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[bookmark: _Ref111275535]Short summary: A promising communication method, Massive MIMO is the large-scale multiple-input multiple-output(MIMO) technique which can achieve maximum diversity gain and large spatial multiplexing gain. However, massive MIMO also has many challenging problems such as heavy interference, expensive hardware cost, and large complexity of receiver. In spite of using generalized spatial shift keying(GSSK), which is one of methods to reduce the complexity of detection, the high complexity of optimal ML detector still becomes an obstacle. Author purposed a new (G)SSK detector applying the compressive sensing(CS) theory. Their detector, named normalized compressive sensing(NCS) (G)SSK detector can achieve considerable performance with low complexity compared with the optimal ML detector. 



Introduction

1. Spatial modulation (SM): 
Encodes information in the combination of antenna indices and the conventional phase/amplitude, has attracted research attention in recent years. The SM facilitates energy efficiency and reduced hardware costs for multiple-input multiple-ouput (MIMO) systems. [1]




2. Space Shift Keying (SSK)modulation:
As a simplified variation of SM, the space shift keying(SSK) modulation activates only one antenna at any time instant and encodes information in antenna indices only. 

	Advantage

	
Only one RF chain is needed at  transmit antennas.
Reduction of detection complexity.
Reduction of accurate Inter-Antenna Synchronization.

	Disadvantage

	Low symbol rate





3. Generalized Space Shift Keying



Generalized space shift Keying (GSSK) is a variant of SSK. It actives  transmit antenna at the same time, instead of one. Since the possible combination of antenna indices is , which is larger than , the symbol rate is higher than that of SSK. (But the detection complexity is also higher.)





4. Sparsity of (G)SSK modulated signal

Since each transmit antenna transmit 1 or 0, (G)SSK modulated signal can be expressed    -sparse signal at time domain. So author considered applying the compressive sensing to it.



System Model
Problem Formulation: 

    

    

 





  

   

   

   

    

     

    

   

   

   

MIMO System can be formulated as




: received signal vector whose entries are received symbol at each receive antenna. 


: transmitted signal vector whose entries are transmitted symbol at each transmit antenna. 


:  channel coefficient matrix


:  noise vector




GSSK:  entries of  are 1 and the others are zero. -> -sparse signal

Assume  is a Rayleigh fading channel.






Considerable Detection Methods


1. ML detection
Maximum likelihood detection finds the solution which has maximum likelihood function:

,



where  is set of all possible - sparse vectors. Thus, ML detector examine  hypothesis.


2. Compressive Sensing
Compressive sensing problem is a framework that finds the sparsest solution among the many solutions. It can be written as an optimization problem:


 s.t. ,


where  is set of all possible - sparse vectors.




If the matrix  satisfies the RIP condition, the  minimization solution is equal to the  minimization solution. i.e.,


 s.t. 

Thus, now this detection becomes a  minimization problem. 








Proposed Method
Author proposed CS based (G)SSK detection scheme, Normalized Compressive Sensing (NCS) detection.

NCS Detector:

From the system model,







where  is a channel coefficient matrix whose columns are normalized.  is a diagonal matrix, whose element  is norm of -th column of . As a result of normalization, the accuracy of detection is improved.


Since the channel is Rayleigh fading channel, the channel matrix  is a complex Gaussian matrix and  is also a complex Gaussian matrix. Gaussian matrix satisfies the RIP condition where the size of matrix approaches to infinite.[1]
	

Performance Evaluation

1) NCS-OMP
Formulated detection problem to a CS recovery problem and reconstruct the transmitted signal by Orthogonal Matching Pursuit(OMP) algorithm.


2) ML(reference)

Detection by  hypothesis testing


3) Matched Filtering [2]?



, 


, where 


4) MMSE(pseudo inverse)







 (SSK)
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(GSSK)
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Complexity

NCS-OMP: 

ML: 


discussion
After meeting, please write discussion in the meeting and update your presentation file.






Appendix

1. Restricted Isometry Property(RIP)






Def 1) RIP: a matrix  is said to satisfy the Restricted Isometry Property with parameters  for , if for all index sets  such that  and for all , one has

	 [4]


2. Orthogonal Matching Pursuit(OMP) Algorithm

OMP is one of the one-step greedy algorithm to solve the underdetermined  minimization problem, i.e.,


 subject to ,





where  is a  matrix,  , and  is a -sparse signal vector.



It finds the column index of  which have maximum correlation with . Then add that index to estimated support set and finds next index which have second-largest correlation. This procedure is repeated until finds  indices.

	OMP algorithm:

	Input:


 measurement matrix 


 data vector 

Sparsity 
	Output:


 estimate vector 

	
Initialize:

Iteration count 

Residual vector 

Estimated support set 
Iteration:

    

    

    

    
End
Output:
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any off-the-shelf CS recovery algorithms (OMP [12] is used
in our numerical simulations'). As the receiver has the prior
knowledge of the energy of the activated transmit antennas in
GSSK. only the first n largest elements in magnitude in % are
set as 1 and the remaining are set as 0 (step 5). The set J of
positions of those 1s are considered as the set of indices of
activated transmit antennas.

Two rationales in NCS are elaborated as follows. The first is
the appropriateness of applying CS to N;-hypothesis detection
problem in which H is a complex matrix. It is recalled that
from Sec. II, the measurement matrix in CS is real-valued.
Nevertheless. as x is real-valued. which is the case of GSSK in
our consideration, the imaginary parts of complex elements of
H can be considered as additional dimensions in the received
signal y. Consider y = Hx for explanation simplicity. The
received signal y can also be rewritten as:

Hy, +H H o+ jH, X1
Hi, +jHy Hyy+jHy v | L v
¥i Vi
=| : +i| =H'x+ jH'x, “
¥y, ¥,

with H{, and H,, denoting real and imaginary parts of
the #-th column of the element at the (s.t) position of H.
respectively, and with y, = ¥} + jy,. 1 <t < N;. where y}
and y}, denote the real and imaginary parts of y,, respectively.
Lety = y + ', where y and y' are the real and imaginary
parts of y, respectively. We know that both real and imaginary
parts of samples from CA7(0, o2) follow A'(0, ). Recall that
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Fig. 2. The comparisons among ML. MMSE. MF. and NCS with varying
N,.. SSKt. MMSE, MFt, and CSt denote the ML, MMSE. MF, and NCS
with N,. = t. The common settings include N = 256, n¢ = 1. each element
of H following CA/(0, 1), and each element of n following CA'(0, 1).

where x' is of dimension N, x 1. Observe that as C is a
diagonal matrix, the sets of positions of zeros and nonzeros in
xand x’ remain unchanged. The difference between x and x” is
the magnitudes of those nonzero elements. Therefore, though
the received signal y is generated according to (5), the position
set obtained by performing & := CSRecovery(y, H', n) (step
4), equivalently to performing

X := argmin[x][¢,, ®)
Vo
is equivalent to the one obtained by performing
©

argminl x|,
..‘

Hence, after the normalization and different matrices used
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3. The comparisons among ML, MMSE. MF, and NCS from the GSSK
point of view. GSSK2, MMSE2, MF2, and CS2 denote the settings of ML.
MMSE. MF, and NCS with N, = 16, N, = 256, n, = 2. GSSK3, MMSE3,
MF3, and CS3 denote the settings of ML, MMSE, MF, and NCS with N, =
24, N; = 64, n, = 3. The common setting i that each element of H follows
CN(0, 1), and each element of n follows CA’(0, 1).

w

oo

ig. 4. The comparisons among different NCS’s from the GSSK point of
view. C82-16 is with the sctting of Ny = 16, N, = 256, ny = 2. CS2-20 is
with the setting of N, 256, g = 2. CS3-24 is with the setting

recovery result is primarily dominated by the number m of
measurements and can be improved once the number m of
measurements is increased. It turns out that in GSSK detection.
the error floor in NCS can be improved once N, is increased.
The observation of Fig. 4 also confirms such assertion.

Discussion: As ML is highly complicated in large-scale
high-rate MIMO systems, our proposed NCS detection algo-
rithm has great potential in such MIMO systems. In particular.,
in a GSSK modulated MIMO system with N, = 256.
N, = 2048, and n, = 16, the attainable symbol rate is
approximately |log (*)¢")] A~ 131 bits®. Nonetheless. ML
detection leads to the running time explosion due to its
required 256 - 2048'° operations. Since approximately merely
256 - 2048 - 16 = 8388608 operations are sufficient in NCS.
the proposed NCS serves as a lightweight and promising
alternative for GSSK demodulation. In particular, in the above
case, NCS can successfully detect the antenna indices as long
as the . /Ny is more than GdB.

V. CONCLUSION

The proposed NCS algorithm exploits the sparsity in SSK
signaling and uses £;-norm metric as opposed to the £,-norm
metric in conventional detector. Our proposed NCS provides
the advantage of a convex formulation to the SSK-type
demodulations. The complexity analyses and simulations
show that NCS offers significant detection speedup over the
optimal ML detection at slight performance degradations.
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