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Short summary: In the paper, the authors give a sufficient condition of the Orthogonal Matching Pursuit 

(OMP) algorithm. In [2], Wakin and Davenport insisted that OMP can reconstruct any K  sparse signal if 

 1 1 3K K   , where 
K  is the restricted isometry constant. However, in this talk, an improved sufficient 

condition that guarantees the perfect recovery of OMP is presented 

I. HISTORY OF SUFFICIENT CONDITIONS OF THE OMP ALGORITHM 

In the below table 1, sufficient conditions that the OMP algorithm reconstructs a K  spars signal from a set of 

linear measurements y Ax , where M NA ( N M ), are given. 

 

Year A sufficient condition 

2007[1]   1 2 1K    

2010[2]   1 1 3K K    

 

Besides, there are many theoretical papers which analyze algorithms based on the OMP algorithm. In here, it is 

not scope of this seminar. Therefore, we do not care about them. 

 

II. SYSTEM MODEL 

Let us consider the below equation: 

 ,y Ax  (1) 

where M NA ( N M ), and Nx  is a K  sparse signal, and My  is a set of linear measurements. The 

smallest constant K  called “the restricted isometry constant” satisfies 

    
2 2 2

2 2 2
1 1K K    x Ax x  (2) 

for any K  sparse signal x . 

On the Recovery Limit of Sparse Signal Using Orthogonal 

Matching Pursuit 
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III. MAIN RESULTS 

A. Improved Recovery Bound of the OMP algorithm 
Theorem 1: For any K  sparse signal x , the OMP algorithm perfectly reconstruct x  from y  if the isometry 

constant 
1K 
 satisfies  

 1

1
.

1
K

K
  


 (3) 

In this talk, we try to understand a proof of Theorem 1. 

Before we study the proof, let us consider whether the OMP algorithm perfectly reconstructs x  or not if 

1 1K K   . 

B. The OMP algorithm can fail under 
1 1K K   . 

Example 1: Let us consider the problem of reconstructing a K  sparse signal 1Kx  such as 1 0Kx   , and 

1ix   for 1, ,i K  from y Ax , where 

 
   1 1

1

1
.

1

K KT

b b

b

b

b b

  

 
 
  
 
 
 

A A  

Obviously, all the Eigen values of T
A A  are 1 2 11 , and 1 .K Kb Kb            (See Example 1 on 

Appendix). When we assume  1b K K  , T
A A  becomes 

 

   

 

 

   

   1 1

1 1 1

1 1
,

1

1 1 1

K KT

K K K K

K K

K K

K K K K

  

  
 
 

 

  
 

 
  
 

A A  (4) 

and the smallest and biggest Eigen values are  

  min max1 1 , and 1 1 .K K K      

Therefore, we have 1 1K K   (In fact, all the Eigen values of T
A A  must be contained in the interval 

1 ,1   
 

, Thus,     1 max minmax 1,1T T

K     A A A A ). Now, we investigate a quantity ,ia y  

for 1, , 1i K  . For the OMP algorithm to reconstruct x , 1,Ka y  must be less than any ,ia y  for 
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1, ,i K . This is reason that we investigate the quantities. First, for  1, ,i K , we have 

 

 

 

 

, ,

          ,

1
          1 ,

a

i i

b
T

i

c K

K K






 

a y a Ax

A a x  (5) 

where  a  from the fact y Ax ,  b  from the fact , ,T T T T

i i i i  a Ax a Ax x A a x A a , and  c  from the 

fact that T

iA a  is the i
th

 column of T
A A  presented in (4), and x  such as 

1 0Kx   , and 1ix   for 1, ,i K . 

Second, for 1i K  , we have 

 

1 1

1

, ,

              ,

1
              .

K K

T

K

K

 









a y a Ax

A a x  (6) 

Obviously, the OMP algorithm must fail in the first iteration if an inequality 1, ,K i a y a y  for all 

 1, ,i K . The inequity becomes 

 
1 1

1
K

K K K


   

which is always true if 2K  . Thus, the OMP algorithm in the first iteration selects an incorrect index. 

IV. PROOF OF THEOREM 1 

A. Notations 

The below notations will be used throughout the rest of this presentation.    supp : 0ii x  x  is the set of 

indices corresponding to non-zero coefficients of x .  is the cardinality of , and  is the set of 

elements belonging to  but not to . 
M

A  is a sub-matrix of A  which contains columns 

corresponding to indices of . x  is a restriction of x  to the elements indexed by .  span A  is 

the span of columns in A , T
A  is the transpose of A , and  

1
† T T



A A A A  is the pseudo inverse of A . 
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†P A A  is the orthogonal projection onto  span A , and   P I P  is the orthogonal projection onto the 

orthogonal complement of  span A . 

B. Lemmas 

We need the below lemmas to prove Theorem 1. 

Lemma 1: For a set , if 1  , then  

    2 22
1 1T    v A A v v  

holds for any v  supported on . 

Lemma 2: For disjoint sets , , if 1


 , then  

 
22 2

T T 


 A Av A A v v  

holds for any v  supported on . 

Lemma 3: If the sensing matrix satisfies the RIP of both orders 
1K  and 

2K , then 
1 2K K   for any 

1 2K K  

All proofs of the above lemmas are given in [3].  

C. Proof of Theorem 1 

1) We provide a condition under which the OMP algorithm selects a correct index in the first iteration. 2) We 

show that the residual in the general iteration preservers the sparsity of a K  sparse signal. 3) The condition for the 

first iteration can be extended to the general iteration. 4) Theorem 1 is established from the conditions. The 

statements are an overall strategy of Proof of Theorem1. 

First, we need investigate the condition when the OMP algorithm selects a correct index in the first iteration. Let 

us denote kt  be the index of the column maximally correlated with the residual 1k
r . In the first iteration, we have  

 
1 0arg max , arg max , .i i

i i
t  a r a y  (7) 

Now, let us suppose that 1t  always belong to the support set  of x . From (7), we have 

 

 

1

( )

2

( )

2

,

1
            

1
            1 ,

T

t

a
T

b

K

K

K







 

a y A y

A y

x

 (8) 
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where  a  from the norm inequalities, and  b  from the fact that y  A x  and Lemma 1.Suppose that 1t  

does not belong to the support set , then  

 

 

1 1

( )

1 2

,

            1 ,

T

t t

a

K 



 

a y a A x

x

 (9) 

where  a  from Lemma 2. Clearly, 1t  must belong to the support set . Thus, if  

    12 2

1
1 1K K

K
    x x  (10) 

then, the OMP algorithm selects a correct index in the first iteration. The equation (10) becomes 
1 1K KK    . 

From Lemma 3, the inequality becomes 1 1 1K KK     which leads to  

 1

1

1
K

K
  


 (11) 

In short, if (11) is true, then the OMP algorithm always selects a correct index in the first iteration. 

Now, we investigate a condition such that the OMP algorithm selects a correct index in the  1k  th
 iteration. 

Let us suppose that initial k  iterations of the OMP algorithm are successful. Namely,  1, ,k kt t  . Then, 

 ˆk k

k span  r y A x A  because y A x  and is a sub matrix of A . Thus, k
r  can be expressed as 

k kr Ax  ( i.e., k
r  is a linear combination of the K  columns of A ), where the support set of k

x  belongs to 

the support set of x . If the OMP algorithm selects a correct index belonging to the support set of k
x , then the 

OMP algorithm also selects a correct index belonging to the support set of x . Clearly, if 
1 1 1K KK     is 

satisfied, then the OMP algorithm success in the  1k  th
 iteration.  

Last, we need to show that the index 1kt   selected at the  1k  th
 iteration of the OMP algorithm does not 

belong to kT . First, we have 
†ˆ k kx A y , and ˆk k k

k   r y A x P y . Second, for all ki , we have  

  
†

ˆ, ,

ˆ, ,

0.

k k

k k

k k

k

i i

i i

T T

i iA x

 

 

 



a r a y A x

a y a A x

a a A A y
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Therefore, we conclude that k
r  is orthogonal to the columns 

ia  for all ki T . It leads to 1k kt   . 

Furthermore, if k r 0  and  k spanr A , then there exists i  such as , 0k

i a r . Therefore, the OMP 

algorithm selects ki . 

Now, we apply the mathematical induction. First, we proved that the OMP algorithm select a correct index if 

1

1

1
K

K
  


. Second, when we assume that the initial k  iterations of the OMP algorithm are successful, the 

OMP algorithm select a correct index in the  1k 
th

 iteration if 1

1

1
K

K
  


. Thus, the OMP algorithm will 

terminate after the K
th

 iteration if 1

1

1
K

K
  


. 

V. DISCUSSION ON THEOREM 1 

It is hard for us to determine 
1K 
 from a sensing matrix because we need to examine all possible K sparse signal. 

However, the below result is known 

Result 1[ref]: If an M N  sensing matrix A  whose entries are i.i.d.  0,1 M , then A  obeys the RIP 

condition K   with high probability under  

 
2

log
N

K
K

M





 
 
 

  (12) 

where   is a positive constant. When we utilize the above inequalities, we indirectly compare the result obtained 

by [2] and the result presented in this talk. 

 

 A sufficient condition A sufficient condition on M  

[1]  1 1 3K K     9 1 log
1

N
M K K

K


 
   

 
 

The paper  1 1 1K K       
2

1 1 log
1

N
M K K

K
  


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Example 1) computing all the Eigen values of 

1

1

1

b b

b

b

b b

 
 
 
 
 
 

.  

     

   
2

1 1 1 1

1 0 1 1 0 1 1 0 1 1

1 1 0 2 1 0 0 1 2

1 1 2

b b b b b b b b

b b b b b b b b

b b b b b b b

b b

   

      

   

 

   

               

     

    

 

 Therefore, 
1 2 1 b    , and 

3 1 2b   . 

   

 

 

 

 

 

 

 

 

1 1 1

1 0 1 1 0 0 1 1 0

1 1 0 0 1 1

1 1 1

1 0 0 1 1 0 0 1

0 1 1 0 0 1 1 0

0 0 1 1 0 0 1 1

1 0 1

1 0 0 1

0 1

b b b b b b b b b

b b b b b b b

b b b b b b b b

b b b b b b b b b

b b b b

b b b b

b b b b

b b b b b b

b b

b b

  

    

   

  

   

   

   

 

 



  

        
 

     

  

       

       
 

       

  

   

 


 

 

 

 

 

   
3

1 0 0 1

1 0 0 1 1 0

0 0 1 1 0 0 1 1

0 0 2 1 0 0 0 1 3

1 1 3

b b

b b

b b b b

b b b

b b

 

  

   

 

 

   

     


       

   

    

Therefore, 1 2 3 1 b      , and 4 1 3b    

Thus, we concluded all the Eigen values of a    1 1K K  

1

1

1

b b

b

b

b b

 
 
 
 
 
 

 are 

1 11 ,  and 1K Kb Kb         . 
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