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Short summary:  

In this work, they propose a model for iterative decoding algorithms with memory which 

covers successive relaxation (SR) version of belief propagation and differential decoding with 

binary message passing (DD-BMP) algorithms as special cases. Based on this model, they derive 

a Bayesian network for iterative algorithms with memory over memoryless channels and use this 

representation to analyze the performance of the algorithms using density evolution. 

I. INTRODUCTION 

 

Iterative decoding algorithm  Decoding algorithm of LDPC codes 

Low-density parity-check (LDPC) codes are known to have good performance when decoded 

with iterative decoding algorithms, also known as message-passing algorithms.  

 

Density Evolution  An analytical tool of LDPC codes 

An analytical tool called density evolution can be used to find the threshold of a particular 

code ensemble under a given iterative decoding algorithm. The threshold is an asymptotic 

measure of performance and is defined as the worst channel parameter (e.g., largest noise 

variance) for which the probability of error still converges to zero as the number of iterations 

tends to infinity 

 

Density Evolution  A technique for constructing irregular LDPC codes 

Density evolution is also a powerful technique for constructing irregular LDPC codes through 

the optimization of the degree distributions. 

Performance Analysis of Iterative Decoding Algorithms 

with Memory over Memoryless Channels 
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All message-passing algorithms analyzed by density Evolution  Memoryless 

To the best of our knowledge however, all the message-passing algorithms analyzed by 

density evolution in the literature are memoryless, i.e., the output message of a variable node 

(check node) at iteration l is only a function of the input messages to that node at iteration l (l -1) 

and also of the initial message of the channel in the case of variable nodes. 

 

Iterative decoding algorithms with memory  Exist 

There exist however a number of iterative decoding algorithms, such as successive relaxation 

(SR) variants of BP and MS and DD-BMP (differential decoding with binary message-passing), 

that have memory. 

 

The presence of memory in algorithms  Improves the performance but makes the 

density evolution analysis much more complex. 

 

In this paper, they develop the framework for the density evolution analysis of iterative 

extrinsic message-passing algorithms with memory which includes DD-BMP and SR algorithms. 

 

They employ the Bayesian network representation via a directed acyclic graph (DAG), to 

capture the dependences among different messages and memory contents in a space with two 

dimensions: iteration l and the depth of the decoding tree d. 

 

Independent 

Incoming messages to a node along different edges 

 

Dependencies 

A message passed along a given edge at iteration l 

All the messages passed along that edge at previous iteration l’<l. 

 

Such dependencies cause the complexity of density evolution to grow at least exponentially 

with l. They derive the density evolution equations and use techniques to make them tractable. 



 

 

3 

II. ITERATIVE DECODING ALGORITHMS WITH MEMORY 

 

A. General Model 

 

1) Memoryless decoding algorithm 

 

 

 

The figure (a) shows a snapshot of the Tanner graph of an LDPC code at iteration l for a 

memoryless decoding algorithm, where variable and check nodes are represented by circles and 

squares, respectively. 

 

Under cycle-free assumption and based on the principle of extrinsic message passing, 

∙ Incoming messages    
1 1, ,

v

l l

dM M   to node V are independent of each other and of 

the channel message 0M . 

∙ The outgoing message 
 l
V CM   of node V to node C at iteration l is a function of 

1vd   i.i.d. random variables and the channel message. 

∙ The outgoing message of a check node is a function of 1cd   i.i.d. random variables 

corresponding to the extrinsic incoming message. 

 

 The distribution of a function of independent random variables is relatively easy to find since 

the joint distribution of these variables is the product of their marginal distribution. In this case, 

one can recursively derive the distribution of messages at iteration l as a deterministic function of 

the distribution at iteration l-1 with a complexity that is independent of l. 
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2) Memory decoding algorithm 

 

Similar to figure (a), we have a set of i.i.d. extrinsic incoming messages to a variable node V. 

The outgoing message from V :  l
X  

Memory units: 
 

, , ,
l

B M B D  . 

 l
B  is updated by 

    1
,

l l

B X B


 , where B  is a deterministic function of  l
X  and the 

content of the memory at iteration l-1. 

The incoming message 
 l
V CM   to node C from V is obtained by 

  l

M B  

Note that while the message  l
X  is a function of independent random variables, the outgoing 

messages, 
 l
V CM  , is a function of dependent random variables  l

X  and  1l
B


. 

Our focus will be on the link from variable nodes to check nodes and on finding the 

distribution of  l
B  and 

 l
V CM  . 

 

B. SR and DD-BMP Algorithms 

 

1) SR Algorithms: Any standard memoryless iterative algorithm, such as BP or MS, can be 

turned into an SR algorithm by proper introduction of memory. SR algorithms can be performed 

in different message domains. In this work, we assume log-likelihood ratio (LLR) domain for 

messages (SRLLR). Based on the model of Fig. 1(b), the SR version is defined by the following 

variable node map 

            

      

1 1
, 1 ,

,

l l l l l

B

l l l

V C M

B B X B X

M B B

 
 



    

  
(1) 
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where 
      0 1 1, ,...,

v

l l l

V dX M M M   . In (1),   is called the relaxation factor, and can be 

optimized for the best performance. The optimal value of   is usually in the interval (0, 1). 

 

2) DD-BMP: Differential decoding with binary message passing (DD-BMP) was introduced 

as an attractive alternative to purely hard-decision algorithms. This algorithm combines the 

simplicity of binary message-passing with the good performance of soft-decision algorithms, 

where the soft information is stored in edge- or node-based memories. In the former case, studied 

in this paper, the variable node map, following the model of Fig. 1(b), is defined by 

          

       

1 1
, ,

sgn ,

l l l l l

B

l l l

V C M r

B B X B X

M B B

 



   

  
(2) 

where  sgn 1r x   for 0x  , and 1   for 0x  . For 0x  ,  sgnr x  takes +1 or -1 

randomly with equal probability. In (2), 
      0 1 1, ,...,

v

l l l

V dX M M M   , which for the BIAWGN 

channel reduces to    1

1

vdl l

ii
X M




 . 

Both the variable and the check node operations (particularly the latter) are simpler for 

DD-BMP compared to BP and MS algorithms. 

 

C. Symmetry of the Decoder and Error Probability 

 

The analysis of iterative decoders is greatly simplified assuming that both the channel and the 

decoder are symmetric. 

In particular, the variable node symmetry condition has some implications on the choices of 

the mappings B  and M : B  should be sign inversion invariant, and    M Mx x    . 

As it can be seen in (1) and (2), both conditions are satisfied for SRLLR and DD-BMP 

algorithms. 

With both the channel and the decoder being symmetric, we can assume, without loss of 

generality, that the all-zero codeword is transmitted. In this case, the average fraction of incorrect 

messages passed at iteration l from variable nodes to check nodes is calculated by 
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       1
0 0

2

l l l

eP P B P B    .(3) 

We refer to 
 l

eP  in (3) as the probability of bit error at iteration l. 

 

III. BAYESIAN NETWORK REPRESENTATION OF ITERATIVE DECODING ALGORITHMS WITH 

MEMORY 

A. Bayesian Networks and Conditional Independence 

In this work, they use a Bayesian network to represent the dependencies among different 

messages and memory contents of an iterative algorithm with memory. 

The conditional independence between two sets of random variables  and  given a 

third set  is defined by 

     | , | | |    

where    and  |  are the marginal distribution of  and the conditional 

distribution of  given , respectively. 

 

B. Bayesian Networks of Iterative Decoders with Memory 

 

Based on the principle of extrinsic message-passing, one can see that  l
X  is a deterministic 

function of 
 1

1

l
B


 and 0M . Moreover, as it can be seen in Fig. 1(b),  l

B  is a function of 
 1l

B


 

and  l
X . In addition, 

 l
iB  depends on 

 1l

iB


 and 
 1

1

l

iB


 . 
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IV. DENSITY EVOLUTION 

 

Based on (3), to obtain the error probability  l
eP  at each iteration l, we need to compute 

  k
B . 

A efficient approach is to compute 
  k

B  is: 

       
   

1

', : ',

', ,
B X B

l l l

B

b x S S b b x

P B b P B b X x b S


  

      . 

where BS  is sample space of  l
B  and 

    1
,

l l
B X


 is 

              
 

  

       
 

1 1

1 1

1 1 1 1 1 1 1 1

1 1 1 1

,
l

l

l l l l l l l

x

l l l

x

B X B X X X X

B X X

 

 

       

   








 

where 
        1 1 2

, , ,
k k

X X X X


  for 1k  . 

 Calculation of     1l l
B X


 

∙ 

                
 

           
 

1

1

1 1 1 1 1

1 1 1 1

,

, , 2

l

l

l l l l l l l

b

l l l l l

b

B X B X B B X

B X B B X l





    

   



 




 

 Calculation of 
  1 l

X


 

The variables 
 l
iM  are i.i.d.. Since 

        1 2 1, , ,
v

l l l l

v dX M M M   ,  l
X  is conditionally 

independent of all other random variable given  
1 1v

l

dM   . We thus have 

          
 

       
 

1

1 1

1

1 1

1 1 1 1

1 1 1 1

1
1

1 1

1 1

v v
l

dv

v

v
l

dv

l l l l

d d

m

dl
i i l

d j

i jm

X X M M

X M M



 



 

   

   




 

 







  
(4) 
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V. MEMORY TRUNCATION 

A. Main Idea 

 

To explain the approximation, we consider the calculation of the joint distribution 

    1l l
B X


. This computation uses the fact that 

     1 1 1
|

l l l
B X X

  
 . The problem lies in 

the fact that the size of the sample space of the conditioning set  1 1l
X

 
 grows exponentially 

with l. Now consider making the following approximation: 

 

     1 1 1
| , 2

l l l n l
B X X n

    
  . (5) 

Regardless of l, the conditioning set in (5) will always have a sample space with size 
1n

XS


. 

Consider the sequence  0 l
B


. This sequence, in general, is not a Markov process of some finite 

order. The memory truncation approximates  0 l
B


 by a Markov process of order n, n . 

This is represented by the following: 

             1 0 1
, , , ,

n k n k n k n k k
B B B B B B

     
 (6) 

and corresponds to removing the edges between  i
X  and  i

B  for 1,...,i k , in the Bayesian 

network of Fig.3. 

We refer to the approximation of (6) as memory truncation of order  nn MT .  
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B. Analysis 

We consider a memory truncation of order n, and assume that we have already calculated 

(approximated) 
  k

B , k n . For 1,...,k n , we have the following distributions available: 

∙     1
,

k k
B X


 

∙     1 1 1k k n k
B X

    
 

∙   1k n k
X

  
 

 

We now derive 
  1k

B


. To perform this, we will use the calculation of the joint 

distribution 
    1

,
k k

B X


. 

 

              
 

  
    

 

  

2

2

1 2 1 2 2

2 2 1

, | |

|

k n k

k n k

k k k k n k k k n k k n k

x

k k n k k n k

x

B X B X X X X

B X X

  

  

          

      








(7) 

In (7), the distribution 
    2

|
k k n k

B X
  

 is calculated by  

                
 1

2 1 1 2
| | , | ,

k

k k n k k k k k k n k

b

B X B X B B X


       
  

where  

    
         

 

  
       

 

    
  
  

1

1

1 2

1 1 1 2

1

1 1 1 1 1 2

2 2

|

| |

1
| |

k n

k n

k k n k

k k n k k n k n k

x

k n k

k k n k k n k k n k n k

k n k k n k
x

B X

B X X X

X
B X X X X

X X

 

 

   

        

  

            

     



 




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VI. SIMULATION RESULTS 

 

In general, the accuracy of 
  l

B  increases with increasing the memory truncation order n, 

and so does the complexity. It is however expected that after increasing n beyond a certain order 

0n , the accuracy improvement would be negligible. The goal is thus to find 
0n . 

 

 

In Fig. 4, we have shown 
 l

eP  of the (3, 6) LDPC code ensemble for 200l   vs. 0/bE N  

for different values of memory truncation order n. The curves demonstrate a convergence 

behavior as n is increased. In particular, the two curves for n = 4 and n = 5 are very close. We 

have also tried a number of other ensembles and observed a similar trend 
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For the ensemble of (4, 5) codes, we have plotted 
 l

eP  vs. l for truncation orders 3, 4 and 5, 

and for 0/bE N  values 4.34 dB and 4.14 dB in Figures 5 and 6, respectively. The figures 

suggest that the ensemble threshold is between the two SNR values. 
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To clearly see the effect of memory truncation on the calculated thresholds, in Fig. 7, we show 

the threshold values of the (3, 6) ensemble for different memory truncation orders n. The 

thresholds for each truncation order are plotted versus the quantization step   for q = 8.the 

calculated thresholds for n = 4 and n = 5 are practically identical for different values of  . From 

Fig. 7, the optimal threshold of the (3, 6) ensemble (as a function of  ) is seen to be about 3.26 

dB. Based on the above results, in the following, we use 
0n  = 4 to derive the thresholds. In all 

cases, we use q = 8 and the optimal value of   that minimizes the threshold. 
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To verify the calculated threshold, for the (5, 10) ensemble, we compare the performance of 

randomly constructed (5, 10) codes of large block length (N = 300, 000; 400, 000 and 500, 000) 

with the threshold value of the ensemble (3.18 dB) in Fig. 8. 
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These results show that for a fixed dv, the threshold gap between DD-BMP and BP decreases 

with increasing the rate. As it can be seen, at higher rates the performance gap is less than 1 dB. 

In comparison with MS, for codes with larger degrees, DD-BMP outperforms MS 

 

These results show that by increasing the degrees, the performance gap between MS and 

DD-BMP, which is to the advantage of MS for smaller degrees, disappears and then reverses to 

the advantage of DD-BMP. 

These performance results for DD-BMP are impressive considering that both the check node 

operations and the message-passing for DDBMP are much simpler than those of BP and MS. 

They also demonstrate the potential of iterative decoding algorithms with memory in achieving 

better performance/complexity tradeoffs compared to memoryless algorithms. 

 

 

 

 


