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Abstract—A sphere-packing bound (SPB) on average word-error prob-
ability (WEP) is derived to determine the performance limits of space–time
codes on Rayleigh block-fading channels under delay and maximum energy
constraints. Two other explicit bounds, a looser bound and a tight approx-
imate bound, are also derived to provide more intuition on how the system
parameters affect the performance limits. Moreover, it is shown that as the
block length grows to infinity, the SPB converges to the outage probability,
and the asymptotic behavior of performance limits is determined by the
outage probability.

Index Terms—Fading channels, multiple antennas, outage probability,
performance limits, space–time codes.

I. INTRODUCTION

In this correspondence, a sphere-packing bound (SPB) is derived
on the average word-error probability (WEP) of codes over Rayleigh
block-fading multiple-input–multiple-output (MIMO) channels. The
SPB defines a bound on the performance (in an average WEP sense)
of all possible codes satisfying the design constraints. Thus, it can be
used to specify the merit of a code in a sense that how far the code
performs from the performance limits. Moreover, it can be used to ob-
tain some intuition on how system parameters affect the performance
limits. Because the SPB does not have a closed form, inequalities are
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used to obtain two other bounds with explicit expressions, namely, a
looser bound and a tight approximate bound.

The results presented here show that for data rates less than theer-
godic capacity[1], the performance limits improve significantly if a
code spans a larger number of fading blocks. On the other hand, in-
creasing theblock length(length of portion of the code within one
block) improves the performance limits marginally. In fact, as block
length grows to infinity, the SPB converges to theoutage probability
(see [2] and [3] for definition); and the asymptotic behavior of perfor-
mance limits of space–time codes are determined by the outage prob-
ability. Hence, for large block lengths, the SPB determines theoutage
probability.

To show how effective the SPB is in determining the performance, it
is shown that for a2�2 MIMO system, the 64-state space–time trellis-
coded modulation developed in [4], performs 2.5 and 1.4 dB away from
the performance limits for data rates of 3 and 2 bits/s/Hz, respectively.

In Section II, the system model is introduced. In Section III, it is
shown that for sufficiently large dimension, the received signal space
is bounded within a hyperellipsoid with an arbitrarily high probability.
The derivation of the three sphere-packing lower bounds is given in
Section IV. In Section V, it is shown that outage probability determines
the asymptotic behavior of the performance limits. Finally, we con-
clude in Section VI.

II. SYSTEM MODEL

We assume a wireless communication system employingn transmit
andm receive antennas. The channel is assumed to be memoryless,
MIMO block fading. The channel gains remain constant throughout
the duration of each fading block, but they change independently from
one block to another. The fading is assumed to be Rayleigh, where
the channel gains are independent and identically distributed (i.i.d.)
complex normal with zero mean and unit variance.

It is assumed that the delay constraint is equal to the duration of
K fading blocks (fading intervals), and the codewords (words) span
K fading blocks. In each fading block, the channel is usedL times,
which is called theblock lengthof the code. At each channel use, all
antennas are used simultaneously, andn complex symbols are trans-
mitted throughn transmit antennas.

LetXk be ann�L matrix denoting thenL symbols that are trans-
mitted over thekth fading block. The channel output is described as

Yk = HkXk + Zk; k = 0; . . . ; K � 1 (1)

wherefHk � CN (0m�n; Imn)g
K�1

k=0
is a sequence of multivariate

i.i.d. complex-normalm � n channel matrices overK fading blocks.
The noisefZk � CN (0m�L; �

2ImL)g
K�1

k=0
is a sequence of multi-

variate i.i.d. complex-normalm � L noise matrices.
To simplify the notation of the channel equation, we define

XXX
�
=

X0

X1

...
XK�1

; ZZZ
�
=

Z0

Z1
...

ZK�1

; YYY
�
=

Y0

Y1
...

YK�1

HHH
�
=

H0 0 � � � 0

0 H1 � � � 0
...

...
. . .

...
0 0 � � � HK�1

:

Thus, (1) can be rewritten as

YYY = HHHXXX +ZZZ (2)
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whereXXX is annK � L matrix of symbols denoting the transmitted
word. The dimension of the code is2nLK and the data rate isR bits per
dimension; thus, the codeXs consists ofM = d22nLKRe equiprob-
able codewordsXXX0

; XXX
1
; . . . ; XXXM�1. The codewords are constrained

to have a maximum energy ofLKEs, whereEs denotes the average
transmit energy per channel use. In other words, the code is considered
to be a set ofM points contained in an(nLK)-hypersphere in nLK

which is centered at the origin with a radius of
p
LKEs, denoted by

BnLK(0;
p
LKEs).

III. M AXIMUM -LIKELIHOOD DECODER AND THEBOUNDING REGION

Under the assumption that the channel realization matrix is known
at the receiver and the code hasM equiprobable codewords, the max-
imum-likelihood decoder (MLD) is described as follows. Suppose that
codewordXXXi 2 Xs is transmitted. The probability density function
(pdf) of the received signalYYY , conditioned onHHH andXXXi, is

p(YYY jXXXi
; HHH) =

1

�mLK�2mLK
e
� (3)

wherekAk2F �
= tr(A0A) (the Frobenius norm). The MLD decodes the

received signalYYY toXXXi if

8 j 2 f0; . . . ; M � 1g � fig; log
p(YYY jXXXi

; HHH)

p(YYY jXXXj
; HHH)

� 0: (4)

The set of all received signals that satisfy (4) form theVoronoi re-
gion of codewordXXXi, which is denoted by�i;X (HHH) 2 mLK . By
computing the Voronoi regions for all of the codewords, the MLD
partitions the received signal spacemLK into M disjoint regions
f�i;X (HHH)gM�1

i=0 . Because mLK is decomposed into a finite number
of disjoint regions, the Voronoi regions of some of the codewords are
unbounded. To obtain the SPB, the Voronoi regions have to be bounded.
This requires the received signal space to be within a bounded region.
In the following, it is shown that for any0 < � < 1 and any� > 0 there
exists a bounding regionS�(HHH) such that for sufficiently large dimen-
sion, the received signals are contained in this region with an arbitrarily
high probability(> 1� �). As a result, all Voronoi regions are consid-
ered to be bounded by their intersections withlim�!0 S�(HHH). For the
sake of completeness, two results on derivation of the bounding region
are stated. These results are direct extensions of the results for single-
input–single-output (SISO) additive white Gaussian noise (AWGN)
channels, proved in [5].

Lemma 1: For any� > 0 and any0 < � < 1, there exists anN
such that for allmLK � N

P
tr(ZZZZZZ 0)

mLK
� �

2
< � > 1� �:

Proof: The proof is virtually identical to the one given in
[5, Ch. 5.5].

Lemma 1 states that if the dimension ofXs is large enough, then with
an arbitrarily high probability(>1 � �), the normalized norm of the
noise lies in a�-distance from�2. Now, using Lemma 1, the following
theorem is stated and proven.

Theorem 1: For any0 < � < 1 and any� > 0 there exists anN
such that for allmLK � N , P (YYY 2 S�(HHH)) > 1� �, whereS�(HHH)
is defined by

S�(HHH)
�
= YYY 2 mLK tr YYY

0
mLK(�2 + �)ImK

+
mLKEs

n
HHHHHH

0

�1

YYY � 1 : (5)

Proof: See Appendix, Subsection A.

This theorem states that if the dimension ofXs is large enough, then
with an arbitrarily high probability, the received signals lie inside an
(mLK)-hyperellipsoidS�(HHH) 2 mLK . Similar to the discussions
in [5, Ch. 5.5], we take� ! 0 and defineS(HHH)

�
= lim�!0 S�(HHH).

The volume ofS(HHH) is [6]

Vol(S(HHH)) =
�mLK

(mLK)!
(mLK�

2)mLK

�
K�1

k=0

det Im +
Es

n�2
HkH

0
k

L

: (6)

From now on, the received signal space is considered to be contained in
S(HHH), and all of the Voronoi regions are modified and bounded by their
intersection withS(HHH). Therefore, the summation of their volumes is
equal to the volume ofS(HHH).

IV. DERIVATION OF THE SPB

For a given codeXs, the average WEP is determined by the ensemble
average of the conditional WEP givenHHH , i.e.,

PX (") = E [PX ("jHHH)] (7)

wherePX ("jHHH) denotes the conditional WEP for codeXs givenHHH .
Taking the minimum of both sides of (7) overXs we clearly obtain

min
X

PX (") � E min
X

PX ("jHHH) : (8)

This means that the minimum of the average WEP is lower-bounded by
the expectation of the minimum conditional WEP, where the minimiza-
tion is applied over all possible codes satisfying the design constraints.
Assuming all the codewords inXs are equiprobable,PX ("jHHH) is de-
scribed as

PX ("jHHH) =
1

M

M�1

i=0

PX ("jXXXi
; HHH) (9)

wherePX ("jXXXi
; HHH) denotes the conditional WEP givenXXXi andHHH .

An error occurs whenXXXi is transmitted and the received signalYYY lies
outside the Voronoi region ofXXXi, �i;X (HHH). Hence,PX ("jXXXi

; HHH)
is written as

PX ("jXXXi
; HHH) =

YYY =2� (HHH)

p(YYY jXXXi
; HHH)dYYY : (10)

For most codes,Xs, a closed-form expression for (10), is unattainable.
However, sincep(YYY jXXXi

; HHH) is monotonically decreasing with respect
to kYYY �HHHXXXikF , and it has spherical symmetry aroundHHHXXXi, we find
a simple lower bound on (10) as justified in [7].

Lemma 2: Let BmLK(HHHXXXi
; ri;X (HHH)) be an (mLK)-hyper-

sphere centered atHHHXXXi with a radius ofri;X (HHH), whereri;X (HHH),
the equivalent radiusof �i;X (HHH), is selected such that�i;X (HHH)
and BmLK(HHHXXXi

; ri;X (HHH)) have the same volume. By substi-
tuting �i;X (H) with BmLK(HHHXXXi

; ri;X (HHH)), PX ("jXXXi
; HHH) is

lower-bounded by

PX ("jXXXi
; HHH) � e

�

mLK�1

k=0

1

k!

r2i;X (HHH)

�2

k

: (11)

Proof: See Appendix, Subsection B.
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Fig. 1. The average WEP of a 64-state TCM developed in [4] compared with SP-Bound 1 (16). The results are shown for a system withn = 2 for two data rates
of 2 and 3 bits/s/Hz.

Applying Lemma 2 to (9) and taking the minimum over all codes
Xs � BnLK(0;

p
LKEs), we obtain

min
X

PX ("jHHH) � min
X

1

M

M�1

i=0

e
�

�
mLK�1

k=0

1

k!

r2i;X (HHH)

�2

k

: (12)

Because the Voronoi regions are disjoint and bounded insideS(HHH), the
minimization of the RHS of (12) is subject to a volume constraint as
follows.

Theorem 2: The minimum of

1

M

M�1

i=0

e
�

mLK�1

k=0

1

k!

r2i;X (HHH)

�2

k

with respect to the equivalent radiusesfri;X (HHH)gM�1
i=0 , subject to the

volume constraint

M�1

i=0

Vol(BmLK(HHHXXX
i
; ri;X (HHH))) = Vol(S(HHH)) (13)

occurs when allri;X (HHH)’s are equal; i.e., all of the Voronoi regions
have the same volume, equal to1

M
of the volume of the bounding re-

gionS(HHH). The optimum (minimizing) equivalent square radius is

r
2
o(HHH) = mLK�

22� R

K�1

k=0

det Im +
Es

n�2
HkH

0

k :

(14)
Proof: See Appendix, Subsection C.

Applying Theorem 2 to (12) with some straightforward manipula-
tions results in

min
X

PX ("jHHH) � e
�

mLK�1

k=0

1

k!

r2o(HHH)

�2

k

(15)

wherer2o(HHH) is given by (14). The right-hand side (RHS) of (15) ex-
presses the conditional SPB. For future reference, we denote the con-
ditional SPB byPsp(mLK;

r (HHH)

�
).

SP-Bound 1: Applying (15) to (8) results in the derivation of the
SPB on average WEP

min
X

PX (") � E Psp mLK;
r2o(HHH)

�2
; (16)

where the RHS of (16) is the SPB, called SP-Bound 1 and denoted
by P

(1)
sp (n; m; L; K; R). SP-Bound 1 defines a lower bound on the

average WEP of all the codes satisfying the design constraints. The
expectation in the RHS of (16) can be numerically computed and used
to determine the performance limits of codes.

Example: Fig. 1 shows SP-Bound 1 in comparison with the average
WEP of the 64-state trellis-coded modulation (TCM) that was devel-
oped in [4]. SP-Bound 1 is computed using a Monte Carlo simulation
with 105 repetitions. The graphs are shown for a system withn = 2,
K = 1, andL = 30 for data rates of 2 and 3 bits/s/Hz. It is observed
that for an average WEP of 10�2 at a data rate of 2 bits/s/Hz, the men-
tioned code is about 1.4 dB away from SP-Bound 1, and at a data rate
of 3 bits/s/Hz, it is 2.5 dB away from SP-Bound 1.

This example shows that SPB is useful in determining how far a
code performs from the limits. However, since (16) does not have a
closed-form expression, it is difficult to understand how the system
parameters affect the performance limits. Therefore, it is of interest to
obtain simplified closed-form expressions for (16).

If n � m (respectively,n < m) the matricesfHkH
0

kgK�1
k=0 (respec-

tively, fH 0

kHkgK�1
k=0 ) have Wishart distributions [8]. The moment-gen-

erating function of the Wishart distribution motivates the approxima-
tion of the determinant functions in (16) with trace functions to obtain
closed-form expressions for (16). Therefore, two explicit bounds are
found, namely SP-Bound 2 and SP-Bound 3.

SP-Bound 2: Because Psp(mLK;
r (HHH)

�
) is monotonically

decreasing with respect tor2o(HHH), the following inequality is used to
obtain an explicit lower bound for SP-Bound 1.
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Proposition 1: Based on the inequality between the geometric av-
erage and the arithmetic average, the following inequality holds

K�1

k=0

det Im +
Es
n�2

HkH
0

k

� 1 +
1

mK

K�1

k=0

tr
Es
n�2

HkH
0

k : (17)

Applying Proposition 1 to (16) results in derivation of a looser lower
bound for average WEP, which is described by (see Appendix, Subsec-
tion D)

min
X

PX (") � P (2)
sp (n; m; L; K; R)

where

P (2)
sp (n; m; L; K; R)

�
=

e�mLK2

1 + 2 LE

n�

nmK

mLK�1

k=0

mLK2� R
k

�
k

i=0

2 LE

n�

1 + 2 LE

n�
mLK2� R

i

� (nmK + i� 1)!

i!(k � i)!(nmK � 1)!
(18)

denotes SP-Bound 2. For the case that

R� m

2n
log2(mLK) and

2� RLEs
n�2

� 1

(18) is simplified to

P (2)
sp (n; m; L; K; R)

� e�mLK2

1 + 2 LE

n�

nmK

nmK +mLK � 1

mLK � 1
: (19)

SP-Bound 2 is looser than SP-Bound 1 in all situations, but its advan-
tage is its explicit expression, which is helpful to understand the effect
of system parameters on performance limits.

SP-Bound 3: A tight approximate lower bound is obtained by using
the following proposition.

Proposition 2: Let r = min(n; m). Then, one can apply the ap-
proximate inequality

K�1

k=0

det Im +
Es
n�2

HkH
0

k

1

rK

K�1

k=0

tr
Es
n�2

HkH
0

k (20)

to (16) and obtain a tight approximate lower bound for SP-Bound 1 in
high signal-to-noise ratio (SNR).

Proof: See Appendix, Subsection E.

By applying Proposition 2 to (16), we obtain the following approx-
imate lower bound for average WEP in high-SNR regimes (see Ap-
pendix, Subsection F):

min
X

PX (") P (3)
sp (n; m; L; K; R)

where

P (3)
sp (n; m; L; K; R)

�
=

1

1 + 2 mLE

rn�

nmK

�
mLK�1

k=0

(k + nmK � 1)!

k!(nmK � 1)!

2 mLE

rn�

1 + 2 mLE

rn�

k

(21)

denotes SP-Bound 3, which is tighter than SP-Bound 2 (18) in all situ-

ations. In the case of2 mLE

rn�
� 1, SP-Bound 3 is simplified to

P (3)
sp (n; m; L; K; R)

� 1

1 + 2 mLE

rn�

nmK

nmK +mLK � 1

mLK � 1
: (22)

Comparing (19) and (22) shows that SP-Bound 2 and SP-Bound 3 have
similar asymptotic behaviors.

V. ASYMPTOTICPERFORMANCELIMITS OF SPACE–TIME CODES

It was shown in the preceding section that the minimum conditional
WEP is lower-bounded by the conditional SPB, where the equivalent
square radius of all the Voronoi regions are equal tor2o(HHH) (Theorem
2). Lemma 1 states that for sufficiently large dimension, the additive
noise lies around the surface of an(mLK)-hypersphere with radiusp
mLK�2 with an arbitrarily high probability. Using these two state-

ments, similar to [5, Ch. 5.5], we state the following proposition.

Proposition 3: If r2o(HHH) < mLK�2, the conditional SPB con-
verges to one as the dimension of the code increases, and an error will
occur with high probability. On the other hand, ifr2o(HHH) � mLK�2,
the conditional SPB converges to zero uniformly and the probability of
error is negligible.

To obtain more intuition on this issue, let us rewriter2o(HHH) using two
new variables, namely,

C(Hk)
�
=

1

2n
log2 det In +

Es
n�2

H 0

kHk bits=dim (23)

which is theinstantaneous channel capacityof kth fading block [1],
and

C(HHH)
�
=

1

K

K�1

k=0

C(Hk) bits=dim (24)

which denotes the average of theC(Hk)’s overK consecutive fading
blocks. Noting the fact that

det Im +
Es
n�2

HkH
0

k = det In +
Es
n�2

H 0

kHk

we rewrite (14) using (24). Hence,

r2o(HHH) = mLK�22 (C(HHH)�R): (25)

BecauseC(HHH) is a random variable, we partition the range ofC(HHH)
into two parts using the test functionC(HHH) R. This imposes the
following decomposition on SPB (16):

P (1)
sp (n; m; L; K; R)

=P (C(HHH)�R)E Psp mLK;
r2o(HHH)

�2
C(HHH)�R

+P (C(HHH)<R)E Psp mLK;
r2o(HHH)

�2
C(HHH)<R (26)

whereP (C(HHH) < R) is the outage probability[2], [3]. Suppose
n, m, and K are fixed. From Proposition 3 and (25), it follows
that as the block lengthL grows to infinity, the conditional SPB,
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Psp(mLK;
r (HHH)

�
), converges to one (respectively, to zero) if

C(HHH) < R (respectively,C(HHH) � R). Hence, the average of

Psp(mLK;
r (HHH)

�
) over all HHH with C(HHH) < R (respectively,

C(HHH) � R) goes to one (respectively, to zero). Therefore, asL grows
to infinity, the first term of (26) converges to zero and the second term
converges to the outage probability. Hence, we have

lim
L!1

P
(1)
sp (n; m; L; K; R) = P (C(HHH) < R): (27)

In other words, as the block length increases, the SPB converges to the
outage probability. BecauseL does not incorporate in the expression
of the outage probability, it is not possible to obtain an arbitrarily small
average WEP by increasingL. This is also observable from (21) which
consists of two multiplicative terms, where the first term is of order
O(L�nmK), and the second term is of orderO(LnmK). Thus, (21) is
of orderO(1) with respect toL.

To improve the performance, we have to change a parameter that
reducesP (C(HHH) < R). Because the pdf ofC(HHH) is not explicitly
known, the probability of outage does not have an explicit expres-
sion; although it can be computed numerically. However, we can obtain
helpful intuition by studying the mean and variance ofC(HHH). Recalling
that the channel realization matrices are i.i.d. in all fading blocks and
all subchannels, we have

E[C(HHH)] = E
1

2n
log2 det In +

Es

n�2
H
0
H (28)

which is called theergodic capacity[1], [3]. It is clearly seen that the
parameterK does not contribute in the expression of the mean value
of the capacity. However, it plays an important role in the variance of
the capacity as follows:

Var[C(HHH)] =
1

K
Var

1

2n
log2 det In +

Es

n�2
H
0
H : (29)

It is seen that increasingK does not affectE[C(HHH)], but it decreases
Var[C(HHH)] and concentratesC(HHH) around its mean. Because the vari-
ance ofC(HHH) goes to zero with increasingK, if R � E[C(HHH)], then
limK!1 P (C(HHH) < R) = 0. This indicates that if the data rate is
smaller than the ergodic capacity, the outage probability goes to zero
asK increases, which enhances the performance limits of space–time
codes dramatically.

VI. CONCLUSION

The performance limits of space–time codes over Rayleigh MIMO
channels were addressed using an SPB approach. Three sphere packing
lower bounds were derived on average WEP of space–time codes. The
results show that as codes span a larger number of fading blocks, the
performance limits improve dramatically. Moreover, it was shown that
the performance limits improve marginally asL grows. In fact, asL
grows to infinity, the SPB converges to the outage probability, and the
asymptotic behavior of the performance limits is determined by outage
probability.

APPENDIX

A. Proof of Theorem 1

Under the linear transformationHHH , an(nLK)-hypersphere

BnLK(0;
p
LKEs) 2 nLK

is transformed into an(mLK)-hyperellipsoid centered at origin and
characterized bymKLE

n
HHHHHH

0 [6], which is described by the set

YYY 2 mLK tr YYY
0 mLKEs

n
HHHHHH

0

�1

YYY � 1 : (30)

For the affine transformYYY = HHHXXX + ZZZ , the received signal space is
the (mLK)-hyperellipsoid (30), where its center is translated byZZZ .
Therefore, to find the bounding regionS�(HHH) we find the addition of
two sets. One set is described by the(mLK)-hyperellipsoid (30) and
the other one is

ZZZ 2 mLK tr(ZZZZZZ 0)

mLK
� �

2 � � :

As the result, we obtain the following(mLK)-hyperellipsoid:

YYY 2 mLK tr YYY
0
mLK(�2 + �)IIImK

+
mLKEs

n
HHHHHH

0

�1

YYY � 1 ;

as the bounding regionS�(HHH), where, with an arbitrarily high proba-
bility (>1� �), the received signals lie inS�(HHH), if the dimension is
sufficiently large. This concludes the proof of Theorem 1.

B. Proof of Lemma 2

As justified in [7], if we substitute �i;X (HHH) by
BmLK(HHHXXXi

; ri;X (HHH)), we obtain

PX ("jXXXi
; HHH) �

YYY =2B (HHHXXX ; r (HHH))

p(YYY jXXXi
; HHH)dYYY :

Now, using the expression for the surface area of an(mLK)-hyper-
spheres [6], we obtain

PX ("jXXXi
; HHH) �

1

r (HHH)

2�mLKr2mLK�1

(mLK � 1)!

e
�

�mLK�2mLK
dr

= e
�

mLK�1

k=0

1

k!

r2i;X (HHH)

�2

k

:

This concludes the proof of Lemma 2.

C. Proof of Theorem 2

Recalling that the volume ofS(HHH) is described by (6), we divide
both sides of (13) byVol(BmLK(0; �)). Thus, we obtain

M�1

i=0

ri;X (HHH)

�

2mLK

= det mLKIIImK +
mLKEs

n�2
HHHHHH

0

L

:

For the sake of simplicity, let

xi
�
=

ri;X (HHH)

�

2mLK

and

g(xi) = e
�x

mLK�1

k=0

1

k!
xi :

We reconfigure the optimization problem as follows:

min
x ;...;x

1

M

M�1

i=0

g(xi) subject to

M�1

i=0

xi = det mLKIIImK +
mLKEs

n�2
HHHHHH

0

L

:
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Taking the first two derivatives ofg(xi) with respect toxi, it can be in-
spected thatgnLK(xi) is a convex monotonically decreasing function
for x � 0. Thus, applying Jensen’s inequality, we obtain

1

M

M�1

i=0

g(xi) � g
1

M

M�1

i=0

xi

= g
1

M
det mLKIIImK +

mLKEs

n�2
HHHHHH

0

L

:

Therefore, to minimize the object function, allxi ’s should be equal to

xo
�
=

1

M
det mLKIIImK +

mLKEs

n�2
HHHHHH

0

L

:

Substituting22nLKR forM (for simplicity we ignore thed�e function),
the optimum (minimizing) equivalent square radius is

r
2
o(HHH) = mLK�

22� R

K�1

k=0

det Im +
Es

n�2
HkH

0

k :

This concludes the proof of Theorem 2.

D. Proof of (18) and (19)

We rewrite the conditional SPB (15) as

Psp mLK;
r2o(HHH)

�2
=

mLK�1

k=0

1

k!

dk

dsk

� e
�(1�s)mLK2 det(I + H H )

s=0

:

Now, by applying Proposition 1 to this expression, we obtain

min
X

PX (") �

mLK�1

k=0

1

k!

dk

dsk
e
�(1�s)mLK2

K�1

i=0

E e
�(1�s) tr(H H )

s=0

:

If n � m (respectively,n < m), thenHiH
0

i ’s (respectively,H 0

iHi ’s)
have Wishart distribution [8]. Without loss of generality, letn � m.
Using the moment-generating function of Wishart distribution [8], we
gain

min
X

PX (") �

mLK�1

k=0

1

k!

dk

dsk

e�(1�s)mLK2

det Im + (1� s) 2 LE

n�
Im

nK

s=0

which is simplified to

min
X

PX (") �
e�mLK2

1 + 2 LE

n�

nmK

mLK�1

k=0

mLK2� R
k

�

k

i=0

2 LE

n�

1 + 2 LE

n�
mLK2� R

i

�
(nmK + i� 1)!

i!(k � i)!(nmK � 1)!
:

One can easily verify that the same result is obtained ifn < m. Re-
calling that

n+ i

i
=

i

k=0

n� 1 + k

k

for the case thatR� m

2n
log2(mLK) and 2 LE

n�
� 1, we have

min
X

PX (") �
e�mLK2

1 + 2 LE

n�

nmK

nmK +mLK � 1

nLK � 1
:

This concludes the proof of (18) and (19).

E. Proof of Proposition 2

We prove the assertion forK = 1 and the proof of the general
case is trivial by extension. Hence, we drop indexingH by k. Let
r = min(m; n), and letH = fH 2 nmjrank(HH 0) = rg. We
show that the approximate inequality is valid ifH 2 H. Because the
setHc = nm �H is a closed subvariety innm with zero measure
[9], we conclude that the approximate inequality can be used to obtain
a tight approximate lower bound forP (1)

sp (n; m; L; 1; R).
LetH 2 H. If m � n, then for high SNR( E

n�
� 1)

det Im +
Es

n�2
HH

0 � det
Es

n�2
HH

0

�
1

m
tr

Es

n�2
HH

0
:

On the other hand, ifn < m, then for high SNR

det Im +
Es

n�2
HH

0 � det
Es

n�2
H
0
H

� det
Es

n�2
H
0
H �

1

n
tr

Es

n�2
H
0
H :

In summary, ifrank(HH 0) = r, then for high SNR

det Im +
Es

n�2
HH

0 1

r
tr

Es

n�2
HH

0
: (31)

Now, we writeP (1)
sp (n; m; L; 1; R) as

P
(1)
sp (n; m; L; 1; R) = P (H)E Psp mL;

r2o(H)

�2
H

+P (Hc)E Psp mL;
r2o(H)

�2
Hc

:

BecauseHc has zero measure [9],P (Hc) = 0 andP (H) = 1. Hence,

P
(1)
sp (n; m; L; 1; R) = E Psp mL;

r2o(H)

�2
H : (32)

Thus, applying (31) to (32), we obtain a tight approximate lower bound
for P (1)

sp (n; m; L; 1; R) in high SNR. This concludes the proof of
Proposition 2.

F. Proof of (21)

We follow a process similar to that of Subsection D of this appendix.
Here, we use Proposition 2 to obtain

min
X

PX (")

mLK�1

k=0

1

k!

dk

dsk

K�1

i=0

E e
�(1�s) tr(H H )

s=0

:
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Without loss of generality, let assumen � mwhich means thatHiH
0

i ’s
have Wishart distribution [8]. Using the moment-generating function of
Wishart distribution, we obtain

min
X

PX (")

mLK�1

k=0

1

k!

d
k

dsk

1

det Im + (1� s)2 mLE

rn�
Im

nK

s=0

=
1

1 + 2 mLE

rn�

nmK
�

mLK�1

k=0

(k + nmK � 1)!

k!(nmK � 1)!

�

2 mLE

rn�

1 + 2 mLE

rn�

k

:

Note that the same result is obtained ifn < m. This concludes the
proof of (21).
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Receive Antenna Selection for MIMO Flat-Fading
Channels: Theory and Algorithms

Alexei Gorokhov, Associate Member, IEEE, Dhananjay Gore, and
Arogyaswami Paulraj, Fellow, IEEE

Abstract—This correspondence discusses the problem of the receive an-
tenna subset selection in multiple-element antenna (MEA) transmission
systems. The antennas are selected so as to maximize the channel capacity.
A set of near-optimal selection algorithms is presented. The first algorithm
in particular allows statistical analysis of selection gains. We present tight
analytic lower bounds on the outage capacity achievable through antenna
selection. Extensive simulations validating analysis and illustrating perfor-
mance of the selection algorithms are also presented.

Index Terms—Antenna selection, diversity, multiple-input multiple-
output (MIMO), spatial multiplexing.

I. INTRODUCTION

Multiple-antenna technology significantly improves wireless
link performance. The extra degrees of freedom afforded by the
multiple antennas may be used either for increasing reliability through
space–time diversity techniques [1]–[3] or for increased data rate
through spatial multiplexing techniques [4]–[7]. However, a major
limiting factor in the deployment of multiple-input multiple-outpu
(MIMO) systems is the cost of multiple analog chains (amplifiers,
analog-to-digital converters, etc.). Antenna subset selection, where
transmission and/or reception is performed through a selection of the
total available antennas is a powerful solution that reduces the need
for multiple analog chains yet retains many diversity benefits. The
core idea of antenna selection is to use a limited number of analog
chains that is adaptively switched to a subset of available antennas.
An appropriate subset of antennas can be identified, e.g., within the
training phase, by subsequently probing all receive antennas with the
available set of receive chains. This general approach provides certain
diversity benefits at a low additional cost that is mainly determined
by low-cost radio-frequency (RF) switches rather than by expensive
analog chains.

Early work on antenna selection focused on selection in mul-
tiple-input single output/single-input multiple-output (MISO/SIMO)
systems. This included the hybrid selection/maximal ratio combining
approach in [8]. Recently, there has been increasing interest [9]–[15]
in applying antenna subset selection techniques to MIMO links. In
[9], the authors present a criterion for selecting antenna subsets that
maximize the channel capacity. As shown in [10], antenna selection
techniques applied to low-rank channels can increase capacity. A fast
selection algorithm based on “water-pouring” type ideas is presented
in [11]. In [13], Heathet al., discuss antenna subset selection for
spatial multiplexing systems with practical receivers. Antenna selec-
tion algorithms/analysis for space–time codes based on exact and
statistical channel knowledge may be found in [15]. Recently, Molisch
et al. presented an algorithm that maximizes an upper bound on the
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