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Agenda

The Shannon-Nyquist Sampling Theorem 
Compressive Sensing

– New sampling approach?
– Compressive Sensing narrative

Recent Results at INFONET
Applications

Most materials in this presentation are from the 
lecture note [Lee11].
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 in his paper Compressed Sensing, “everyone now knows that most of the data we
acquire “can be thrown away” with almost no perceptual loss—witness the broad
success of lossy compression formats for sounds, images, and specialized technical
data. The phenomenon of ubiquitous compressibility raises very natural questions:
why go to so much effort to acquire all the data when most of what we get will be
thrown away? Can we not just directly measure the part that will not end up being
thrown away?” [IEEE TIT 2006]

 in another one of his paper, “The sampling theorem of Shannon-Nyquist-Kotelnikov-
Whittaker has been of tremendous importance in engineering theory and practice.
Straightforward and precise, it sets forth the number of measurements required to
reconstruct any bandlimited signal. However, the sampling theorem is wrong! Not
literally wrong, but psychologically wrong. More precisely, it engender[s] the
psychological expectation that we need very large numbers of samples in situations
where we need very few. We now give three simple examples which the reader can
easily check, either on their own or by visiting the website [SparsLab] that duplicates
these examples.” [Proc. IEEE, 2010]
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What Donoho said on Compressed Sensing



On Line
CS Tutorials

 Many CS 
Tutorials on line 
show results 
verifying what 
was said in 
[Donoho06]

 Charts from 
Romberg-
Wakin’s CS 
tutorial, 2007.
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Background on CS
 Compressed sensing (CS) 

– New signal acquisition techniques 
[Donoho06], cited >4000 times.

– MIT 2007 Tech Review, “Top 10 Emerging 
Technologies”

 CS is to find sparse solution from an under-
determined linear system.

– Real, complex field

 Many application areas: Cameras, Medical 
Scanners, ADCs, Radars, …

My
M NF 

Nx

1x
ˆ arg min x     subject to Axx y 



y
x=

7

M N

F



Theorem 1. (Shannon’s sampling theorem [Shannon48]) If a function  contains no frequencies 
higher than  cps [cycles per second], it is completely determined by giving its ordinates at a 
series of points spaced  seconds apart.

Signal Dimension ~ 2TW

• But Dimension Reduction from 2TW is possible! 
• “In the case of sounds, if the ear were completely insensitive to phase, then the number of dimensions would be 

reduced by one-half due to this cause alone. The sine and cosine components  and  for a given frequency would 

not need to be specified independently, but only ; that is, the total amplitude for this frequency. The reduction in 

frequency discrimination of the ear as frequency increases indicates that a further reduction in dimensionality 

occurs. The vocoder makes use to a considerable extent of these equivalences among speech sounds, in the first 

place by eliminating, to a large degree, phase information, and in the second place by lumping groups of 
frequencies together, particularly at the higher frequencies.” [Shannon48]
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What Shannon said on Dimension 
Reduction



 [Donoho06] has been cited more than 4000 times!!

 RICE University CS repository http://dsp.rice.edu/cs
– Many tutorials and talks
– Hundreds of papers
– Many MATLAB programs downloadable

 Today’s focus
– Review of David Donoho and his colleagues

• Candes, Romberg, Tao, Baraniuk, … 
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Compressed Sensing today 



Shannon’s Sampling Theorem
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Shannon Nyquist Sampling Theorem

 Consider taking samples of continuous time signal.

 The Sampling Theorem: Any band-limited signals can be represented 
with the uniform spaced samples taken at a rate greater than twice the 
max. frequency of the signal.

 Proof:  A train of impulses is a train of impulses in frequency
k (t-kTs) = fs n (f – n fs)

where fs = 1/Ts

0 fs = 1/Ts
0 Ts

F



Shannon 1948 paper

 Theorem 13: Let f(t) contain no frequency over W. Then,
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F.T. vs. Discrete Fourier Transform

 Now, consider taking samples of a frequency spectrum at every fp in 
the frequency-domain.

 Thus, in both domains we have periodic and sampled signals.
 Suppose Tp/Ts = TpW=N, an integer. 
 Then there are N distinct samples (in each domain).
 The discrete samples of the signal x(k), k=0, 1, 2, …, N-1.
 The discrete samples of the Fourier spectrum X(n), n = 0, 1, 2, …, N-1. 

Tp

Ts fs

fp

F.T.
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Discrete Fourier Transform

DFT 
X(k) = n=0

N-1 x(n) e-j (2/N)nk X=Fx
Inverse DFT

x(n) = 1/N k=0
N-1 X(k) ej(2/N)nk x = F’X

 Using DFT, one can represent the time domain 
sequence x with the frequency domain sequence X.

Note that in both domains, we have N signal samples.



What’re given so far

 Are covered in Systems and Signals in Electrical Engineering…

 Let’s now move on to the issue of Compressive Sensing
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Sparse Signals, Recovery with L1 
Minimization
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Sparse Signals

 Now suppose that the signal x is K-sparse.  
– Only K elements of x are non-zero (K << N)

The Big Question: Do we still need all N uniform spaced Fourier samples 
to represent the signal after  knowing that it is sparse?
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References

 Atomic Decomposition by Basis Pursuit [Chen, Donoho, Saunders 96]
 Uncertainty Principles and Ideal Atomic Decomposition [Donoho01]
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 Near-Optimal Signal Recovery From Random Projections: Universal Encoding 

Strategies? [Candes, Tao 06]
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 These guys say there is a better way to represent the sparse signal!
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M<N is good enough!

 DFT again:
X(k) = 1/N n=0

N-1 x(n) e-j(2/N) n k for all k=0,1,2, …, N-1 

X = Fx

 We know x is sparse. Then, 

 Taking only several Fourier l.p. measurements of x(n) is good enough :
y(m) = 1/N n=0

N-1 x(n) e-j (2/N) n m

= <x(n), m-th tone> for m=1, 2, …, M
where M is the total number of measurements.

 We let  y = Fx be a subset of Fourier coefficients of signal x, 
where size of the subset            is M < N. 

M <N Fourier samples are good enough to 
represent x! 
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Key CS Results

 The number of measurements M required for successful 
recovery is different under different solution criterion.

 (P0) A K-sparse signal x can be recovered using the exhaustive 
search (L0 min search) [Theorem 1.1, CRT 06]. 
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0min     s.t.    = x y F  x
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Key CS Results (2)

 As long as the solution is unique, the L0 min search finds it 
exactly.

 Proof: Suppose two K-sparse solutions x, x’. Then, we have

– This map is injective. Thus, RHS can’t be zero unless (x-x’)=0.  
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Canonical CS Results (3)

 There are NCK different ways to choose a set of K columns that 
accounts for the observation y.

 The complexity of L0 min search is

 (P1) A relaxed approach is L1 minimization: 
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L1 norm? 

 The L-p norm of x is defined for 
p>0 

 The L0 norm is not well defined as 
a norm. 
– Donoho uses it as a “norm” which 

counts the number of non-zero 
elements in a vector. 

 Let  and
Which one is bigger?
– L0 sense
– L1 sense
– L2 sense

23

1

1
:

pN
p

ip
i

x


   
 
x

 1 1 0 x  0.5 0.5 0.5 y



L1 vs. L2 Solution
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L2 ball
 : x F x y

L1 ball

L1 min = L0 min
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1
arg min '   s.t. x x y Fx 

L2 is not suitable but L1 is
when the exact solution is sparse.



L2 vs. L1 solutions

 L2 solution has 
energy spread out to 
everywhere.

 L1 solution attains 
the sparse signal.
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Good vs. Bad

 When the hyperplane cuts through the L1 ball, L1 min does not attain the 
L0 min. 

 We aim to make        so that the bad does not occur (often). 

26

0 0~ min Lx

1 1~ min Lx

 : x F x y

F

0 0~ min Lx

1 1~ min Lx



“Uniform Uncertainty Principle”
[Candes, Tao 06]

 If                ,  then for any K-sparse signal x, the following inequality holds 
with probability close to 1,

 For the Fourier matrix, the bad case won’t happen very often if 
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Sparse Representation, Uncertainty 
Principle, Sparse Signal Recovery 

with L1 Minimization 

28



Uncertainty Principle for Sparse Representation
[Donoho01]

 Heigenberg’s uncertainty principle (UP): 
– momentum and position of a particle cannot be simultaneously determined 

precisely. 

 In sparse representation where the goodness lies in parsimonious 
representation of a signal of interest, there is an UP as well. 

 Suppose a signal x which can be represented by a basis A with sparsity KA
and by a basis B with sparsity KB. That is,
– x = AsA,   sparsity of sA is KA
– x = BsB, sparsity of sB is KB.

 Then, 

where                                      and ai and bj are the columns of A and B resp.

 A signal cannot be sparsely represented in both domains! 29

p x h  
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UP and L1 Recovery

 Donoho-Stark 89’ then suggest the use of a combined matrix, a dictionary, 
and of the  L1 min routine to find sparse representation of x:

 This will be useful when one does not know which basis is more suitable 
for representing the signal.

 Using the UP, they show that 
– If                                    ,  then the solution is unique (L0 solution unique).

– If                                                        , then the L1 finds the exact solution. 

 These classic works done in 80s and 90s provide the foundation for the 
Compressed Sensing theory.
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( )  Find the most sparse representation ,  
         given a signal ,  using the dictionary ;  .
PD s

x Ds D A B 

0
1/   and s x Ds 
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L1 Minimization Algorithms
 Linear program! 
 Basis Pursuit (Chen, Donoho, Saunders 

95’)

 Recast as an LP

– There are many ways to solve this 
LP problem. 

– L1 magic (Candes-Romberg)
– CVX (Boyd-Vandenberghe)
– SparseLab
– Many others at RICE CS repository
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 Primal-Dual Interior Point Method
1. Write the KKT equation
2. Linearize it (Newton’s method)
3. Solve for a step direction 
4. Adjust the step size (stay interior :                  )
5. Iterate until convergence  

1
min     s.t.    

Nx
x y F x
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L1 Minimization Algorithms (2)

 The LP approach is to build the 
sparse solution from an initial 
guess which is dense. 

– O(N3)
 If the exact solution is known to 

be sparse, why don’t we start from 
a null set and build up a sparse 
solution?

 Homotopy [Donoho-Tsaig08’]

– The correct solution is approached 
when lambda gets smaller. 

– Osborne et al. 2000
– Tibshirani’s LASSO 96’

 K-step property: It finds the 
solution in K-step if 
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 Homotopy algorithm
1. Given F and y = Fx, set x1 = 0.
2. Find residual correlation,
3. Determine the step direction and size 
4. Update the active set, sol. estimate xj and the 

step size.
5. Stop when the residual correlation is zero; 

otherwise repeat 2 – 4. 

 T
j jc F y Fx 
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Homotopy and others

 Homotopy solves L1 minimization problem.
 LARS is obtained from Homotopy by removing the sign constraint check 

(Only add an element to the active set; no removal of an element)
 OMP and LARS are similar in structure, OMP solves a least squares 

problem at each iteration, whereas LARS solves a linearly penalized 
least-squares problem.
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Compressed Sensing Narrative
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Compressed Sensing Narrative

 Any natural signal x can be sparsely represented in a certain basis:

 A sparse signal can be compactly described via a linear transformation:

 Possible linear transformation matrices for F are many, including
– Randomly selected rows of the F.T. matrix
– i.i.d. Gaussian ~ (0, 1/M)
– i.i.d. Bernoulli {+1, -1}

 The L1 minimization recovers the signal x perfectly with probability close 
to 1 as long as the number of measurements are sufficiently large,

– Where the oversampling factor is 

35
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Key Ingredients in CS Theory

 Incoherence between F and B
– It is desired to select an F so that it is incoherent to B (imagine the consequence 

of the opposite case.)
– Thus, F is usually constructed with the random Gaussian matrix since the 

statistical property of FB remains the same as that of F when B is unitary 
(orthogonal).

 Restricted Isometry Property (RIP): Candes and Tao define that the K-
restricted isometry constant  of the sensing matrix  is the smallest quantity 
such that 

for any K-sparse vector v sharing the same K nonzero entries as the K-
sparse signal x. 

– If a small             exists for a class of F, then Fx should behave like a unitary 
transformation (and, y and x are one-to-one)

– If               then L0 solution is unique.
– If                    ,  then L1 solution attains the L0 solution.
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Key Ingredients in CS Theory

 RIP is useful for large deviation results as well.
– Another way to write RIP is :

– Then, one can ask a question that a sensing matrix F selected randomly from an 
ensemble of M x N sensing matrices (say i.i.d. Gaussian) to have an RIP 
constant    .

– This leads to a large deviation analysis which then leads to the probabilistic 
statement of the following form:

 Stable recovery of L1 minimization.
– Signals are not exactly sparse (model mismatch).
– Observations are noisy.
– L1 recovery provides stable recovery results.
– The model mismatch and observation noise do not pathologically add in L1 

recovery.
– L1 recovery results are not much worse than the model mismatch and 

observation errors.
37
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Many Applications

 See http://dsp.rice.edu/cs, a CS repository

 Compressive Imaging 
 Medical Imaging
 Analog-to-Information Conversion
 Ultra-wideband radios
 Compressive Spectrum Sensing
 Classification using Sparse Rep
 Super Resolution Imaging
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Recent Results of CS at GIST
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Compressive Sensing

 CS Basic Equation
y = F x 

 How to design F?
 How to recover x, fast and robust?
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Recast of CS in Channel Coding Context

 Group testing done during the 2nd World War in the US
– Do not want to call up syphilitic man for service.
– Do not want to test out all men’s blood samples either
– What to do?
– Group test

• Index the blood samples of each man, i=1, 2, …, N.
• Add blood samples of randomly selected men and test them, M tests.
• Solve the under‐determined set of equations and find all the syphilitic men. 

 y is called Syndrome.
 F is a parity-check matrix.

– A K-error correcting code if SPARK(F)=2K.
– Any K-error patterns can be found and corrected.
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Channel Codes

 Purpose: Add redundancy symbols and offer error-protection

 Message: m

 Codeword: c = Gm
– Generator matrix G

 Encoding: c = Gm 

 Channel: z = Gm + x  (x is the channel errors. Errors are sparse!)

 Decoding: find F where FG=0
– Apply F to z:                              Fz = FGm + Fx = Fx
– What’s left is y=Fx
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Example of a Channel Code in GF(2)

 Let

 Using FG = 0, find F = 

 Note that SPARK(F) = the size of the smallest subset of columns of F that 
are l.d. = 3 = dmin.
– The example is a single error correcting code 

= Every single error pattern can be detected 
= All 1-spase signal can be recovered using F. 

– SPARK <= M (The singleton bound)

 Note that UUP is met for F.
– For all 1-spare signal e, Fe is non-zero.
– M = 3 > 2K = 2.
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LDPC Code/Bipartite Graph

M/N = 6/9

1
1

2
2

6
9

1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1
1 0 0 0 1 0 0 0 1
0 1 0 0 0 1 1 0 0
0 0 1 1 0 0 0 1 0

y
x

y
x

y
x

 
                             

 




An LDPC code 
that was 
shown to 
achieve 
the 
Shannon
Limit!

Make the 
matrix sparse!



Probabilistic Method: GF(2)

+ + + + + + Pr(S|x1=0) = Pr(S1|x1=0) Pr(S4|x1=0)

x1 x2 x3 x4 x5 x6 x7 x8 x9

   
1 4 7 5 9

4,1 7,1 4,1 7,1 5,1 9,1 5,1 9,1

( | 1, ) Pr{odd # of 1s in  and } Pr{odd # of 1s in  and }

                        = (1 ) (1 ) (1 ) (1 )

P S x x x x x

p p p p p p p p

  

      

y
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Reed Solomon Codes

 Linear sensing matrix F

 2 step recovery
– Error Locator polynomial
– OD Matrix inversion
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Message Passing:
State, Value, Matrix, Observation
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Simulation Results
 Simulation results of a C(N = 1200, dv = 3, dc = 6) code with different field sizes, compared with the GV 

bounds indicated at 65, 120, 175 and 230. 
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Support Set Recovery First and then Estimate x

 Good for compressive sensing in the presence of observation noise.
 “Noisy compressive sensing” (NCS)

 Compressive sensing via Bayesian support detection (CS-BSD)
– A sparse reconstruction algorithm based on Bayesian approach using the sparse 

sensing matrix.
– CS-BSD has detection-directed estimation structure which consists of support 

detection and signal value estimation. 
– CS-BSD is highly robust against noise.
– CS-BSD achieves the MSE performance of an MMSE estimator which has the 

support knowledge.
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Previous Bayesian Approaches for NCS
 The problem of the sparse reconstruction is modeled based on MAP.

 1) SBL algorithms for NCS: [08’ Ji et al.], [10’ Babacan et al.]: 
– They found the posterior distribution of the signal based on a three-layer 

hierarchical Bayesian model.
– The parameters of the posterior is estimated using Expectation Maximization.

 2) Belief propagation (BP) based algorithms for NCS:
– CS-BP [10’ Baron et al.]:  Updating the signal posterior from two-state 

Gaussian mixture prior via message-passing algorithm.
– SBL-BP [10’ Tan et al.]: Applying BP to the SBL-framework to reduce the cost 

of Expectation Maximization.
– SuPrEM [10’ Akcakaya et al.]: Similar to SBL-BP, but use different prior and 

sensing matrix called low-density frame.
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Algorithm of CS-BSD
 CS-BSD has a detection-directed estimation structure.

 1) Detection of support set: 
– Belief propagation based iteration 
provides the posterior of the signal. 
– Bayesian hypothesis test detects the support set.

 2) Estimation of signal values:
– An minimum mean square error (MMSE) estimator 
provides the value of the signal elements using the detected 
Support set. 
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MSE performance comparison
 When N=1024, M=512, sparsity rate q=0.05,

 The Proposed Method beats all the L1 and its derivates.
 The Proposed Method achieves the Cramer Rao bound.
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Shannon’s Channel Coding Theorem

 Rate = 1 – M/N

 “Rate < Capacity” IFF “A matrix F with R and P(e)  0”

 If Rate < Capacity, there exists a matrix F such that P(e)  0. 

 If Rate < Capacity is not holding, P(e) cannot be 0.

Application to Compressed Sensing

 Channel ~ error rate K/N

 Capacity is well known

 1-M/N < Capacity  M/N> 1 – Capacity.

 For a matrix F with small P(e), M/N > 1 – Capacity

53

Shannon’s CC Theorem vs. CS Theory
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Channel Coding vs. Compressed Sensing
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Compressed Sensing Channel
Coding

y  (M x 1) Observation Syndrome

F  (M x N) Sensing matrix Parity check matrix

x  (N x 1) K‐sparse signal Error patterns
Error occurs with prob. (K/N)

Theory If M>K log N, L1 recovers x 
exactly from y, with high 
probability. 

If R=1‐M/N < C, then a good F exists 
so that P(e) is close to zero. 
(Converse is true as well)



Summary

 We have reviewed CS theory,  started from the Sampling Theorem.
– Sparse representation, UP, L1 routine are building blocks of CS.
– Uniform spaced samples are not only the option when representing signals. 
– Holistic samples might be more advantageous (e.g. low power sensors, 

transmitters, imaging devices)

 CS Theory can be understood as the parity check problem in Coding 
Theory.
– LDPC codes, Reed-Solomon codes, Reed Muller codes, …
– We begin to see the emergence of close relation between the CS theory and the 

Channel Coding Theory.
– They are not contradictory to each other; instead they are complementing each 

other and provide new perspectives.

 CS Narrative gave us new perspectives which has been shown useful in 
many applications including medical imaging, ADCs, spectrum sensing, 
super resolution areas.
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Outlook

 Shannon Theory
– Shannon limit achieved only in 90s and 00s
– Served as the lighthouse for technical 

development in the digital era

 Compressive sensing theory: What would 
happen in the next 10, 20 years?
– Dawn of abruptly new generation technology?
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Questions & Answers
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Home page at http://infonet.gist.ac.kr/
Send comments to Heung‐No Lee at heungno@gist.ac.kr.



Other CS Results at INFONET
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 Problem Statement: We aim to improve the spectral resolution beyond the 
conventional limit, the number of sensors M, using signal processing. 
Given M and the sensing matrix, how much can we improve the spectral 
resolution?

 Approach: Improving the resolution amounts to solving an 
underdetermined system of linear equations.

 Raw spectrum model :

Improving the Resolution of Spectrometers

Schematic diagram of a typical miniature spectrometer

D D  y x + w s + w

D – MxN Detector sensitivity matrix
M – # of filters
N – # of spectral components

M<N
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Experimental Results
 M=40   N =240
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Performance Behavior of the Multiple Sensor System 
based on Compressive Sensing

 The SM x 1 vector r=[rT
1 rT

2 … rT
S]T is concatenation of the received 

vectors.

 Each M x N Fi ~ N(0,1/M) elements
 Support set  is shared, ||=K.
 Additive white Gaussian noise.

Source
x0

Sensor 1
y1=F1 x1

Sensor 2
y2=F2 x2

Sensor S
yS=FS xS

Central Unit

x1

x2

xS

r1=y1+n1

rS=yS+nS

y1

y2

y3
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Previous works & Motivations

 A similar MSS was considered in [Gastpar05]. They concluded that a 
distortion measure (the mean-squared error) decreases like 1/S for the fixed M.

M converges to K(noise-less case, sensing matrix Fi is different for each 
sensor). [Baraniuk05].

M converges to 2K (noisy case, sensing matrices are the same). [Nehorai11].

Motivations:
– The analysis under noisy case and different sensing matrices for each sensors is 

needed.
– Can we show wheatear the sufficient number of measurements is K or 2K?
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Convergence theorem

 Theorem 1: Let rank(Fi,J) be K for each i, M > K and                               Then, 
the probability that the support set is not recovered converges to zero as the 
number of sensors increases, where J⊂[N], |J|=K. 

 22
noise

\
min .ss i

x i


 
 

M converges to K was reported in [Baraniuk05] when there is no noise.
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Conclusions & Future work 
 Compressive Sensing is a good approach when each sensor independently 

compresses its signal.
 As the number of sensors increases, the measurement signal size converges 

to K.

 FW includes
– solve the problem when the sensing matrices are the same 
– make a connection between our work and Gaspar’s work[Gastpar05]

• Ex) Does distortion measure at each sensor decrease like 1/exp(S) or 1/S?
– consider a more realistic problem when the model for inter-sensor correlation is 

more complex: 
• Ex) Each support set = the shared support set + independent support set.

– Identify how our work can be connected to Slepian Wolf coding.
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A Realistic Compressive Sensing Framework for Multiple Wireless Sensor Networks

 Problem statement: Conventional approaches for signal recovery in a 
multiple-sensor system assume ideal channel conditions. We deal with 
effects of a realistic dispersive channel, which encounter when acquiring 
signals.  

Data Model  AC Fy x + n = x + n

Fusion
Center

x

C

y

ACx

Sensor

Natural Signal

 Challenge: Given the channel matrix C exactly or partially, how to design a 
sensing matrix A that helps in good signal recovery? 

 We first investigate the effect of the channel on the recovery of the sensed 
signal by analyzing RIP of F in terms of channel parameters
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RIP in Realistic Scenarios

 Recall: Goodness of a sensing matrix is measured in terms of its RIP given as:

 is a correlated central Wishart matrix with rank  K (the sparsity)

 We note that the RIP depends on the channel Impulse response

 For a two-path channel , i.e.,  , the RIP depends on the value of 

 We obtain the eigenvalue distributions of  Wishart matrix as a function of      
which helps to obtain a condition for unique signal recovery.

2

min max2( ) ( )T TFs
F F F F

s
  

TF F

1[1 ]Thh 1h

1h
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Distributions Of Eigenvalues For Various  h1
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Sparse Representation based Classification 
(SRC) method for a Brain Computer Interface 

(BCI) application  

Younghak Shin, Seungchan Lee, and Heung-No Lee
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Sparse Representation based Classification (SRC) method 
for a Brain Computer Interface (BCI) application 

 The Sparse Representation which is used in CS theory can be used for a 

number of applications including noise reduction, compression, and pattern 

recognition. 

 Recently, Sparse Representation based Classification (SRC) method was 

studied in Face Recognition [Wright 09] and Speech Recognition area 

[Gemmeke 11].

 This SRC method have shown superior classification performance

 we apply the SRC method to the Brain Computer Interface application.
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Brain Computer Interface System
Introduction

Input Feature
extraction

Signal acquisition
(EEG)

Signal acquisition
(EEG)

Digitized 
signal

Signal Processing

Output

Command

Classification
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 BCIs is a new communication and
control channel between human brain
and an external device.

 In the BCIs, classification is needed to
identify a prescribed command from
signal features acquired from scalp
EEG

 EEG signals are very noisy and non-
stationary.

 Thus, powerful signal processing
methods are needed

 We propose the sparse representation
based classification method.



     

y Ax

 This sparse representation can be solved by L1 minimization 

 For example, a test signal y of class 2 can be sparsely represented as the training 
signals of class 2.

First training 
signal

Class 1   Class 2 

Last training 
signal

Test signal

FFT 
coefficient
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Proposed method



Results and Discussions

Accuracy 
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 The t-test  results is  p = 0.0129 < 0.05. 

 Proposed SRC method shows better classification accuracy than conventional LDA 
classification method. 

Classification result
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