaR > 5= log,(m LK) and% > 1, we have

2n p

e~ mLE2Tm nmK +mLK -1
T )18 nLK -1

11)1€in Py (2) >

This concludes the proof of (18) and (19).

no?

E. Proof of Proposition 2

We prove the assertion fak™ 1 and the proof of the general
case is trivial by extension. Hence, we drop indexiigby . Let
r = min(m, n), and letH = {H € C"™|rank(HH') = r}. We
show that the approximate inequality is validHf € H. Because the
setH® = C"™ — H is a closed subvariety i6"" with zero measure
[9], we conclude that the approximate inequality can be used to obtain
a tight approximate lower bound fﬁsp (n, m, L, 1, R).

Let H € H. If m < n, then for high SNRnrr2 > 1)

L L
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m no-

On the other hand, it < m, then for high SNR
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In summary, ifrank(H H') = r, then for high SNR
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Becausé{“ has zero measure [9(H°) = 0 andP(H) = 1. Hence,

[ L <mL, ngI)) H].

Thus, applying (31) to (32), we obtain a tight approximate lower bound
for ?S))(n, m, L, 1, R) in high SNR. This concludes the proof of
Proposition 2. d
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F. Proof of (21)

We follow a process similar to that of Subsection D of this appendix.
Here, we use Proposition 2 to obtain
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Without loss of generality, let assume> m which meansthall; H;’s Receive Antenna Selection for MIMO Flat-Fading
have Wishart distribution [8]. Using the moment-generating function of Channels: Theory and Algorithms

Wishart distribution, we obtain
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m © rno? m systems. The antennas are selected so as to maximize the channel capacity.
LK s=0 A set of near-optimal selection algorithms is presented. The first algorithm
1 Ll L (k+nmK — 1)! in particular allows statistical analysis of selection gains. We present tight
= Z —k,(" mk — 1)! analytic lower bounds on the outage capacity achievable through antenna

selection. Extensive simulations validating analysis and illustrating perfor-

2n g nmK
14 2™ mLE, k=0
+ 7'710'2 1 1
mance of the selection algorithms are also presented.
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Note that the same result is obtainedif< m. This concludes the |. INTRODUCTION
proof of (21). O

Multiple-antenna technology significantly improves wireless
link performance. The extra degrees of freedom afforded by the
multiple antennas may be used either for increasing reliability through
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