
INFONET, GIST 
Journal Club (2013. 07. 18) 

 

 

 

Authors: Chao Chen, Baoming Bai, Xinquan 

Yang, Li Li, Yang Yang 

Publication: IEEE T. Comm, June 2013 

Speaker: Jeong-Min Ryu 

 

 

Short summary: For cyclic LDPC codes, they propose to use their automorphism groups 

to improve the iterative decoding performance. Three types of iterative decoders are devised 

to take advantage of the code’s automor-phism group. Towards exploiting the automorphism 

group of a code, they propose a new class of cyclic LDPC codes based on pseudo-cyclic 

MDS codes with two information symbols, for which nonequivalent parity-check matrices 

are obtained. Simulation results show that for their constructed codes of short lengths, the 

automorphism group can significantly enhance the iterative decoding performance. 

I. INTRODUCTION 

 

 The use of automorphism group for classical codes 

 

Most classical codes are defined by high-density parity-check (HDPC) matrices, 

whose Tanner graphs have a large number of short cycles. 

 Iterative decoding performs rather poorly for these codes.  

To mitigate the deleterious effect of short cycles, Jiang and Narayanan [3] and 

Kothiyal et al. [4] proposed adaptive versions of iterative decoding, respectively.  

As a result, the performance was greatly improved. However, a significant increase 

in decoding complexity was incurred. 

 

Classical codes are known to have a very rich algebraic structure.  

 To overcome the adverse effect of short cycles while maintaining a reasonable 

complexity, the automorphism group, as a code structure, was exploited for iterative 

decoding 

 For HDPC and moderate-density parity-check (MDPC) codes, the automorphism 

group aided iterative decoding techniques are applied. 

Enhancing Iterative Decoding of Cyclic LDPC Codes 

Using Their Automorphism Groups 
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 In this paper, 

 

1) they apply automorphism group aided iterative decoding techniques to cyclic LDPC 

codes. 

2) For a cyclic code, two particular subgroups of the automorphism group are well 

known. They show that for a large class of cyclic LDPC codes [15]-[18], [20], the two 

subgroups of the automorphism group belong to the same equivalence class and thus 

cannot be harnessed for iterative decoding. 

3) They present a class of cyclic LDPC codes for which the automorphism group can 

be exploited for iterative decoding. 

II. HOW TO USE THE AUTOMORPHISM GROUP OF A CODE IN ITERATIVE DECODING 

A. The Automorphism Group of a Code 

 

Definition: Let C be a binary linear block code of length N. The set of coordinate 

permutations that map C to itself forms a group under the composition operation. This 

group is called the automorphism group of C, denoted by Aut(C) 

For a permutation  Aut C  , let 1   denote its inverse. From the definition we 

know that for any  0 1 1, ,..., Nc c c c C  , 
      1 1 10 1 1

, ,...,
N

cc Cc c
  

    
  . 

Let C  denote the dual code of C, then the following property holds. 

Property 1:    Aut AutC C . 

Property 2: For any  Aut C   and a parity check matrix H of C, H  also forms a 

parity check matrix of C. 

Property 3: For a binary cyclic code with odd length N, the automorphism group 

contains the following two subgroups: 

0S : The set of permutations 0 1 1, ,..., N    , where  :k j j k    mod N. 

1S : The set of permutations 0 1 1, ,..., N    , where  : 2k kj j    mod N and 1m  is 

the smallest positive integer such that 12 1
m
  mod N. 
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B. Two Perspectives and Their Equivalence 

 

Using the automorphism group of a code for decoding has a long history. In the early 

1960s, MacWilliams devised a hard-decision decoding procedure, called the permutation 

decoding [14]. Recently, the code’s automorphism group was brought into use in the 

soft-decision iterative decoding of HDPC codes [5]−[9] and MDPC codes [10]. Here, they 

review two possible perspectives involved and show their equivalence. 

 

 

 

(a) Assume that the BPSK signaling is used over the AWGN channel. Let c C  be 

the transmitted codeword and  1
N

x   the corresponding modulated sequence. Then 

the received signal sequence is given by 

y x n  , 

where n  contains N  i.i.d. Gaussian noise samples with zero mean and variance 2 . 

(b) Applying a permuation  Aut C  , we have 

y x n    . 

Fact 1: In Fig. 1(a) and Fig. 1(b), the outputs c  and c  are not necessarily equal. It is 

possible that only one of c  and c  is the transmitted codeword. 

Fact 2: In Fig. 1(a) and Fig. 1(c), the outputs c  and c  are not necessarily equal. It is 

possible that only one of c  and c  is the transmitted codeword. 

Fact 3: In Fig. 1(b) and Fig. 1(c), the outputs c  and c  are equal.  
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C. A partition of the Automorphism Group 

 

We call two parity-check matrices equivalent if they can be obtained from each other 

through row permutations; otherwise, we call them nonequivalent. Since the flooding 

schedule is assumed, we further have 

Fact 4: In Fig. 1(a) and Fig. 1(c), if H and H  are equivalent, then the outputs c  and 

c  are equal. 

Let  1 2, Aut C   , then 1  and 2  belong to the same equivalence class if and only if 

1H  and 2H  are equivalent. Note that the partition depends on the selection of H. For a 

given H, we can construct the same number of nonequivalent parity-check matrices as that of 

equivalence classes. 

 

D. Design of Three Types of Iterative Decoders 

 

Definition: Let the automorphism group of a code be partitioned based on a given H, a 

d-order diversity set is a set of d permutations that belong to different equivalence classes.  

We choose a d-order diversity set   : , 0,1,..., 1l l Aut C l d     . Denote by yL  the 

log-likelihood ratio vector (LLRV) computed from y. Below, they present three types of 

iterative decoders that use the diversity set in different manners. 

 

∙ Decoder-1: the diversity set is used in a serial manner. The decoding procedure is 

shown in Algorithm 1 
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∙ Decoder-2: the diversity set is used in a periodic manner. The decoding procedure 

is shown in Algorithm 2. In line 5, an inner iteration refers to one time updating of 

all check nodes and variable nodes of H. For d = 2, the decoder works in a Turbo 

manner [1]. But there are two main differences: 1) The message passing out of a 

component decoder in the preceding iteration is not subtracted from the a priori 

information passing to this component decoder in the current iteration; 2) Soft 

information exchanged between the two component decoders is not limited to 

information bits. 

 

 

 

Decoder-3: the diversity set is used in a parallel manner. Define 
1

l lH H 
. Then by 

concatenating lH , we form an augmented parity-check matrix 

 

0

1

1

aug

d

H

H
H

H 

 
 
 
 
 
 

. 

 

The decoder performs the SPA with flooding schedule on this highly redundant parity-check 

matrix, with the maximum number of iterations I. 
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III. A NEW CONSTRUCTION 

 

We define an    l c l c    binary matrix as 

 

   

     

0 1 2 1

1

1 0 3 2

1 1

2 3 0 1

1 1 1

1 2 1 0

,

c c

c c c

c

A A A A

A A A A

B

A A A A

A A A A

 

  



 
 
 
 
 
 
 
  

 

where each submatrix is an l l  circulant and the zeroth row of  1

iA  is the first row of iA . 

Define a permutation   as  

 

  : mod , 0,1,..., 1j j l c j l j l c         . (1) 

 

Theorem 4: If we perform row and column permutations on B, both using the permutation 

  given in (1), then we obtain a circulant matrix. 

 

They summarize the construction procedure as follows. 

Step 1: Choose a nonzero codeword from an (n, 2) pseudo-cyclic MDS code with a  . 

Step 2: Use the codeword and its pseudo-cyclic shifts to construct the base matrix 'W . 

Step 3: Use matrix dispersion on 'W  to obtain the QC matrix  'dispH W . 

Step 4: Apply Theorem 4 to  'dispH W  to obtain a circulant as the parity-check matrix H. 

 

For Step 1 and Step 2, the form of base matrix 'W  is given by 

 

 

 

0 1 2 1

1 0 3 2

2 3 0 1

1 2 1 0

'

n n

n n n

n

w w w w

w w w w

W

w w w w

w w w w



 

  

 

  



 
 
 
 
 
 
  

. (2) 
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To construct the base matrix of the form (2), they consider using pseudo-cyclic MDS codes 

with two information symbols. A pseudo-cyclic code with parameter  a GF q  has the 

property that for any codeword  0 1 1, ,..., nc c c 
, its pseudo-cyclic shift  1 0 2, ,...,n nac c c 

 is 

also a codeword. If a = 1, the pseudo-cyclic code reduces to a cyclic code. 

 

For Step3, the Tanner graph corresponding to the matrix  dispH W  has no cycles of 

length 4 and hence has a girth of at least 6. So the matrix  dispH W  can serve as the 

parity-check matrix and gives a QC-LDPC code of length n(q − 1). 

 

 

     
     

     

0,0 0,1 0, 1

1,0 1,1 1, 1

1,0 1,1 1, 1

n

n

disp

m m m n

A w A w A w

A w A w A w
H W

A w A w A w





   

 
 
 

  
 
 
 

. 

 

The way to construct the matrix A is given as follow: 

 

Let GF(q) be a finite field with q elements and a be a primitive element of GF(q). Then 

20, , , q     give all the elements of GF(q). For each non-zero element 

 , 0 2i i q    , define a    1 1q q    matrix  iA   over GF(2): it is a circulant 

permutation matrix; the zeroth row is a  1q  -tuple with weight one where the ith 

component is equal to one and all the other 2q   components are equal to zero. The matrix 

 iA   is referred to as the  1q  -fold matrix dispersion of element ai over GF(2). The 

 1q  -fold matrix dispersion of zero element of GF(q), A(0), is defined as the 

   1 1q q    all-zero matrix. 
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IV. SIMULATION RESULTS 

They present the simulation results for our constructed cyclic LDPC codes. The BPSK 

modulated AWGN channel is assumed. In addition to the three decoders presented in Section 

II, they also simulated a decoder that is not assisted by the automorphism group. The decoder 

is called Decoder-0, which performs the SPA with flooding schedule on the defining 

parity-check matrix. For all these decoders, the maximum number of iterations is set to be 

100. 

 

 

 

Fig. 2 shows the FER performance of the code. The 2-order diversity set  0 1,   is used. 

For comparison, they further simulated a (341,160) LDPC code constructed using the 

progressive-edge-growth (PEG) algorithm [29]. The parity-check matrix of the code has 

column weight 3 and row weights 5 and 6. The sphere-packing bound [30] for this length and 

rate is also included in the figure. 
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• Like HDPC codes, the performance gain for LDPC codes seems more significant for 

short code lengths. This can be seen by comparing Fig. 2 and Fig. 4 (note that the diversity 

sets for the two codes have the same order). 

• For both HDPC and LDPC with long code lengths, the automorphism group aided 

iterative decoding does not perform well. In fact, for long HPDC codes, it performs even 

worse than the hard-decision decoding. 

• To obtain a noticeable performance gain, LDPC codes require a smaller diversity set 

than HDPC codes. This is because that LDPC codes are inherently more suited to iterative 

decoding than HDPC codes. 


