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Short summary: This paper  considers the reconstruction of structured-sparse signals 

from noisy linear observations. In particular, the support of the signal coefficients is 

parameterized by hidden binary pattern, and a structured probabilistic prior (e.g., Markov 

random chain/field/tree) is assumed on the pattern. Exact inference is discussed and an 

approximate inference scheme, based on loopy belief propagation (BP), is proposed. The   

proposed scheme iterates between exploitation of the observation-structure and 

exploitation of the pattern-structure, and is closely related to noncoherent turbo 

equalization, as used in digital communication receivers. An algorithm that exploits the 

observation structure is then detailed based on approximate message passing ideas. 

 

I. INTRODUCTION 

The main objective is to estimate the sparse signal Nx  from the noisy linear 

measurements My , 

  y Ax w  (1) 

 

where M NA  is a known matrix and 
Mw is additive noise, often modeled as circular 

white Gaussian,  i.e., 2~ (0, )CN w I . By “sparse,” we mean that the signal has only a few 

(say K , where K N ) non-zero coefficients. 

In many cases of interest, the system of equations in (1) is underdetermined, i.e., M N , so 

that, even in the noiseless case, there is no unique inverse. However, when x  is known to be 

sparse, it is possible to accurately reconstruct x  from y  if the columns of A are sufficiently 

incoherent. For various sparse reconstruction algorithms, including convex- optimization-based, 
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greedy, and iterative thresholding algorithms, there exist elegant bounds on reconstruction error 

that hold when A  satisfies a certain restricted isometry property (RIP). In many applications, 

however, the signal x  has structure beyond simple sparsity. For example, the wavelet transform 

coefficients of natural scenes are not only approximately sparse, but also exhibit persistence 

across scales, which manifests as correlation within the sparsity pattern. Many other forms of 

structure in the sparsity pattern are also possible, and so we desire a powerful and flexible 

approach to modeling and exploiting such structure. 

In this paper, we take a probabilistic approach to modeling sparsity structure, allowing the use 

of, e.g., Markov chain (MC), Markov random field (MRF), and Markov tree (MT) models [2].  

Such models have been previously exploited for sparse reconstruction, but only to a limited 

extent. For example, [3] and [4] proposed Monte-Carlo-based [5] sparse reconstruction 

algorithms using MRF and MT models, respectively, and [6] and [7] proposed to iterate 

matching- pursuit with MAP pattern detection based on MRF and MT models, respectively. 

Monte-Carlo algorithms, while flexible, are typically regarded as computationally too expensive 

for many problems of interest. Matching-pursuit algorithms are typically much faster, but the 

schemes in [6], [7] are ad hoc. We attack the problem of reconstructing structured-sparse signals 

through the framework of belief propagation (BP) [8]. While BP has been successfully used to 

recover unstructured sparse signals (e.g., [9], [10]), we believe that its application to structured 

sparse signals is novel. As we shall see, the BP framework suggests an iterative approach, where 

sparsity pattern beliefs are exchanged between two blocks, one exploiting observation structure 

and the other exploiting pattern structure. In this regard, our scheme resembles turbo equalization 

from digital communications [11], where bit beliefs are exchanged between a soft equalizer and 

a soft decoder. Our two blocks are themselves naturally implemented using BP, and we detail a  

particularly efficient algorithm based on the approximate message passing (AMP) framework  

recently proposed by Donoho, Maleki, and Montanari [10]. 

 

II. SIGNAL MODEL 

Our structured-sparse signal model uses hidden binary indicators 1{ }N

n ns  , where {0,1}ns  . In 

particular, 1ns   indicates that the signal coefficient nx  is active while 0ns   indicates that 
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nx  is inactive. Assuming that the active signal coefficients are independently but 

non-identically distributed, we can write 

 

 ( | ) ( ) (1 ) ( )n n n n n n np x s s q x s x    (2), 

 

Where ( )nq   denotes the pdf of
nx , when active, and ( )   denotes the Dirac delta. We refer 

to  1 2, , , {0,1}
T N

Ns s s s  as the sparsity pattern, and model structure in s  through an 

assumed prior pmf ( )p s . 

 

III. TURBO INFERENCE  

Our primary goal is estimating the structured-sparse signal x  given the observations 0y y  

in model (1). In particular, we are interested in computing minimum mean-squared error(MMSE) 

estimates of { }nx . 

 

Figure 1 Factor graph of posterior 0( , | )p x s y y . The boxes represent factor nodes and the circles represent 

variable nodes. Dashed line partitions the factor graph into two sub-graphs 

 

A. Exact inference 

The estimation task is facilitated by the following factorization of the posterior pdf shown by 

the factor graph in Fig. 1. 

 0 0 0

1( ) ( ) ( , )

( , | ) ( | , ) ( , ) ( ) ( | ) ( | )

n n n

N

n n

nh g f x s

p p p p p p x s


     
s x

x s y y y y x s x s s y y x  (3) 

We use   to denote equality after scaling to unit area. 

The MMSE estimate of nx  is given by the mean of the marginal posterior 0( | )np x y y , 

which can be written as 
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0

0 0

{0,1} {0,1} 0

( , , )
( | ) ( , | )

( )n nN N

n

p
p x p

p 
 


   


  x x

s s

x s y y
y y x s y y

y y
 (4) 

 
0 0 0

{0,1} {0,1}

( , , ) ( | , ) ( | ) ( )
n nN N

p p p p
 

 

      x x
s s

x s y y s x y y y y x x  (5) 

 
0

{0,1} {0,1}

( | ) ( | ) ( ) ( ) ( | ) ( )
n nN N

p p p g p p
 

 

    x x
s s

s x y y x x x x s s  (6) 
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,

1 1

0 0 {0,1}

( , ) ( ) ( ) ( , ) ( | )
n N

n q n q

n n n n q q q n n

s sq n

f x s p s g f x s p s
 





  

  x
s

x s  (7) 

 

Where 
ns  denotes vector s  with the thn  element omitted, and ,n qs  denotes s  with 

both the 
thn  and 

thq  elements omitted. Writing ,( | ) ( | , ) ( | )n n n q q n q np s p s s p s s s s , the 

last summation in (7) reduces to ( | )q np s s , giving 

 0( | ) ( ) ( )
n n nn f x n g x np x v x v x  y y  (8) 

 

1

0

( ) ( , ) ( )
n n

n

f x n n n n n

s

v x f x s p s



  (9) 

 

1

0

( ) ( ) ( , ) ( | )
n

n
q

g x n q q q q n

sq n

v x g f x s p s s






x x  (10) 

 

B. Implementing the Message Passes 

Whereas exact posterior calculation via (8)-(10) is computationally prohibitive for typical 

problem sizes, approximate calculation can be efficiently accomplished using message 

passing. Using the framework of BP, the functions ( )
n nf xv    and ( )

ng xv    can be 

approximated. 

 

1
( ) ( )

0

( ) ( , ) ( )
n n n n

n

t t

f x n n n n s f n

s

v x f x s v s 



  (11) 

 

1
( ) ( )

0

( ) ( )

( ) ( ) ( , ) ( )
n q q

n
q

f x n x g nq q q

t t

g x n q q q s f q

sq n

v x v x

v x g f x s v s


 

 





 x x  (12) 

Which depend on the other messages 

 
1

( 1)

( ) ( ) ( 1)

{0,1}

( )

( ) ( ) ( ) ( )
n n n q

N
n

t
qf sq q

t t t

s f n h s n s h q

q n

v s

v s v s h v s








  





   
s

s  (13) 



 

 

5 

 

( )

( ) ( )

( )

( ) ( , ) ( )
n n n n

n

t
ng fn

t t

f s n n n n x f n
x

v x

v s f x s v x



 



   (14) 

We use the superscript-(t) to denote iteration. These messages can then be combined for 

marginal inference: 

 

 
( )

( ) ( )

0( | ) ( ) ( )
n n n

t
t t

n f x n g x np x v x v x  y y  (15) 

 
( )

( ) ( )

0( | ) ( ) ( )
n n n

t
t t

n f s n h s np s v s v s  y y  (16) 

 

Where 
( )t

p  denotes the iteration- t  approximation to the pdf. 

  We now partition our factor graph into the two sub-graphs separated by the dashed line in 

Fig.1. The message   ( )

1
( )

n n

N
t

f s
n

v 


  form the outputs of the left sub-graph and the inputs to the 

right one, while the messages  ( )

1
( )

n

N
t

h s
n

v 


  form the outputs of the right sub-graph and the 

inputs to the left one. From this, we can interpret the BP scheme as iterationg between two 

blocks, one which performs inference on the left sub-graph (which models structure in the 

observation) and the other which performs inference on the right sub-graph (which models 

structure in the sparsity pattern), with message-passing between blocks. 

 

We will henceforth refer to inference on the left sub-graph of Fig.1 as “sparsity pattern 

equalization” (SPE) and inference on the right sub-graph as “sparsity pattern decoding” 

(SPD). We now formally decouple these subtasks and represent each of them using a 

separate factor graph, as in Fig. 2. For this, we define two additional tht  iteration constraint 

functions, 

 
( ) ( )( ) ( )

n

t t

n n h s nh s v s  (17) 

 
( ) ( 1)( ) ( )

n n

t t

n n f s nd s v s

  (18) 
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Figure 2 Decoupling of partitioned factor graph from Fig. 1 into  

(a) sparsity pattern equalization and (b) sparsity pattern decoding. 

IV. SPARSITY PATTERN EQUALIZATION  

Below we outline a BP-based technique that follows the “approximate message passing” 

(AMP) framework recently proposed by Donoho, Maleki, and Montanari. Since we focus on 

a single iteration t , we suppress the superscript- ( )t  notation on messages in this section. 

For BP-based SPE, we expand the g  node in Fig. 2(a), yielding the loopy factor graph in 

Fig.3, with constraints 

 
2( ) ( ; , )H

m m mg x CN y a x  (19) 

 

Where H

ma  denotes the thm  row of A . Noting that SPE will require several iterations of 

message passing between nodes { }mg  and { }nx , we will henceforth use 
n m

i

x gv   and 

m n

i

g xv   to denote the SPE-iteration- i  messages. In addition, we will assume Gaussian 

active-coefficients, i.e., 

 
2( ) ( ;0, )n n n nq x CN x   (20) 

 

We use n  to abbreviate (1)nh , the prior probability of 1ns   assumed by SPE. Thus, the 

coefficient is Bernoulli-Gaussian, with the form 

 
2( ) ( ;0, ) (1 ) ( )

n nf x n n n n n nv x CN x x         (21) 

 

 

Figure 3 Factor graph for BP-based implementation of SPE 
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A. BP approximation via the large-system limit 

Exact calculation of ( )
m n

i

g x nv x  would involve the iteration of 12N  terms, which is cleary 

impractical. However, in the large system limit(i.e., ,M N   with /M N fixed), the 

central limit theorem motivates the treatment of ( )
m n

i

g x nv x  as Gaussian. In this case, it is 

sufficient to parameterize the inputs to 
mg  via 

 

 ( )
n m

n

i i

nm n x g n
x

x v x   (22) 

 
2( ) ( )

n m
n

i i i

nm n nm x g n
x

v x v x   (23) 

 

Which yields outputs from 
mg  that take the form  

 

 ( ) ( ; , ) 
m n

i i i

g x n mn n mn mnv x CN A x z c  (24) 

 


i i

mn m mq qmq n
z y A  (25) 

 
2 2| | 


i i

mn mq qmq n
c A  (26) 

 

 

From (22), (23), we see that 1 i

nm and 1i

nmv  are then determined by the mean and variance, 

respectively of the pdf 

 

 
1 ( ) ( ) ( )

  
 n m n n l n

i i

x g n f x n g x nl m
v x v x v x  (27) 

 

Using following equation 

 

 
1

( ; , ) ; ,
1 1





 
 
 
 
 
 




 

q

q
q

q q

q

q q
q q

v
CN x v CN x

v v

 (28) 

 

The product term in (27) reduces to 
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*

ln ln ln

2 2

ln ln ln ln

/ 1
; ,

| | / | | /



 

 
 
 
 


 

i i

l m
n i i

l m l m

A z c
CN x

A c A c
 (29) 

 

 

And so, under the large-system-limit approximations 

 

 ln 1

1


 
Mi i i

n mnm
c c c

M
 (30) 

 

And 2

ln ln1
| | | | 1

 
  

M

l m l
A A , (27) simplifies to 

 

 
1 2 *

ln ln( ) ( ( ;0, ) (1 ) ( )) ( ; , )   

 
    n m

i i i

x g n n n n n n n nl m
v x CN x x CN x A z c  (31) 

 

 

Applying (28) to (31), we find, after some algebra, that 

 

 
1 ( ) / (1 )     i i i i

nm n n nm nmc  (32) 

 
1 1 2 1| | /      i i i i i i

nm nm nm nm n nmv c  (33) 

 
*

ln ln
i i

nm l m
A z  (34) 

 
2( )exp( ( ) | | )   i i i i

nm n n n n nmc c  (35) 

 

Where 
2

2
( )





n

n

n

c
c

, 
21

( )
 




 n n
n

n

c
c

c
, 

2

2
( )

( )





n

n

n

c
c c

. 

 

The thi  SPE iteration yields the nx -posterior approximation 

 

 
1

0 1
( | ) ( ) ( )





 
  n n l xn

i M i

n f x n g nl
p x v x v xy y  (36) 

 

 

The mean and variance of (36) constitute the MMSE estimate of nx  and its MSE. Nothing 

that (35) differs from (27) only in the inclusion of the 
thm  product term. 

 

B. Approximate message passing 
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The approximate BP algorithm outlined updates ( )O NM  variables per iteration. When 

N and M  are large, the resulting complexity may be undesirably high, motivating us to 

find a simpler scheme. 

Recently, Donoho, Maleki proposed AMP algorithms that greatly simplify BP algorithms 

of the form outlined by tracking only ( )O N  variables. Using AMP, we find that 

  

 
*

1
 


 

Mi i i

n mn m nm
A z  (37) 

 
1 ( ; )  i i i

n n nF c  (38) 

 
1 ( ; ) i i i

n n nv G c  (39) 

 
1 2 1

1

1
 


  

Ni i

nn
c v

M
 (40) 

 
1 1 '

1 1
( ; )  

 
   

i
N Ni i i im

m m mn n n nn n

z
z y A F c

M
 (41) 

 

Above, (.;.)nF , (.;.)nG , and '(.;.)nF  are nonlinear functions that depend on the 

coefficient prior. We chose the Bernoulli-Gaussian prior. Thus, the nonlinear functions take 

the following form 

 

 2( )| |

( )
( ; )

1 ( )
 


 

 


 n

n
n c

n

c
F c

c e
 (42) 

 
2( )| | 2( ; ) ( ) | ( ; ) | ( ; )

    



 n c

n n n n

c
G c c e F c F c  (43) 

 2 2

2
'

( )| | ( )| | 1

( ) ( ) | |
( ; ) 1

1 ( ) 1 ( ( ) )
   

  


   

 
   

   
n n

n n
n c c

n n

c c
F c

c e c e
 (44) 

 

V. NUMERICAL RESULTS 

  Numerical experiments were conducted for the observation model (1), where the elements of 

A  were independently drawn from a 
1

0,
 
 
 

CN
M

 distribution and where the signal coefficients 

were generated via ( | ) ( ;0,1) (1 ) ( )  n n n n n np x s s CN x s x  using Markov chain-generated 

binary sprsity pattern { }ns . We set (0,1]   called the Markov independence parameter. Note 
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that, as   increases, the pattern becomes less correlated, with 1   corresponding to an i.i.d 

pattern. 

 

VI. DISCUSSION 

After meeting, please write discussion in the meeting and update your presentation file. 
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