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[bookmark: _Ref111275535]Short summary: 
Most of the existing fingerprint identification techniques are unable to distinguish different wireless transmitters, whose emitted signals are highly attenuated, long-distance propagating, and of strong similarity to their transient waveforms. 
Therefore, this paper proposes a new method to identify different wireless transmitters based on compressed sensing. A data acquisition system is designed to capture the wireless transmitter signals. Complex analytical wavelet transform is used to obtain the envelope of the transient signal, and the corresponding features are extracted by using the compressed sensing theory. Feature selection utilizing minimum redundancy maximum relevance (mRMR) is employed to obtain the optimal feature subsets for identification. 
The results show that the proposed method is more efficient for the identification of wireless transmitters with similar transient waveforms.

Introduction
The key process of individual identification is to extract the unique signal features that form a valid device fingerprint. i.e. The fingerprint of a transmitter should distinctly characterize it from the rest of the transmitters through its unique features presented in the signal waveform. 
The transient feature extraction mostly utilizes the wavelet analysis or envelope analysis in the time-domain. 
[17] : orthogonal Daubechies-4 wavelet, two types of wireless transmitters, recognition rate : 94.3%
[18] : genetic algorithms → wavelet coefficients, recognition rate : 90% ↑
[19] : energy envelope → statistical features, 7 Bluetooth devices, average recognition rate : 99.9%
[20] : spectrogram analysis → energy envelope → Polynomial fitting method, 4 network cards
[21] : complex analytic wavelet transform → Gaussian fitting method, recognition rate : 93%
Key ideas : the characteristics of wavelet coefficients extracted by the wavelet analysis methods are of little difference and with large number. → The compressed sensing theory can make the dimension of signals lower and all the information of original signal cannot be lost.
[image: ]
Detection of transient(Complex analytical wavelet transform) → Feature extraction(Compressed sensing theory) → Feature Selection(minimum redundancy maximum relevance (mRMR))

Methodology
2.1. Data Collection.
[image: ]
[image: ]
The sampling frequency : 5MHz. The distance between the Tx and Rx : > 3 km. The down-converted intermediate-frequency signal is collected by an oscilloscope. The MATLAB instrument toolbox is used. 
The transient signal waveforms of 8 different wireless transmitters are used. 200 waveforms were captured and stored from each wireless transmitter.
→ The figure shows that there is no substantial difference among these waveforms.

2.2.Transient Extraction.
Accurate transient detection is the key step to extract the features. 
→ Mean change point detection [23], analyze the transient based on phase detection [24].
→ Magnify the difference between the statistic of samples before and after the section, and the position of the maximum difference is determined to be the start of transient. 










The sample sequence ,,…, is known. Let . The samples can be divided into two sections: ,,…, and ,,…,;

 (1)

 (2)
Now, the curve of 𝑆 − 𝑆𝑖 is plotted. 
[image: ]
The position of maximum of the curve would be the change point. This method can increase the accuracy of detection than method of [25].
2.3.Envelope Extraction.
[26] : conventional Hilbert transform , Figure 5(b), not effectively eliminate the effect of the random noise, cause an influence on subsequent feature extraction step.
[19, 20] : a method of spectrogram analysis, Figure 5(c), limitation in short time window → obvious distortion can be exist.
[26 – 28] : complex analytical wavelet transform, inhibited effect of random noise property, smooth envelope curve with relatively small distortion.
[image: ]
Morlet Wavelet transform (complex analytical wavelet transform) : 

 (3)


 : Wavelet Shape Parameter (bandwidth),  : wavelet center frequency

 (4)



,  : time factor, : scale factor.




To obtain a smooth envelope curve, the parameter  and  of Morlet mother wavelet is adjusted.  and  are used in Figure 5(d) because its envelope curve is similar to the original signal and smoother.
[image: ]
It can be seen that the envelopes have some differences between each other.

2.4.Feature Extraction Based on Compressed Sensing.
The method of this paper : extraction a feature based on compressed sensing. 
An orthogonal sparse transformation such as DCT [29] and DWT [30] is performed for the envelope signal.



Envelope signal is . And  is able to be represented by the linear combination of . i.e.

 (5)




 :  orthogonal matrix for orthogonal transformation,  :  coefficient vector. 





When  has  () nonzero coefficients, the signal  is sparse under the matrix .



(1) Linear measurement : The signal  is mapped to a measurement vector  which is a lower dimensional data.

 (6)





  :  () vector, feature vectors,  : , measurement matrix. Gauss matrix [22, 31], Bernoulli matrix [22, 31], Toeplitz matrix [32], sparse matrix [33]. 

→ The  is critical for feature extraction. It is required that the measurement matrix can make the dimension of feature vector 𝑧 as low as possible and all information of original signal cannot be lost. 

(2) The reconstruction algorithm is used to confirm whether the features contain all information of the original signal. 

 (7)

→ other suboptimal reconstruction algorithms : minimization algorithms. E.x. Bayesian algorithms (BCS) [30].
[image: ]

The reconstruction accuracy is influenced by  or type of measurement matrices.
→ Sparse matrix, M is 230 for DWT and 160 for DCT.


(3) From above, two feature vectors () are extracted based on the DCT and DWT.

Recognition Results Analysis
Multiclassification SVM recognizer [34] is established. 
“one-against-all” method : more training time. appropriate parameters are obtained by cross validation on the training data. → “one-against-one” method

[image: ]
The number of features extracted by the compressed sensing is too much → a long time identification time, some irrelevant feature interferences. 
mRMR [36] is used to optimize the features.
The distribution of 18 features’ average values extracted from the 100 groups of signal of 8 wireless transmitters is shown in the Figure 8. 
[image: ]
The identification effectiveness is changing with the number of selecting features and different properties of sparse bases.
[image: ]
DCT sparse base, the SVM recognizer, identification of 8 different transmitters. For each transmitter, 100 groups are used for training and 100 groups for testing. 
→ The average identification rate is 87.75%.

[image: ]
[19] : extracts the envelope statistic features from the energy spectrum envelope. 
[21] : using the fitting coefficients of the envelope. 
[image: ]
The recognition rates of either Rehman’s or Zhao’s method are relatively lower. : complex analytic wavelet > spectrum slicing, SVM recognizer > BP neural network recognizer, KNN recognizer.
[image: ]

Conclusions
This paper has proposed a fingerprint identification method for wireless transmitter signal based on compressed sensing. Complex analytical wavelet transform is used to obtain the envelope of the transient signal, and features are extracted by using the compressed sensing theory. A feature selection utilizing minimum redundancy maximum relevance (mRMR) is employed to obtain optimal feature subsets for identification. Finally, the recognition of 8 transmitters by the SVM recognizer is completely performed. From a series of experiments, it can be concluded that the method proposed in the paper can effectively identify the transmitter signals. Especially, the method put forward in the paper has better performance in the recognition of wireless transmitter signals when compared to the previous methods, such as extracting statistic features directly from the envelope, fitting coefficient characteristic. 

Discussion
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FIGURE 1: The flowchart of feature extraction for wireless transmitters.
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FIGURE 2: The block diagram of the signal acquisition for wireless transmitters.

envelope can greatly increase the sparseness and it is conve-
nient to extract the features using the compressed sensing.
The proposed technique of features extraction is shown in
Figure 1. Firstly, the envelope is extracted from the signals
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signal waveforms, and most of their applications are for the
short-distance WiFi signals and Bluetooth signals.

The compressed sensing theory can make the dimension
of signals lower and all the information of original signal
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FIGURE 6: The envelope extraction of 8 different wireless transmit-
ters using complex analytical wavelet transform.

Assuming the length of the envelope signal y is N, y
is able to be represented by the linear combination of y =

{y1, ¥, - wy}. Consider
N
Y= Ys, = s, ©)
n=1

where y isan N x N orthogonal matrix to form an orthogonal
transformation and s is an N x 1 coefficient vector. When s

has K (K <« N) nonzero coefficients, the signal y is sparse
under the matrix y.

(1) Linear measurement is the key process of the com-
pressed sensing theory. The signal y is mapped to a measure-
ment vector z which is a lower dimensional data. Consider

z=0y=bys, (6)
where z isan M x 1 (M < N) vector, namely, the extracted
features and @ is an M x N measurement matrix. There are
four kinds of measurement matrices including Gauss matrix
[22, 31], Bernoulli matrix [22, 31], Toeplitz matrix [32], and
sparse matrix [33]. The measurement matrix is critical for
feature extraction. It is required that the measurement matrix
can make the dimension of feature vector z as low as possible

o Bernoulli * Sparse

(2)

The reconstruction accuracy of different measurement
matrices using DCT sparse

The reconstruction accuracy

100 150

The measuring dimension

o Gauss
o Bernoulli

¢ Toeplitz
* Sparse

(b)

FIGURE 7: The reconstruction accuracy change with the measure-
ment matrices and the dimension M of measurement vector z.

feature vector





image51.wmf
M


oleObject48.bin

image52.wmf
z


oleObject49.bin

image3.png
T T T ST b AN ST B (27 e GmmeizzRgsli= Adse Aemisiti; = EL ]

B =27V FW E=STH x
| EREEEIEEE S K
/m\wqﬂ@@ 176% |~ \ﬂ@

®
©)

‘The Scientific World Journal

TX1

8 6 8 0 8
x10° x10° x10°

FIGURE 3: The transient waveforms of 8 different wireless transmitters.

Firstly, leti = 2, 3,... N. The samples can be divided into 2 o Signal waveform
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TaBLE 1: Classification results for different wireless transmitters.

Classification Average
TXI TX2 TX3 TX4 TX5 TX6 TX7 TX8 rate(%)
TXI 90 0 2 0o 3 5 0 90
TX2 80 6 5 80
X3 88 0 88
TX4 0 91
X5 93
TX6 79
TX7 0 88
TX8 10 93

Input

Mean value

The recognition rate of different number of
features using SVM recognizer

Features

—— TX1 —+— TX5
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FIGURE 8: Averages of 18 features extracted from 100 groups of
signals for 8 wireless transmitters.

The recognition rate (%)
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FIGURE 8: Averages of 18 features extracted from 100 groups of
signals for 8 wireless transmitters.

M of measurement vector z. It can be clearly shown that the
sparse matrix is best suited for feature extraction. Taking into
account the reconstruction accuracy, the dimension of the
feature vector is set to 230 for DWT, while the dimension of
feature vector is set to 160 for DCT.

(3) From the previous analysis, two feature vectors are
extracted based on the DCT and DWT.

3. Recognition Results Analysis

In the stage of signal analysis, a recognizer combining mul-

The recognition rate of different number of
features using SVM recognizer

The recognition rate (%)

50 100 150 200

The number of feature selection

o DCT SVM
+ DWTSVM

FIGURE 9: The comparison of the recognition results based on
different sparse bases.





image55.png
™

TeO BIE =W E82H) x

=  BEOH| @e2RDB 2
® @[] RO O@® =] 5B =2 | =4 29

‘The Scientific World Journal

TaBLE 1: Classification results for different wireless transmitters.
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TaBLE 2: Comparison of identification of a transmitter using three different methods.
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The method proposed in this paper is compared with
the works of Rehman et al. [19] and Zhao et al. [20, 21].
Rehman’s work simply extracts the envelope statistic features
from the energy spectrum envelope. And Zhao et al. put
forward using the fitting coefficients of the envelope as
the signal features for identification. Table 2 describes the
comparison among Rehams work, Zhaos work, and the
proposed work in this paper. The term mathematical statistics
method refers to Rehman et al’s work, fitting method is
used for Zhao et al’s work, and compressed sensing method
represents the work proposed in this paper. The 8 RF signal
transmitting devices identified in this paper are similar in
their transient waveforms. The recognition rates of either
Rehman’s or Zhao's method are relatively lower. Figure 10
shows the specific comparison result. As shown in the figure,
the extracted envelope features method based on compressive
sensing theory in this paper has many advantages over the
existing statistic features and fitting coefficient characteristics
methods. On the one hand, extracting envelope by complex
analytic wavelet is superior to spectrum slicing. On the other
hand, the recognition performance of SVM recognizer is
better than both BP neural network recognizer and KNN
recognizer.

According to the disadvantages of the previous methods
and the merits of our proposed algorithm, performance com-
parison for the envelope extraction and feature extraction is
provided as Table 3,

‘The comparison of recognition results using three

different methods

20 T T T

80 L = 4
g 0L B § . 1
3 .
£ 60 g = 4
=
g .
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£
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]
@
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0 | .
Mathematical statistics Fitting Compressed sensing
method method method
‘The methods of feature extraction
== STFT slice method + KNN recognizer
mmm Wavelet method + KNN recognizer

STFT slice method + BP recognizer
‘Wavelet method + BP recognizer
STFT slice method + SVM recognizer
‘Wavelet method + SVM recognizer

FIGURE 10: The comparison of classification results by three different
methods.
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The method proposed in this paper is compared with
the works of Rehman et al. [19] and Zhao et al. [20, 21].

‘The comparison of recognition results using three
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Rehman’s work simply extracts the envelope statistic features
from the energy spectrum envelope. And Zhao et al. put
forward using the fitting coefficients of the envelope as
the signal features for identification. Table 2 describes the
comparison among Rehams work, Zhaos work, and the
proposed work in this paper. The term mathematical statistics
method refers to Rehman et al’s work, fitting method is
used for Zhao et al’s work, and compressed sensing method
represents the work proposed in this paper. The 8 RF signal
transmitting devices identified in this paper are similar in
their transient waveforms. The recognition rates of either
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FIGURE 3: The transient waveforms of 8 different wireless transmitters.

Firstly, leti = 2, 3,... N. The samples can be divided into Signal waveform
two sections: X, X,,..., x;_; and x;, x;,,..., xy for each
number of i; then we can calculate the mean and statistics of

each section. Consider

i-1 N
Si= Z("t - X711)2 * Z("t ’XTZ)Z' (O]
=1 t=i

Start of
transient

Normalized amplitude

3 4 5
Sampling points

Secondly, X and S are calculated, which represent the
average and statistics of the original sample, respectively. (@)

Consider Start of transient

N
§=Y(x,-X). ®
=1

Thirdly, the curve of S — §; is plotted. The position of
maximum of the curve would be the change point. ) ) ) ) ) ) ;

As shown in Figure 4, the detection for the start of 40 60 80 100 120 140 160 180
wireless transmitter transient is accurate. Compared with the ®)
method of variance fractal dimension threshold detection
[25], this method can increase the accuracy of detection FIGURE 4: The detection for the start of wireless transmitter tran-
without the limit of a threshold. sient.

Detection value

2.3. Envelope Extraction. In a wireless communication envi-
ronment, because of the interference of the background noise.
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The envelope of 8 different signals using wavelet method ‘The reconstruction accuracy of different measurement
— matrices using DWT sparse

Normalized amplitude
The reconstruction accuracy
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FIGURE 6: The envelope extraction of 8 different wireless transmit- @

ters using complex analytical wavelet transform. The reconstruction accuracy of different measurement
matrices using DCT sparse
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FIGURE 1: The flowchart of feature extraction for wireless transmitters.
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FIGURE 2: The block diagram of the signal acquisition for wireless transmitters.
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