	INFONET, GIST
CS Journal Club (2014. 10. 13)

	

	Signal Recovery from Random Measurements
Via Orthogonal Matching Pursuit

	Authors:
	Joel A. Tropp, and Anna C. Gilbert

	Publication:
	IEEE Trans. Info. Theory, Dec. 2007

	Speaker:
	Oliver

[bookmark: _GoBack]

[bookmark: _Ref111275535]Short summary: We discuss from this paper how to derive the theoretical probability of recovery for the orthogonal matching pursuit (OMP) algorithm. It is known that, till date, there is no theoretical phase transition analysis present for the OMP algorithms. The analysis presented in this paper could be used as a starting point to derive the phase transitions for the OMP algorithm. We discuss a key theorem and its proof in this talk.
System Model and Background
·

Consider a model, with and is a K-sparse signal.
·

Let be the ith column of A and assume that.
·
The goal of OMP is to estimate the support of iteratively.
·
At each iteration, OMP selects a column of A that is most correlated with the current residual. OMP then updates the residual by projecting onto a linear space spanned by the selected columns. The algorithm iterates until certain stopping rule is satisfied.

A. The OMP algorithm: Description
Input:
·

An measurement matrix
·

A measurement vector of size
·

A K sparse signal vector of size
Output after K iterations
·

An estimate of
·

An index set such that and the elements of
·

An K dimensional approximation for the measurement vector
·

An K dimensional residualfor the measurement vector
Procedure:
1. Initialization :
·

Initialize the residual, the index set, an empty set. Let be an empty matrix.
·
Set the counter value.
2. Finding the index and updating the index set
·

·
Update the index set
3. Estimate the signal using the obtained index set
·
Form a matrix
·

Estimate the signal by solving the least squares problem:
4. Calculate new approximation of the measurement vector and new residual

·

·

5.

Increment p and return to step 2 if . Halt if
Analysis Using Random Ensembles
In this section, we study how to derive the probability of recovery by OMP with Gaussian matrices.
Admissible matrices

An admissible matrix for K-sparse signals is an matrix with the following four properties.

(M0) Independence: The columns of are statistically independent

(M1) Normalization:. This assumption is for mathematical convenience. Signal recovery problem does not depend on the scale of the measurement matrix

(M2) Joint Correlation: Let be a sequence of K vectors whose L2 norms does not exceed 1. Let be the column of that is independent from this sequence. Then

	

(M3) Smallest singular value: For a given sub-matrix from , the Kth smallest singular value

Theorem 6: (OMP with admissible measurement matrices): Suppose that is an arbitrary K-sparse signal in , and draw a random admissible measurement matrix independent from the signal. Given the data , the OMP can reconstruct the signal with the success probability given by

Result:

	

Proof:

Without loss of generality, assume that the first K entries of the original signal are nonzero, while the remaining N - K entries equal zero. Therefore, the data vector is a linear combination of the first K columns from the matrix. Partition the matrix as so that B has first K columns and C has the N-K columns. Note that the vector is statistically independent from the random matrix C.

Consider the event where the algorithm correctly identifies the signal after K iterations. We only decrease the probability of success if we impose the additional requirement that the smallest singular values of B meets a lower bound. To that end, define the event

	

Note that the event implies that B has full column rank (and thus, guarantees unique solution). Now can then be written by using the conditional probability as

We aim to calculate. To prove that occurs conditioned on , it suffices to check that OMP correctly identifies the columns of . For this purpose, we define the greedy selection ratio. For a vector, the greedy selection ratio is given by

Ifis the residual vector, then from Step 2 of the OMP, we find that the OMP choose a column from if . If , the OMP has no provision to choose either a column from and.

Observation: Greedy selection ratio is based on the assumption that we know the support and hence the matrices and.

Imaginary experiment: Suppose that we execute K iterations of OMP with the input signal and the restricted measurement matrix to obtain a sequence of residuals and a sequence of column indices. The algorithm is deterministic, so these sequences are both functions of and. In particular, the residuals are statistically independent from. It is also evident that each residual lies in the column span of.

Actual experiment: Execute OMP with the input signal and the full matrix to obtain the actual sequence of residuals and the actual sequence of column indices . Conditional on , OMP succeeds in reconstructing after K iterations if and only if the algorithm selects the K columns of in some order. Using induction, it is possible to prove that this situation occurs when for each .

The success probability is and conditioned on, the success probability is

where is a sequence of K random vectors that fall in the column space of , and these vectors are statistically independent of . We need to derive a lower bound for .

Assume that occurs. For each index the greedy ratio is

Now we aim to calculate the ratio by first approximating it. We first make use of in the denominator to get

The denominator is a scalar and it can be moved inside the inner product form the vector.

Now we know that the ratio and thus which implies that . Thus, for each

What we need is , that is,

Every column of is independent of and also from. Using the joint correlation property (M2), the above product of terms can be written as

The property M3 says . Therefore,

[image:]

Reference

[1] D. Donoho and X. Huo, ``Uncertainty principles and ideal atomic decomposition," IEEE Trans. Info. Theory, vol. 47, no. 7, pp. 2845-2862, 2001.
[2] A. B. Heim, Y. Eldar, and M. Elad, ``Coherence-based performance guarantees for estimating a sparse vector under random noise," IEEE Trans. On Sig. Process. vol. 58, no.10, pp. 5030-5042, Oct. 2010.
[3] J. Tropp, ``Greed is good: Algorithmic results for sparse approximation,"IEEE Trans. Info. Theory, vol. 50, no. 10, pp. 2231-2242, 2004.
[4] Q. Mo and Y. Shen, ``A remark on the restricted isometry property in orthogonal matching pursuit," IEEE Trans. Inf. Theory, vol. 58, no. 6, pp. 3654-3656, 2012.
[5] J. Wang and B. Shim, ``On the recovery limit of sparse signals using orthogonal matching pursuit," IEEE Trans. Signal Process., vol. 60, no. 9, pp. 4973-4976, Sept. 2012.
[6] T. Cai and L. Wang, ``Orthogonal matching pursuit for sparse signal recovery with noise," IEEE Trans. Inf. Theory, vol. 57, no. 7, pp.4680–4688, 2011.
[7] Y. Shen and S. Li, ``Sparse signals recovery from noisy measurements by orthogonal matching pursuit," Arxiv Preprint arXiv: 1105.6177, 2011.

2
image2.wmf

MN

M

RAR

´

ÎÎ

y

image45.wmf
N

R

oleObject49.bin

oleObject50.bin

image46.wmf
A

oleObject51.bin

image47.wmf
A

=

yx

oleObject52.bin

image48.wmf
succ

E

oleObject53.bin

image49.wmf
(

)

(

)

2

22

succ

1

Pr1expexp

422

M

K

NK

E

e

e

ìü

--

ìü

ïï

³----

íýíý

îþ

ïï

îþ

oleObject2.bin

oleObject54.bin

image50.wmf
y

oleObject55.bin

oleObject56.bin

image51.wmf
[

]

|

ABC

=

oleObject57.bin

image52.wmf
[

]

|

ABC

=

yx=x

oleObject58.bin

image53.wmf
succ

E

oleObject59.bin

image3.wmf
MN

´

image54.wmf
(

)

{

}

:0.5

K

B

s

S=³

oleObject60.bin

image55.wmf
S

oleObject61.bin

oleObject62.bin

image56.wmf
(

)

(

)

(

)

(

)

succsucc

succ

PrPr

Pr|Pr

EE

E

³S

³S×S

I

oleObject63.bin

image57.wmf
(

)

succ

Pr|

E

S

oleObject64.bin

image58.wmf
succ

E

oleObject3.bin

oleObject65.bin

image59.wmf
S

oleObject66.bin

oleObject67.bin

image60.wmf
M

Î

R

r

oleObject68.bin

image61.wmf
(

)

max

n

T

T

n

B

TT

C

g

BB

Ï

¥

¥¥

==

a

ar

r

r

rr

oleObject69.bin

image62.wmf
r

oleObject70.bin

image4.wmf
x

oleObject71.bin

image63.wmf
(

)

1

g

<

r

oleObject72.bin

image64.wmf
(

)

1

g

=

r

oleObject73.bin

oleObject74.bin

image65.wmf
C

oleObject75.bin

oleObject76.bin

oleObject77.bin

oleObject4.bin

oleObject78.bin

oleObject79.bin

image66.wmf
011

,,,

K

-

L

qqq

oleObject80.bin

image67.wmf
011

,,,

K

www

-

L

oleObject81.bin

oleObject82.bin

oleObject83.bin

oleObject84.bin

oleObject85.bin

image5.wmf
i

a

oleObject86.bin

image68.wmf
A

oleObject87.bin

image69.wmf
011

,,,

K

-

L

rrr

oleObject88.bin

image70.wmf
011

,,,

K

lll

-

L

oleObject89.bin

oleObject90.bin

oleObject91.bin

oleObject92.bin

oleObject5.bin

image71.wmf
(

)

1,

p

g

<

r

oleObject93.bin

image72.wmf
0,1,,1

pK

=-

L

oleObject94.bin

image73.wmf
(

)

(

)

(

)

succ

PrPrmax1

pp

Eg

=<

r

oleObject95.bin

oleObject96.bin

image74.wmf
(

)

(

)

(

)

succ

Pr|Prmax1|

pp

Eg

S³<S

r

oleObject97.bin

image75.wmf
{

}

p

r

image6.wmf
2

1, 1,2,,

i

iN

==

L

a

‖‖

oleObject98.bin

oleObject99.bin

oleObject100.bin

image76.wmf
(

)

(

)

Prmax1|

pp

g

<S

r

oleObject101.bin

oleObject102.bin

oleObject103.bin

image77.wmf
(

)

max

n

T

np

C

p

T

p

g

B

Î

¥

=

a

ar

r

r

oleObject104.bin

image78.wmf
2

xKx

¥

£

oleObject6.bin

oleObject105.bin

image79.wmf
(

)

2

max

n

T

np

C

p

T

p

K

g

B

Î

£

a

ar

r

r

oleObject106.bin

image80.wmf
2

0.5

:

p

p

T

p

B

=

r

u

r

oleObject107.bin

image81.wmf
(

)

2

0.5

T

p

K

p

B

B

s

££

r

r

oleObject108.bin

image82.wmf
2

2

p

T

p

B

£

r

r

oleObject109.bin

image83.wmf
2

1

p

£

u

image7.wmf
x

oleObject110.bin

image84.wmf
p

oleObject111.bin

image85.wmf
(

)

2max

n

T

pnp

C

gK

Î

£

a

rau

oleObject112.bin

image86.wmf
(

)

(

)

Prmax1|

pp

g

<S

r

oleObject113.bin

image87.wmf
(

)

(

)

1

Prmax1|Prmaxmax|

2

1

Prmaxmax|

2

1

Prmax|

2

n

n

n

T

pppnp

C

T

pnp

C

T

pnp

C

g

K

K

K

Î

Î

Î

æö

<S³<S

ç÷

èø

æö

=<S

ç÷

èø

æö

=<S

ç÷

èø

Õ

a

a

a

rau

au

au

oleObject114.bin

image88.wmf
n

C

Î

a

oleObject7.bin

oleObject115.bin

image89.wmf
p

u

oleObject116.bin

image90.wmf
S

oleObject117.bin

image91.wmf
(

)

NK

-

oleObject118.bin

image92.wmf
(

)

(

)

(

)

4

1

Prmax1|Prmax|

2

12exp

NK

T

pppnp

NK

cM

K

g

K

K

-

-

æö

<S³<S

ç÷

èø

éù

³--

ëû

rau

oleObject119.bin

image93.wmf
(

)

(

)

(

)

(

)

PrPr0.51exp

K

BcM

s

S=³³--

image8.wmf
y

oleObject120.bin

image94.wmf
(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

succsucc

4

PrPr|Pr

Prmax1|Pr

12exp1exp

pp

NK

cM

K

EE

g

KcM

-

³SS

³<SS

éù

³----

ëû

r

oleObject121.bin

image95.emf

oleObject8.bin

image9.wmf
MN

´

oleObject9.bin

image10.wmf
[

]

12

N

A

=

L

aaa

oleObject10.bin

image11.wmf
y

oleObject11.bin

image12.wmf
1

M

´

oleObject12.bin

image13.wmf
x

oleObject13.bin

image14.wmf
1

N

´

oleObject14.bin

image15.wmf
K

)

x

oleObject15.bin

oleObject16.bin

image16.wmf
K

L

oleObject17.bin

image17.wmf
K

K

L=

oleObject18.bin

image18.wmf
[

]

1,

K

N

LÎ

oleObject19.bin

image19.wmf
K

v

oleObject20.bin

oleObject21.bin

image20.wmf
KK

=-

ryv

oleObject22.bin

oleObject23.bin

image21.wmf
0

=

ry

oleObject24.bin

image22.wmf
{

}

0

L=

oleObject25.bin

image23.wmf
0

[]

F=

oleObject26.bin

image24.wmf
1

p

=

oleObject27.bin

image25.wmf
1,2,,

argmax

T

pp

nN

IA

=

=

L

r

oleObject28.bin

image26.wmf
1

ppp

I

-

L=L

U

oleObject29.bin

image27.wmf
1

[]

p

ppI

-

F=F

a

oleObject30.bin

image28.wmf
p

)

x

oleObject31.bin

image29.wmf
(

)

1

TT

pppp

-

=FFF

)

xy

oleObject32.bin

image30.wmf
ppp

=F

)

vx

oleObject33.bin

image31.wmf
pp

=-

ryv

oleObject34.bin

image32.wmf
pK

<

oleObject35.bin

image33.wmf
.

pK

=

oleObject36.bin

image34.wmf
MN

´

oleObject37.bin

image35.wmf
A

image1.wmf
A

=+

yxe

oleObject38.bin

image36.wmf
2

2

11,2,,

n

nN

éù

==

ëû

L

Ea

oleObject39.bin

image37.wmf
{

}

1

K

p

p

=

u

oleObject40.bin

image38.wmf
a

oleObject41.bin

oleObject42.bin

image39.wmf
{

}

(

)

2

Prmax12exp

T

pp

KcM

ee

£³--

au

oleObject43.bin

oleObject1.bin

image40.wmf
MK

´

oleObject44.bin

image41.wmf
B

oleObject45.bin

image42.wmf
A

oleObject46.bin

image43.wmf
(

)

(

)

(

)

Pr0.51exp

K

BcM

s

³³--

oleObject47.bin

image44.wmf
x

oleObject48.bin

