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Abstract 

 

In this paper, we consider the application of compressive sensing (CS) in wireless sensor networks 

(WSNs). CS is a signal acquisition and compression framework recently developed in the field of 

signal processing and information theory. We applied this CS technique to WSN which consists of a 

large number of wireless sensor nodes and a central fusion center (FC). This CS based signal 

acquisition and compression is done by a simple linear projection at each sensor node. Then, each 

sensor transmits the compressed samples to the FC. The FC which collects the compressed signals 

from the sensors jointly reconstructs the signals in polynomial time using a signal recovery algorithm. 

 The distributed sensors observe similar event in designated region. Therefore, the observed 

signals have considerable correlation each other. We make some effort in modeling correlation 

between the signals acquired from the sensors and analyze the component in observed signals. After 

modeling the correlated signals, we propose POMP (Phased-OMP) which can recover any type of 

correlated signals stably and effectively. We introduce the idea of our proposed algorithm in detail and 

then compare the reconstruction performance of POMP with previous algorithms ReMBo, MEM, 

SOMP, etc.  
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 1. Introduction 

In this paper, we discuss the application of a new compression technique called compressive sensing 

(CS) in wireless sensor networks (WSNs). The objective of a WSN which we assume in this paper is to 

collect information about events occurring in a region of interest. This WSN consists of a large number 

of wireless sensor nodes and a central fusion center (FC). The sensor nodes are spatially distributed 

over the said region to acquire physical signals such as sound, temperature, wind speed, pressure, and 

seismic vibrations. After sensing, they transmit the measured signals to the FC. In this paper, we focus 

on the role of the FC which is to recover the transmitted signals in their original waveforms for further 

processing. By doing so, the FC can produce a global picture that illustrates the event occurring in the 

sensed region. Each sensor uses its onboard battery for sensing activities and makes reports to FC via 

wireless transmissions. Thus, limited power at the sensor nodes is the key problem to be resolved in the 

said WSN. 

CS is a signal acquisition and compression framework recently developed in the field of signal 

processing and information theory [1],[2]. Donoho [1] says that “The Shannon–Nyquist sampling rate 

may lead to too many samples; probably not all of them are necessary to reconstruct the given signal. 

Therefore, compression may become necessary prior to storage or transmission.” According to 

Baraniuk [3], CS provides a new method of acquiring compressible signals at a rate significantly below 

the Nyquist rate. This method employs non-adaptive linear projections that preserve the signal’s 

structure; the compressed signal is then reconstructed from these projections using an optimization 

process. 

We applied this CS technique to WSN. One of our aims in this paper is to determine whether the CS 

can be used as a useful framework for the aforementioned WSN to compress and acquire signals and 
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save transmittal and computational power at the sensor node. This CS based signal acquisition and 

compression is done by a simple linear projection at each sensor node. Then, each sensor transmits the 

compressed samples to the FC; the FC which collects the compressed signals from the sensors jointly 

reconstructs the signal in polynomial time using a signal recovery algorithm. Illustrating this process in 

detail throughout this chapter, we check to see if CS can become an effective, efficient strategy to be 

employed in WSNs, especially for those with low-quality, inexpensive sensors. 

The distributed sensors observe similar event in designated region. Therefore, the observed signals 

have considerable correlation each other. In this paper, as we assume a scenario in which a WSN is 

used for signal acquisition, we intend to pay some effort in modeling correlation between the signals 

acquired from the sensors. Then, we divide the correlated signals to three parts for example, common 

sparsity, innovation sparsity, and total sparsity. Those terminologies give more easy understanding to 

solve multiple measurement vector (MMV) modeled from WSN structure. 

If we will use the correlated information to recover signals transmitted from each sensor, its 

reconstruction performance will increase over that not using correlated information. We demonstrated 

this assumption by showing a simulation result. Finally, we proposed advanced algorithm to recovery 

the correlated signals effectively. The proposed algorithm is called phased advanced orthogonal 

matching pursuit (POMP). POMP has better performance about reconstruction probability than 

previous algorithms, for examples, SOMP, ReMBo etc. We will introduce the idea of our proposed 

algorithm in detail and then compare the reconstruction performance of our algorithms with previous 

algorithms 
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 2. Wireless sensor network 

2.1. Network structure 

We consider a WSN consisting of a large number of wireless sensor nodes and one FC (Figure 1). The 

wireless sensor nodes are spatially distributed over a region of interest and observe physical changes 

such as those in sound, temperature, pressure, or seismic vibrations. If a specific event occurs in a 

region of distributed sensors, each sensor makes local observations of the physical phenomenon as the 

result of this event taking place. An example of sensor network applications is area monitoring to 

detect forest fires. A network of sensor nodes can be installed in a forest to detect when a fire breaks 

out. The nodes can be equipped with sensors to measure temperature, humidity, and the gases 

produced by fires in trees or vegetation [7]. Other examples include military and security applications. 

Military applications vary from monitoring soldiers in the field, to tracking vehicles or enemy 

movement. Sensors attached to soldiers, vehicles and equipment can gather information about their 

condition and location to help planning activities on the battlefield. Seismic, acoustic and video sensors 

can be deployed to monitor critical terrain and approach routes; reconnaissance of enemy terrain and 

forces can be carried out [8]. 

 

 . Wireless Sensor Network (WSN)Figure 1  
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 After sensors observe an event taking place in a distributed region, they convert the sensed 

information into a digital signal and transmit the digitized signal to the FC. Finally, the FC assembles 

the data transmitted by all the sensors and decodes the original information. The decoded information 

at the FC provides a global picture of events occurring in the region of interest. Therefore, we assume 

that the objective of the sensor network is to determine accurately and rapidly reconstruct transmitted 

information and reconstruct the original signal.  

 We discuss the resource limitations of WSNs in the next section. 
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2.2. Resource limitations in WSNs  

In this section, we describe the assumptions made in the sensor network we are interested in. We 

assume that the sensors are distributed and supposed to communicate with the FC through a wireless 

channel. Because each sensor is important components of WSN which observes event, they should 

typically be deployed in a large volume over the region of interest. Therefore, they are usually 

designed to be inexpensive and small. For that reason, each sensor operates on an onboard battery 

which is not rechargeable at all; thus, for simplicity, the hardware implementation of sensor nodes can 

provide only limited computational performance, bandwidth, and transmission power. As a result of 

limitations on the hardware implementation in sensor nodes, the FC has powerful computation 

performance and plentiful energy which naturally performs most of the complex computations.  

 Under the limited conditions stated above for a WSN, CS can substantially reduce the data 

volume to be transmitted at each sensor node. With the new method, it is possible to compress the 

original signal using only   log /O k n k  samples without going through many complex signal 

processing steps. These signals can be recovered successfully at the FC. All these are done under the 

CS framework. As the result, the consumption of power for transmission of signal contents at each 

sensor can be significantly reduced thanks to decreased data volume. Moreover, this data reduction 

comes without utilizing complex signal processing. Namely, the sensor nodes can compress the signal 

while not spending any power for running complex compression algorithms onboard.  

 We discuss the new technique CS in the next section and check how CS can get the 

advantages like data reduction and simple data compression.  
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3. Compressive sensing (Literature survey) 

In a conventional communication system, an analog-to-digital converter based on the Shannon–

Nyquist sampling theorem is used to convert analog signals to digital signals. The theorem says that if 

a signal is sampled at a rate twice, or higher, the maximum frequency of the signal, the original signal 

can be exactly recovered from the samples. Once the sampled signals are obtained over a fixed 

duration of time, a conventional compression scheme can be used to compress them. Because the 

sampled signals often have substantial redundancy, compression is possible. Several compression 

schemes follow this approach, e.g., the MP3 and JPEG formats for audio or image data. However, 

conventional compression in a digital system is sometimes inefficient because it requires unnecessary 

signal processing stages, for example, retaining all of the sampled signals in one location before data 

compression. According to Donoho [1], the CS framework, as shown in Figure 2, can bypass these 

intermediate steps, and thus provides a light weight signal acquisition apparatus which is suitable for 

those sensor nodes in our WSN. 

 

 

 . Conventional compression and compressive sensingFigure 2  
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 The CS provides a direct method which acquires compressed samples without going through 

the intermediate stages of conventional compression. Thus, CS provides a much simpler signal 

acquisition solution. In addition, the CS provides several recovery routines which the original signal 

can be regenerated perfectly from the compressed samples.  
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3.1 Theoretical background 

Let a real-valued column vector s  be a signal to be acquired. Let it be represented by 

 

 s x  (1) 

 

,where x  and 
ns R , and x  is also a real-valued column vector. The matrix n nR  is an 

orthonormal basis, i.e., T T

nI    , the identity matrix of size n n
R . The signal s  is called 

k -sparse if it can be represented as a linear combination of only k  columns of  , i.e., only the k  

components of the vector x  are nonzero as represented Eq.Error! Reference source not found. .  

. 

1

,  where  is a column vector of .
n

i i i

i

x 


 s  (2) 

 

 A signal is called compressible if it has only a few significant (large in magnitude) 

components and a greater number of insignificant (close to zero) components. The compressive 

measurements y (compressed samples) are obtained via linear projections as follows (Figure 3): 

 

  y s x Ax  (3) 

 

where the measurement vector is ,  with m m n y R , and the measurement matrix 
m nA R . Our 

goal is to recover x  from the measurement vector y . We note that Eq. 

Error! Reference source not found. is an underdetermined system because it has fewer equations 

than unknowns; thus, it does not have a unique solution in general. However, the theory of CS asserts 
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that, if the vector x  is sufficiently sparse, an underdetermined system is guaranteed with high 

probability to have a unique solution.  

 In this section, we discuss the basics of CS in more detail. 

 

 

 . The summary of compressive sensingFigure 3  

 

)i  k -sparse signal x  in orthonormal basis 

The k -sparse signal, s  in Eq. Error! Reference source not found., has k  nonzero components 

in x . The matrix   is, again, an orthonormal basis, i.e., T T

nI    , the identity matrix of 

size n n
R .  

 

)ii  Measurement vector y and underdetermined system  

The sensing matrices are   and A  in Eq. Error! Reference source not found., where its 

dimension m n
R , m n . When m  is closer to k  than n  is, sufficient conditions for good signal 

recovery are satisfied. Then a compression effect exists. Note that Eq. 
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Error! Reference source not found. appears to be an ill-conditioned equation. That is, the number of 

unknowns n is larger than m the number of equations, m n . However, if x  is k -sparse and the 

locations of the k  nonzero elements are known, the problem can be solved provided m k . We can 

form a simplified equation by deleting all those columns and elements corresponding to the zero-

elements, as follows: 

 

 y A x  (4) 

 

where  1,2, ,n   is the support set, which is the collection of indices corresponding to the 

nonzero elements of x. Note that the support set  can be any size- k subset of the full index set, 

 1,2,3,...,n . Eq. Error! Reference source not found. has the unique solution x  if the columns of 

A are linearly independent. The solution can be found using pseudo inverse easily as Eq. 

Error! Reference source not found. 

 

 
1

T T

   



x A A A y  (5) 

 

Thus, if the support set  can be found, the problem is easy to solve provided the columns are linearly 

independent.  

 

)iii  Incoherence condition 

The incoherence condition is that the rows of   should be incoherent to the columns of  . If the 

rows of   are coherent to the columns of  , the matrix A cannot be a good sensing matrix. In the 

extreme case, we can show a matrix A  having m  rows of   that are the first m columns of  .  
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 1: ,:

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

T

m

 
 
      
 
 
 

A  (6) 

 

 If A  of Eq. Error! Reference source not found. is used as sensing matrix, the 

compressed measurement vector y  captures only the first m  elements of the vector x , and the rest 

of the information contained in x  is completely lost.   

 

)iv  Designing a sensing matrix   

One choice for designing a sensing matrix   is Gaussian. Under this choice, the sensing matrix   

is designed as a Gaussian, i.e., matrix elements are independent and identically distributed Gaussian 

samples. This choice is deemed good since a Gaussian sensing matrix satisfies the incoherence 

condition with high probability for any choice of orthonormal basis  . This randomly generated 

matrix acts as a random projection operator on the signal vector x . Such a random projection matrix 

needs not depend on specific knowledge about the source signals. Moreover, random projections have 

the following advantages in the application to sensor networks [5]. 

 

1) Universal incoherence: Random matrices   can be combined with all conventional sparsity basis 

 , and with high probability sparse signals can be recovered by an 1L  minimum algorithms from the 

measurements y . 
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2) Data independence: The construction of a random matrix does not depend on any prior knowledge 

of the data. Therefore, given an explicit random number generator, only the sensors and the fusion 

center are required to agree on a single random seed for generating the same random matrices of any 

dimension.  

 

3) Robustness: Transmission of randomly projected coefficients is robust to packet loss in the network. 

Even if part of the elements in measurement y  is lost, the receiver can still recover the sparse signal, 

at the cost of lower accuracy.  
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3.2 System equations 

We knew the method how to find a unique solution of CS problem in previous section. In this section, we 

discuss various equations which are handled in CS theory as single measurement vector (SMV) and 

multiple measurement vector (MMV). The SMV is a basic equation for CS. It is expressed as Eq. 

Error! Reference source not found.. Many CS paper about this SMV problem is researched in 

[Ref],[Ref]. 

         

1

1 , 1 1 , 2 1 ,1 2

2 , 1 2 , 2 2 ,2

1

, 1 , 2 ,

n

n

n

m m m nn

n

x

a a ay x

a a ay

y

a a ay

x





 
 

    
    
    
         
    
    
    
       

  

y Ax

   (7) 

Otherwise, the MMV has multiple measurement vectors and sparse matrix as Eq. 

Error! Reference source not found.. The sparse vector in each SMV results in MMV. It has much 

unknowns compared with SMV. The many number of unknowns may make the MMV to be solved hard. 

To solve this equation effectively, some algorithms are proposed as SOMP, ReMBo, M-FOCUSS. If each 

column of sparse matrix X  has similar support set, the priori information about support location can be 

used to get exact solution easily.  
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1 , 1 1 , 2 1 ,

1 , 1 1 , 2 1 ,

1 , 1 1 , 2 1 , 2 , 1 2 , 2 2 ,

2 , 1 2 , 2 2 ,

2 , 1 2 , 2 2 ,

, 1 , 2 ,

, 1 , 2 ,

, 1 , 2 ,

J

n

J J

n

J

m m m J

m m m n

n n n J

x x x
a a a

y y y x x x
a a a

y y y

y y y
a a a

x x x



 
   

     
     
     
      
     
     
      

    
 

Y AX

 (8) 

 The MMV equation can have the more number of equations by transforming Eq. 

Error! Reference source not found.. It means that the MMV equation has more information to solve 

underdetermined equation. The modified MMV equation is expressed as below Eq. 

Error! Reference source not found.. Furthermore, infinite measurement vector (IMV) consists of an 

infinite set of jointly sparse vectors.  

 

 

 

 

 

 

 

 

 

 

 

1,1 1,2 1,

1,1 1,2 1,

1,1 1,2 1, 2,1 2,2 2,

2,1 2,2 2,

2,1 2,2 2,

,1 ,2 ,

,1 ,2 ,

,1 ,2 ,

,  where 1,2,...,j

J

n

J J

n

J

m m m J

m m m n j
n n n J

j J

x x x
a a a

y y y x x x
a a a

y y y

y y y
a a a

x x x

 


  

    
   
   
    
   
   
    

  


Y A X





 
 
 
 
 
 
 



 (9) 

 

1,1

1,1 1,1,1 1,2 1, 2,1

2,1 2,2,1 2,2 2,

1,1 1

,1 ,2 ,,1 11

,1 1

,  where 1,2,...,

   , ,     

j j j

Jn

Jn

m m

m m m nm

n

j J

x

y ya a a x

y ya a a

y y

a a ay

x

 

 

 
 

     
     
     
     
      
     
     
     
       

 
 

y A x

1,

1,1 1,2 1, 2,

2,1 2,2 2,

,

,1 ,2 ,,

,

J

n J

n

J

m m m nm J JJ

n J J

x

a a a x

a a a

a a ay

x

 
 

     
     
     
     
      
     
     
     
       

 
 





INFONET, GIST 
Journal Club 

 

 

 

 - 21 - 

 

Therefore, we can draw the relationship among the SMV, MMV and IMV as Figure 4. As the Figure 

4 shows, the MMV includes all of the SMV. It means that the MMV has all the information of the 

SMV. Therefore, if we solve the MMV equation exactly, it results the solution of each SMV also.  

 

      

 . The relationship among SMV, MMV and IMVFigure 4  
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3.3. Unique solution condition of SMV and MMV 

In CS, a core problem is to find a unique solution for an underdetermined equation. This problem is 

related to the signal reconstruction algorithm, which takes the measurement vector y  as an input and the 

k -sparse vector x  as an output. To solve an underdetermined problem, we consider minimization 

criteria using different norms such as the 
2L , 

1L , and 
0L  norms. The 

pL  norm of a vector x  of 

length n  is defined as 

 

1

1

,   0
n pp

ip
i

x p


 
  
 
x  (10) 

 .  

 Although we can define the 
2L  and 

1L  norms as 

1

22

2
1

n

i

i

x


 
  
 
x  and 

1
1

n

i

i

x


x , 

respectively, using the definition of pL  norm, 
0L  norm cannot be defined this way. The 

0L  norm is a 

pseudo-norm that counts the number of nonzero components in a vector as defined by Donoho and Elad 

[6]. Using this definition of norms, we will discuss the minimization problem to get solution x .  

 

)i  The minimization problem in SMV 

1) 2L  norm minimization in SMV 

 

   

 

2 2

1

ˆ arg min   subject to ,  where R ,  

          

m n

T T

L rank m



   



x x y Ax A A

A AA y
 (11) 

  

However, this conventional solution yields a non-sparse solution, so it is not appropriate as a solution to 

the CS problem. Thus, we do not consider this method for finding solution. 
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2) 
0L  norm minimization in SMV 

 

   0 0
  Minimize   subject to ,  where R ,  m nL rank m  x y Ax A A  (12) 

 

The 
0L  norm of a vector is, by definition, the number of nonzero elements in the vector. In the CS 

literature, it is known that the 
0L  norm problem can be solved by examining all the possible cases. Since 

this process involves a combinatorial search for all possible 
n

k

 
 
 

 support sets, it is an NP-complete 

problem. Thus, we cannot solve it within polynomial time. Therefore, we consider 
1L  norm 

minimization as an alternative. In literature [Ref], the unique solution of the 
0L  minimization is known 

as following, 

 

      
 s p a r k

2
k 

A
  (13) 

 

 The  spark A  is the smallest number n  such that there exists a set of n  columns in A  

which are linearly dependent. In summary, if the above equation is satisfied, then the unique solution of 

the Eq. Error! Reference source not found. is guaranteed.  

 

3) 1L  norm minimization in SMV 

 

   1 1
  Minimize   subject to ,where R ,  m nL rank m  x y Ax A A  (14) 
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This 
1L  norm minimization can be considered as a relaxed version of the 

0L  problem. Fortunately, the 

1L  problem is a convex optimization problem and in fact can be recast as a linear programming problem. 

For example, it can be solved by an interior point method. Many effective algorithms have been 

developed to solve the minimum 
1L  problem, and it will be considered later in this chapter. Here, we 

aim to study the sufficient conditions under which Eq. Error! Reference source not found. and 

Error! Reference source not found. have unique solutions. We provide a theorem related to this issue.  

 

0 1/L L  equivalence condition in SMV: 

Let m nA R be a matrix with a maximum correlation definition  ,   max , ,i j
i j




A a a  where 
ia  

is the i th column vector of A  with 1,2,...,i n , and x is a k -sparse signal. Then, if 
1 1

1
2

k


 
  

 
 

is satisfied, then the solution of 
1L  coincides with that of 

0L  [6] . 

Table 1. 
0 1/L L  Equivalence condition. 

 

)ii  The minimization problem in MMV 

To get the unique solution of MMV, it can be considered similar method with that of SMV. We introduce 

theorems from references [Ref]. To explain the uniqueness condition for MMV, we introduce the 

following definitions  R X  and  relax X . 

 

    
1 0i n

R m


X x  (15) 
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where L

ix R  is the transpose of the i th row of matrix X , ie  1 2, ,...,
T

nx x xX ,  m   is any 

vector norm in 
LR . Therefore,  R X  is the number of rows which have nonzero element in matrix X . 

When norm of  
1i n

m


x  is one, then it is defined as  relax X . 

 

     
1 1

i n
relax m


X x  (16) 

1) 
0L  norm minimization in MMV 

 

               0 1 0
  M i n i m i z e    s u b j e c t  t o  ,  w h e r e  R ,  m n

i n
L R m rank m


   X x Y AX A A  (17) 

 

In literature [Ref], the MMV unique solution of the 0L  minimization is known as following, 

 

       
    s p a r k 1

2

r a n k C o l s
R

 


A Y
X   (18) 

 

 The   rank Cols Y  is the column rank of matrix Y . If the above equation is satisfied, then 

the unique solution of the Eq. Error! Reference source not found. is guaranteed.  

 

2) 1L  norm minimization in MMV 

 

             1 1 1
  M i n i m i z e    s u b j e c t  t o  ,  w h e r e  R ,  m n

i n
L relax m rank m


   X x Y AX A A  (19) 

 

A sufficient condition to be the unique solution to 2) of MMV is that 
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 †

1
1,  S j j S  A A  (20) 

. 

SA  is reduced matrix of A  corresponding to indices from support location of  R X . So, we can write 

S SY A X , where matrix 
SX  is made by nonzero rows of X . SA  is of full column rank. †

SA  is 

pseudo-inverse which is defined by  
1

† T T

S S S S



A A A A . Because SA  is of full column rank, the 

generalized inverse is well defined. The above is the Exact Recovery Condition (ERC) in Tropp’s “Greed 

is good: Algorithmic results for sparse approximation” 

 

0 1/L L  equivalence condition in MMV: 

If  
 

2

spark
R 

A
X  is satisfied, then the solution of 1L  in MMV coincides with that of 0L  [Ref] . 

Table 1. 
0 1/L L  Equivalence condition. 
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 4. Compressive sensing and its application in WSN 

4.1 The usefulness of CS in WSNs 

In this section, we provide a brief comparison of using CS and using the conventional compression in a 

WSN. This comparison illustrates why CS could be a useful solution for WSNs.  

 

)i  Sensor network scheme with conventional compression 

For a conventional sensor system, the distributed sensors observe physical changes in designed area. 

Since each sensor observes similar physical changes, the signals observed from each sensor have much 

correlation. The correlated signal can be compressed for reducing data. The conventional compression for 

WSN requires exchanging information between distributed sensors in order to exploit inter-sensor 

correlation. Such a transmission strategy makes the network system complex below Figure 9. 

 The conventional compression needs to get together redundant data for compression as Figure 

10. At the collection point, joint compression can be made and compressed information can be sent to the 

FC. This option has a couple drawbacks. First, gathering the samples from all the sensors and jointly 

compressing them cause a transmission delay. Second, a lot of onboard power should be spent at the 

collaboration point. Third, each sensor should be collocated so that the transmitted information can be 

gathered at collaboration location.  

 . Conventional sensor network structureFigure 9  . Conventional sensor network structureFigure 10
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 Now, we may suppose that the joint compression is not aimed at and each sensor compresses 

the signal on its own. First, the data reduction effect with this approach will be limited because inter-

sensor correlation is not exploited at all. The total volume of the independently compressed data is much 

larger than that of jointly compressed data. This may produce a large traffic volume in the WSN and a 

large amount of transmission power will be wasted from the sensor nodes which transmit essentially the 

same information to the FC. Thus, this is an inefficient strategy as well. 

 

)ii  Sensor network scheme with compressive sensing 

In contrast to the conventional schemes considered in the previous paragraph, the CS method aims to 

acquire compressed samples directly. If a high-dimensional observation vector x  exhibits sparsity in a 

certain domain (by exploiting intra-sensor correlation), CS provides the direct method for signal 

compression as discussed in Figure 2. To compress the high-dimensional signal x  into a low-

dimensional signal y , as Eq. Error! Reference source not found., it uses a simple matrix 

multiplication with an m n  projection matrix  ,  1,2,...j j JA , where j  is the sensor index, as 

depicted in Figure 12.  

 In the CS-based sensor network scheme, each sensor compresses the observed signals using a 

simple linear projection and transmits the compressed samples to the FC. Then, the FC can jointly 

reconstruct the received signals (by exploiting inter-sensor correlation) using one of the CS algorithms. 

Therefore, each sensor does not need to communicate with its neighboring sensors for joint compression. 

Our method is distributed compression without having the sensors to talk to each other; only the joint 

recovery at the FC is needed. Thus, no intermediate stages are required which are to gather all of the 

samples at a single location and carry out compression aiming to exploiting inter-sensor correlation. This 

free of intermediate stages allow us to reduce time delay significantly as well. Therefore, if the original 



INFONET, GIST 
Journal Club 

 

 

 

 - 29 - 

data are compressed by CS, each sensor node produces much smaller traffic volume which can be 

transmitted to the FC at a much lower transmission power and with a smaller time delay. The CS sensor 

network structure applied for WSN is as below (Figure 11). You can check the simplicity of transmission 

strategy of CS based WSN compared with conventional network. 

  

 

 

 

 . CS sensor network schemeFigure 11  . CS sensor network structureFigure 12
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4.2 Distributed compressive sensing 

Each sensor can observe only the local part of an entire physical phenomenon, and a certain event of 

interest is measured by one or more sensors. Therefore, the sensed signals are often partially correlated. 

These measured signals have two distinct correlations: intra-sensor correlation and inter-sensor 

correlation. Intra-sensor correlation exists in the signals observed by each sensor. Once a high-

dimensional sensed signal has a sparse representation in a certain domain, we can reduce its size by using 

CS. This process exploits the intra-sensor correlation. In contrast, inter-sensor correlation exists between 

the signals sensed by different sensors. By exploiting inter-sensor correlation, further reduction in 

transmitted signals can be made.   

 These two correlations can be exploited to improve the system performance. As the number of 

sensors in a region becomes dense, each sensor has a strongly correlated signal that is similar to that of 

neighboring sensors. In contrast, if we decrease the density of sensors distributed in a given region, the 

sensed signals will obviously be more weakly correlated with each other. In this section, we discuss two 

strategies for transmitting signals in a multi-sensor CS-based system. One strategy uses only intra-sensor 

correlation, and the other uses both types of correlation. We illustrate that CS-based system in WSN 

exploits the inter-sensor correlation more effectively and simply than that of conventional sensor network.  

 

)i  Exploiting only intra-sensor correlation 

In Figure 13, each sensor observes the source signal and independently compresses it to a low-

dimensional signal. After compression, each sensor transmits the compressed signal to the FC. Without 

exploiting inter-sensor correlation between transmitted signals, the FC recovers these signals separately. 

In this case, even if there exists correlation among the sensed signals, because only intra-sensor 
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correlation is exploited, we cannot gain any advantages from joint recovery. This method has the 

following characteristics: 

1) Independent compression and transmission at each sensor 

2) Signal recovery by exploiting only intra-sensor correlation at the FC 

 

)ii  Exploiting both intra- and inter-sensor correlation 

Figure 14 shows the same process as in situation )i  above, except that the FC exploits the inter-sensor 

correlation among sensed signals at signal reconstruction stage. In conventional sensor network system as 

shown in Figure 10, the sensor nodes communicate with their neighboring sensors to take advantage of 

joint compression by exploiting inter-sensor correlation. However, in the CS-based system, a stage for 

exploiting inter-sensor correlation is achieved at FC. It means that if inter-sensor correlation exists within 

the sensed signals, and the FC can exploit it. This is done with sensors communicating with the FC but 

not among the sensors themselves. We refer to this communication strategy as the Distributed 

Compressive Sensing (DCS). Exploitation of inter-sensor correlation should be manifested with the 

reduction of the measurement size m  of matrix m nA R , where y Ax , required for good single 

recovery. The characteristics of our DCS sensor network are: 

1) Independent compression and transmission at each sensor 

2) Exploitation of inter-sensor signal correlation with the joint recovery scheme at the FC 

3) Variation of the per sensor CS measurements to manipulate the level of signal correlation 
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     .  I n t r a - s e n s o r  c o r r e l a t i o n  s c h e m eF i g u r e 1 3        . Intra/Inter-sensor correlation schemeFigure 14  
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4.3. Correlated signal models 

We assumed the WSN which consists of large number of sensor with a built-in CS and one fusion center. 

Because of the feature of considered WSN, the observed signals have inter-sensor correlation. We can 

model this WSN as Eq. Error! Reference source not found. or Eq. 

Error! Reference source not found.. Those two equations have sparse signal matrix X  which consists 

of signals transmitted from each sensor.  

 In this section, we introduce how the signal matrix with different degrees of correlation can be 

generated as sparse signal models. The sparse signal matrix in WSN has correlated properties. The degree 

of sparseness which is called the sparsity, is proportional to the amount of correlation. More correlated 

signal means sparser in terms of intra-sensor correlation. In addition, inter-sensor signal correlation can 

be modeled )i  by the degree of overlaps in the support sets of any two sparse signals, and )ii  by the 

correlation of non-zero signal values. By using those two properties, we can model correlated sparse 

signal matrix X  as below examples Figure 15.   

 

* *

* *

* * *

* * * * *

* * * * * * * *

              * * * * * * * * * *

* * * * * * * * * * *

* *

* * *

* *

* *

       
       
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       
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       
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       
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*
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 
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 . The examples of correlated signalsFigure 15  
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 We can divide those correlated signals in Figure 15 as three components; common sparsity 

part, innovation sparsity part, and total sparsity part. The common sparsity part has one more nonzero 

value in the row of sparse signal matrix X . The Innovation sparsity part has only one nonzero value in 

the row of signal matrix. Lastly, the total sparsity part is the total number of rows which have nonzero 

elements. The common sparsity is a correlated part. Therefore, if we find the location of common part, we 

can also use it to solve another SMV. The innovation sparsity is a uncorrelated part. Even if we find the 

location of innovation part, we cannot use it to solve other SMV equations. Finally, the total sparsity is 

related with the degree of correlation among observed signals. We re-expressed the correlated signals as 

following Figure 16 by using three terminologies mentioned. 

 

1)                           2)                           3)                           4)                              5)

* * *

* * * * *

   * * * * * * * *

* * * * * * * *
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 . The components of correalted signalsFigure 16  

 

 The first and second correlated signals of Figure 16 have only common sparsity part. The 

third signal consists of only innovation sparsity. Therefore, there is no common part which has one 
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more nonzero element in same row. The 4) , 5)  signals have both common part and innovation part. 

If we know the prior information of the heuristic signal X  about support location, we can use it to 

find solution effectively. We can use those correlated properties to recover signals transmitted from 

each sensor, and its reconstruction performance will increase over that not using correlated information. 

We discuss the ideas for recovering those correlated signals in next section. 
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 5. The recovery ideas for correlated signals 

5.1 Joint decoding and separate decoding 

We discussed the correlated signals which consist of common, innovation, and total parts in the previous 

section. The understanding of various correlated signal models gives more clues to get solution. In this 

section, we argue ideas using correlated information to get solution effectively.  

 Some specific correlated signals also are handled in [Ref],[Ref]. In those references, the 

correlation signals are referred to as JSM-1 (joint signal model) or JSM-2 depending on the correlation 

type. In JSM-1, all of the signals share exactly the same common nonzero components that have the same 

values, whereas each signal also independently has different nonzero components, which is called 

innovation. In JSM-2, it shares same support location that has different value. Those two signals is 

expressed below, Figure 17. In [Ref],[Ref], they proposed methods which find the solution of the 

correlated signals consisting of those specific pattern in Eq. Error! Reference source not found..  

 

1) JSM-1                       2) JSM-2

    

:  Same nonzero value

: Different nonzero value

   
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

 

 7. Joint signal models, JSM-1, JSM-2Figure 1  
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 The JSM-1 is expressed as 

 

 ,  1,2,..., ,   is the index of the sensorsj c j j J j  x z z  (21) 

 

where 
0c ckz (Common part), and 

0j jkz (Innovation part) in each sensed signal. Obviously, 
cz  

appears in all the columns of the correlated signals. It can be recognized as the inter-sensor correlation. 

We note that the intra-sensor correlation is that all of the signals are sparse. The j th sensor transmits 

j j jy A x  to the FC. After all the sensed signals are transmitted to the FC, the FC aims to recover all the 

signals. Because inter- sensor correlation exists in the sensed signals, we can obtain several benefits by 

using the correlated information in the transmitted signals. For ease of explanation, suppose that the WSN 

contains J  sensors, and its sensed signal follows JSM-1 pattern. Then, the FC can exploit both intra- 

and inter- sensor correlation by solving Eq. Error! Reference source not found. as described below. 

 

)i  Joint recovery scheme for JSM-1 (Modified equation method) 

The sensed signals from j  sensors can be expressed as follows. 

 

1 1

2 2

n

c

n

c

n

J c J

  

  

  

x z z R

x z z R

x z z R

, 

where the sparsity of vectors cz  and jz  are ck  and jk , respectively and each sensor has same 

spasity c jk k k  . Then, the transmitted signal jy  can be divided into two parts as follows.  

 

( )j j c j j c j j   y A z z A z A z  
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 If the FC received all the signals transmitted from J  sensors, it then concatenates the used 

sensing matrix and received signal using Eq. Error! Reference source not found.. Therefore, the sensed 

signal in JSM-1 is transformed into Figure 18. This idea is handled in [Ref],[Ref]. 

1 1 1

1

2 2 2

2

3 3 3
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J JJ
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z
y A A 0 0 0

z
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z
y A 0 0 A 0

z
0

A 0 0 0 0 Ay
z

 (22) 

 

1) Using correlation information   2) Not using correlation information
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 . Concatenating JSM-1 to a column signalFigure 18  

ck : 3 

jk : 1 

k : 4 

s : 12 

n : 21 

s : 6 

n : 28 

ck : 3 

jk : 1 

k : 4 

s : 12 

n : 21 

s : 12 

n : 21 

n : Signal length 

s : The number of nonzero  
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Because JSM-1 shares common part 
cz  in the equation, we can reduce the number of nonzero value as 

1) of Figure 18. In conclusion, the total number of nonzero in matrix X  is 12, but in transforming 

equation, it is 6 only. Thus, the total number of nonzero, s  is reduced from  c jJ k k   to 

 c jk J k  . The total number of sparsity affects the probability of exact reconstruction. By solving this 

equation, the FC can take advantage of exploiting inter-sensor correlation. However, if the FC recovers 

the received signals independently without using any correlation information, separate recovery is done. 

Even if the sensed signals are correlated, separate recovery offers no advantages for signal reconstruction 

because it does not exploit inter- sensor correlation.  

 

)ii  Separate recovery scheme for JSM-1 

Even if a common correlated element exists in the sensed signals, separate recovery does not use that 

correlation information as before example. Therefore, the received signals are recovered as follows and 

its concatenated signal is express as 2) of Figure 18. 

 

1 11

2 2 2

JJ J

    
    
    
    
    

    

y xA 0 0 0

y 0 A 0 x

0

0 0 0 Ay x

 (23) 

 

 To solve Eq. Error! Reference source not found. and Error! Reference source not found., 

we use the primal-dual interior point method (PDIP) in Appendix 7.1, which is an 1L  minimization 

algorithm, and compare the results of the two types of recovery, joint decoding and separate decoding 

respectively. Using the comparison results, we can confirm that the measurement size required for perfect 

reconstruction is smaller for joint recovery than for separate recovery. 
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 Now, we introduce JSM-2, which is simpler than JSM-1. All the signal coefficients are 

different, but their indices for nonzero components are the same. Suppose that there exist two signals, 
1x  

and 
2x . The i th coefficient for 

1x  is nonzero if and only if the i th coefficient for 
2x  is nonzero. 

This property represents inter-sensor correlation, because if we know the support set for 
1x , then we 

automatically know the support set for 
2x .  

 

)iii  Joint and separate decoding scheme for JSM-2 

The prior inter-correlation becomes relevant when the number of sensors is more than two. To get the 

advantages of exploiting inter-sensor correlation about JSM-2, we should solve the Eq. 

Error! Reference source not found. and Eq. Error! Reference source not found. jointly. Like the FC 

in JSM-1, the FC in JSM-2 can exploit the fact that the support set is shared. By solving the MMV jointly, 

we obtain several benefits as high reconstruction probability on same number of measurement. If we 

solve those two equations separately, but not jointly, it is separate recovery. As an algorithm for solving 

the equation of the JSM-2 signal, we use a simultaneous OMP (SOMP) modified from an OMP algorithm 

for joint decoding and apply OMP for separate decoding. These algorithms are introduced in Appendix 

7.2 and 7.3 correspondingly.  

 

)iv  Joint vs. separate recovery performance for JSM-1 and JSM-2 

Now, we compare the results of joint recovery and separate recovery. In joint recovery, if a correlation 

exists between the signals observed from the distributed sensors, the FC can use the correlated 

information to recover the transmitted signals. In separate recovery, correlated information is not used 

regardless of whether a correlation pattern exists between the observed signals. In Figure 19, solid lines 

were obtained from joint reconstructions, whereas dotted lines are the results of separate reconstructions.  



INFONET, GIST 
Journal Club 

 

 

 

 - 41 - 

 

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The number of measurement, M

p
ro

b
a
b
ili

ty
 o

f 
e
x
a
c
t 

re
c
o
n
s
tr

u
c
ti
o
n

 

 
K = 6, Kj = 3

K = 9, Kj = 3

K = 12, Kj = 3

K = 6, Kj = 3

K = 9, Kj = 3

K = 12, Kj = 3

 
Figure 19. Joint (solid line) and separate (dotted line) reconstruction using PDIP 

algorithm for JSM-1. System parameters: 50N  , 2J  . The benefits of joint 

reconstruction depend on the common sparsity
ck . 

 

When we use separate reconstruction, we cannot obtain any benefits from correlated information. 

However, when we use joint reconstruction, we can reduce the measurement size. For example, in Figure 

20, the required number of measurements is almost 40 (dashed line and circles, 6k  ) for perfect 

reconstruction when we use separate reconstruction. On the other hand, when we use joint reconstruction, 

it decreases to around 30 (solid line and circles, 6k  ). Furthermore, as the common sparsity increases, 

the performance gap increases. For example, when the common sparsity is 9, joint reconstruction has a 

90% probability of recovering all the signals at 30m  . However, the probability that separate 

reconstruction can recover all the signals is only 70%. Figure 19 also shows that joint reconstruction is 

superior to separate reconstruction. For example, we need at least 30 measurements for reliable recovery 



INFONET, GIST 
Journal Club 

 

 

 

 - 42 - 

using separate reconstruction. However, we merely need at least 25 measurements for reliable recovery 

using joint reconstruction.  

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The number of measurement, M

P
ro

b
a
b
il
it
y
 o

f 
e
x
a
c
t 

re
c
o
n
s
tr

u
c
ti
o
n

 

 

K = 6

K = 9

K = 12

K = 6

K = 9

K = 12

 

Figure 20. Joint (solid line) and separate (dotted line) reconstruction using SOMP 

for JSM-2. System parameters: 50N  , 2J  . Joint reconstruction has a higher 

probability of success than separate reconstruction.  
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5.2 Phased-Orthogonal matching pursuit (POMP)  

In previous section, we discussed joint decoding methods for specific correlated signal, JSM-1 and 

JSM-2. The joint decoding method for JSM-1 cannot apply for JSM-2 which shares same support 

location only, since JSM-2 does not have same nonzero value. Therefore, if we use same idea for JSM-

2, we cannot get the advantages of exploiting inter-sensor correlation. In reverse, SOMP, joint 

decoding algorithm for JSM-2, cannot apply for JSM-1 which has a large number of innovation 

sparsity. If we use SOMP algorithm for JSM-1, it may not find solution exactly. In summary, those two 

methods cannot apply all of the correlated signals which have various correlated pattern. To get exact 

solution of various correlated signals, we proposed joint decoding algorithm. The proposed algorithm 

is called phased orthogonal matching pursuit (POMP). POMP has better performance about the exact 

reconstruction probability of correlated signals than previous algorithms, for examples, PDIP, SOMP, 

ReMBo, etc. We will introduce the idea of our proposed algorithm in detail and then compare the 

reconstruction performance of our algorithms with previous algorithms. 

 

i ) Previous algorithm for MMV 

1) One-step greedy algorithm 

Figure 21 plots the probability of success in recovering the support set by using the one-step greedy 

algorithm (OSGA). OSGA finds common support location by using method described in Table 9, for the 

JSM-2 signal. In comparison with other greedy algorithms, it finds all the nonzero location at once so its 

performance is lower than that of SOMP.  

The result of Figure 21 suggests that the number of required measurements decreases for the same 

probability of exact reconstruction as the number of sensors increases. The OSGA works for a small 
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number of measurements m  if the number of sensors is sufficiently large. Therefore, if many 

distributed sensors observe a correlated signal, each sensor is enough to send only a small number of 

compressed signals to achieve perfect reconstruction probability. Consequently, the transmission power 

of each sensor can be reduced because only the traffic volume required for exact reconstruction, which 

decreases significantly, must be transmitted. However, OSGA works poorly when there are fewer sensors, 

so it is not good method finding correlated signals. The OSGA is described in more details in Error! 

Reference source not found.. 

 

The one-step greedy algorithm (OSGA): 

1. Make greedy choice: Given all of the measurements, compute the test statistics 

2

,

1

1
,

J

n j j n

j

y
J

 


   

for  1,2,...,n N and estimate the common coefficient support set by  

 ˆ  having one of the  largest nn k   . 

Table 9. The one-step greedy algorithm (OSGA). 
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Figure 21. Reconstruction using OSGA for JSM-2. Experimental probability of 

success in recovering the support set in JSM-2. Signal length and sparsity are 

50n   and 5k  , respectively.  

2) Reduced and boost algorithm 

The Reduced and boost algorithm (ReMBo) is introduced in [Ref]. They reduce the correlated signal 

matrix X  to one column signal and then solve reduced SMV problem by using greedy or gradient 

algorithm. The algorithm is summarized in Appendix 7.4. To get solution of MMV, ReMBo makes 

Y AX  to y Ax  by multiplying randomly generated vector a as Figure 22.  
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X a x
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 
 
 

  
   

ya

 

           : Different value   

 . Reduce MMV to SMV in ReMBoFigure 22  

 

 The reduced SMV can be solved by using any one of SMV algorithm and then ReMBo 

algorithm saves the support location of SMV solution. From the information of support set, they can 

get the exact solution of matrix X . This algorithm has easy stage for understanding and its algorithm 

speed is fast and effective. However, it is possible to apply only Eq. 

Error! Reference source not found. not Error! Reference source not found., and if the original 

matrix X  has much number of distributed innovation part as Figure 23, it cannot find solution. In 

the case of Figure 23, it makes the reduced signal x  which is not sparse. The transformed equation 

y Ax from the signal of Figure 23 cannot be solved. Therefore, it has limitations to apply various 

correlated signals.  
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                        : Different value  

 . The limition of ReMBo algorithmFigure 23  

 

 ii ) Phased-OMP algorithm 

Until now, we discussed various methods for recovering correlated signals. They are modified equation 

method, SOMP, OSGA, ReMBo. Those methods can apply only specific correlated signals as JSM-1, 

JSM-2 which have fixed pattern. If those methods are applied to other various signal models, it would 

not work properly. Thus, we proposed one method for any kind of correlated signals. It is called to 

phased-OMP (POMP). In this section, we explain how the algorithm works to recover various 

correlated signals. To help understanding algorithm, we will use the terminologies which are 

mentioned in previous section.  

 

1) Basic idea of correlated signal recovery  

We already talked about the unique solution of SMV problem before. The condition satisfied for 

solving SMV equation is
 

2

spark A
k  . It is proved in [Ref]. We used this proof as an idea for making 
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our proposed algorithm. If the total sparsity made from matrix X satisfies
 

2

spark
T 

A
, it guarantees 

each column has unique solution. Otherwise, even though each column satisfies
 

2

spark A
k  , it 

doesn’t mean that 
 

2

spark
T 

A
 is satisfied due to distributed innovation part  

 

: Unknown value
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 . Total sparsity of MMV equationFigure 24
 

 

 Consider this specific signal which has only common sparsity and its total sparsity satisfy 

 
2

spark
T 

A
. Because each column in MMV also satisfies

 
2

spark A
k  , and then we can get 

unique solution and its support location by using separate decoding. From the support set information 

of first SMV problem, we can also solve next SMV problem easily by using pseudo-inverse, if the next 

support set also has same support set. Therefore, it is important to know common part information 

since exact common part can reduce calculation time and complexity.  

 

1  2  3  4  5     T   
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The idea for proposed algorithm follows. Common sparsity is a correlated part. Therefore, if we find 

the location of common part, we can also use it to solve another SMV. Innovation sparsity is an 

uncorrelated part. Therefore, even if we know the location of innovation part, we cannot use it to 

recover the innovation of other signals. In SMV problem, if we want to find the unique solution, each 

SMV should satisfy the unique condition. However, if we use correlated sparsity information in MMV 

equation, each SMV problem can get more guarantee for exact solution by using correlated 

information. 

 To use correlated information in POMP, we will find the common support location at first 

by using joint decoding. Then, by using separate decoding, we will find the remaining support location 

for each SMV problem. Therefore, we use the specific characters of both the joint decoding and 

separate decoding for effective reconstruction. Although the proposed algorithm works with easily 

understanding, its performance is better than previous methods (Modified equation method, POMP, 

SOMP) for correlated signal reconstruction. In addition, it doesn’t be related with the number of total 

sparsity.  

 



INFONET, GIST 
Journal Club 

 

 

 

 - 50 - 

2) Pseudo-code of POMP 

POMP uses the method which finds support set at every iteration. It is similar with the OMP method 

about finding support set, but we applied many ideas different with original OMP. We illustrate the 

pseudo code of POMP algorithm as following table. 

 

Input Output 

A  measurement matrix 

A dimensional data vector 

The sparsity level  of the ideal signal

The estimate number of common sparisty 

Stop conditon 

j

j

m n

m

k

C







A

y

 
 ,

,

, ,

ˆAn estimate  in  for the ideal signal.

A set  containing  elements from 1,...,

ˆAn dimensional approximation  of the data 

ˆAn dimensional residual 

n

j

j k

j k j

j k j j k

k n

m

m





  

x R

y y

r y y

 

Table 4. Inputs and outputs of SOMP algorithm. 

 

The POMP algorithm: 

Phase 1: For find common sparsity 

1. Initialize:  

Let the residual matrix be ,0 ,0j jr y . The sparse set ,0 {}j  , and iteration number 1t  . 

 

2. Find the common sparsity index ,j t  for each j :  

, , 1 ,
1,..., 1

arg max ,
J

j t j t j i
i n j

 
 

  r a . The ,j ia  is the i th column vector of matrix jA . 

 

3. Update set:  

 , , 1 ,j t j t j t    .  

 

4. Signal estimate:  

  †

, , , tj t j t j j x A y  and  , ,

C

j t j t x 0 , where  , ,j t j tx  is the set of elements whose indices are 

corresponding to the sparse set. 

 

5. Get new residual:  

, , , , ,
ˆ ˆ,  j t j t j t j t j j t  y A x r y y . 

 

6. Increment t : 

Increase iteration number 1t t  , and  

if t C  return to Step 2 of Phase 1 
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otherwise, t C  go to Phase 2 

 

Phase 2: For find innovation sparsity for each j  

7. Find the index 
,j t  for each j :  

, , 1 ,
1,...,

arg max ,j t j t j i
i n

 


 r a  for every j . The 
,j ia  is the i th column vector of matrix jA . 

 

8. Update set:  

 , , 1 ,j t j t j t     for each j . 

 

9. Signal estimate:  

  †

, , , tj t j t j j x A y  and  , ,

C

j t j t x 0 , where  , ,j t j tx  is the set of elements whose indices are 

corresponding to the sparse set. 

 

 

10. Get new residual:  

, , , , ,
ˆ ˆ,  j t j t j t j t j j t  y A x r y y . 

 

11. Increment t :  

Increase iteration number 1t t  , and  

return to Step 7 of phase 2 if 
2

1

J

j j j

j




  y A x  

otherwise stop the algorithm.  

Table 5. POMP algorithm. 

 

For Phase 1, it is a stage for finding common sparsity Because the common sparsity is the correlated 

part of the signal matrix X , we use joint decoding method for finding the location of common part. 

The joint decoding method is able to find support location successfully. We already knew the 

advantages of joint decoding from the comparison of joint decoding and separate decoding in Section 

5.1. Therefore, if it is possible to use joint decoding for MMV equation, we should use it for 

advantages about signal reconstruction. It results in better performance for solving MMV equation. 

According to pseudo-code of POMP, it finds the location of common part in Phase 1 and memorizes 

the index as Figure 26. After the stage of Phase 1 is finished, POMP algorithm tries to find the 
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remaining support set by separate decoding. Due to separate decoding of Phase 2 for remaining 

support set, POMP can find the missed common sparsity in previous stage.  

 We draw Figure 26 which expresses the movement of POMP algorithm. The nonzero 

values in red box are common sparsity which is exploited in Phase 1 and then the remaining nonzero 

values in green box can be exploited in Phase 2. The index of row having nonzero values is added to 

  at every iteration until the criteria 
2

1

J

j j j

j




  y A x  is satisfied. After finishing the movement 

of POMP, we can get the original solution by using pseudo-inverse based on the estimated support set.  
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                                : Different value  

 . The movement of POMP algorithmFigure 25  

 

Moore-Penrose pseudo inverse: 

If we define that j  is the support set of the j th column in matrix X , we can reduce the sensing 

matrix jA  to 
jA  corresponding to the nonzero elements of jx .  If the columns of the reduced 

matrix 
jA  are linearly independent, Moore-Penrose pseudo inverse equation is accepted.  

 

Phase 1: Correlated part  

Phase 2: Innovation part   

   

Phase 2: Innovation part   

 

Phase 2: Innovation part   

Phase 1: Correlated part    

 

Support set in Phase 1: 

j = 1, {3, 5, 6, 7} 

j = 2, {3, 5, 6, 7} 

j = 3, {3, 5, 6, 7} 

j = 4, {3, 5, 6, 7} 

j = 5, {3, 5, 6, 7} 

j: 1   2   3   4   5      

Support set in Phase 2: 

j = 1, {3, 5, 6, 7, 8} 

j = 2, {3, 4, 5, 6, 7} 

j = 3, {3, 5, 6, 7, 9} 

j = 4, {1, 2, 3, 5, 6, 7} 

j = 5, {3, 5, 6, 7, 10} 
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 
†

j j  A A I , where  
1

†

j j j j

T T


   A A A A  

 

Therefore, if we know the support set and the reduced matrix 
jA  are linearly independent, then the 

original signal 
jx  can be found by using pseudo-inverse. 

 

 
1

j j j j

T T


   x A A A y  

 

Table 9. Moore-Penrose pseudo inverse. 
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5.3 The properties of POMP algorithm 

)i  The advantages of using prior correlation information 

If we know the prior information of correlated signal like the number of common sparstiy, innovation 

sparsity, or the distribution of support location, we can use that information for signal recovery. If we 

know the number of common sparsity as prior information, we can choice parameter C as the number 

of iteration used for finding common part exactly. To select the number of iteration exactly in POMP 

affects the reconstruction performance as Figure 25. The parameters of simulation are 150N  , 

10C  , 10I  . Even though the value of estimated C  is not exact correct as red and or blue, its 

performance is stable. However, it requires much number of measurements for perfect signal recovery.  
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)ii  The complexity of POMP 

1) The complexity of Moore-Penrose pseudo inverse 

We express how POMP works for MMV equation throughout pseudo-code. According to POMP 

algorithm, it requires pseudo-inverse calculation to get unique solution when we know the support set 

of original signal. In general, the calculation of matrix multiplication and inverse matrix require high 

complexity respectively  2O n  and  3O n  respectively. However, we already know that the 

number of sparsity k  is very short in comparison with the length of signal n  as k m n   so, the 

complexity of those calculations is simple as below Table.  

 

The complexity of pseudo-inverse: 

By using pseudo-inverse, we can get the nonzero values corresponding to support set. The pseudo 

inverse complexity is not high. From the relation k m n  , we can get the complexity. 

 

       

1

1

2 2

3 3 2 2

Multiplication: 1 2

Inverse: . Therefore, total:  

T T

S S S S

mk m m k k m

A A A y x

k m k k k m k m k m km O mk

O k O k O mk O mk k m



  

 
 

 
 

          

  

 

Table 9. Pseudo-inverse in MMV. 

 

2) The complexity of POMP algorithm in terms of sparsity. 

POMP algorithm has two stages for find support location which consists of common sparsity and 

innovation sparsity. In this section, we analyze the complexity of POMP algorithm related with 

sparsity and the number of sensors J . We assumed that the observed signal has both the C  number 

of common sparstiy and the I  number of innovation sparsity. In Phase 1, it will find the C  number 

of sparsity and it requires such as calculations, for examples , , 1 ,
1,..., 1

arg max ,
J

j t j t j i
i n j

 
 

  r a  and 
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  †

, , , tj t j t j j x A y . After finishing the calculations of Phase 1, it starts the calculation of Phase 2  

for finding innovation sparsity. We consider 
, , 1 ,

1,...,

arg max ,j t j t j i
i n

 


 r a  and   †

, , , tj t j t j j x A y  in 

Phase 2. The complexity of POMP algorithm is below.  

 

The complexity of POMP 

Phase 1 

Considered parameter: signal length n , measurement m , sparsity k , the number of sensors J , 

common sparstiy C , innovation sparsity I . We already know the relationship ( )C I k m n     

1) , , 1 ,
1,..., 1

1 1

 times summation

arg max ,
J

j t j t j i
i n j

m m

J

 
 

 

  r a  

Inner product and sigma summation:      O m O J O m   In general J m  

By J n  iteration:    JnO m O Jnm  

2)   †

, , , tj t j t j j x A y  

Pseudo-inverse:  2O mk  

3) The number of iteration: C  

Therefore,       2C O Jmn O mk O CJmn   In general 2k n  

In conclusion, the complexity of Phase 1 is  O CJmn  

 

Phase 2 

1) , , 1 ,
1,...,

arg max ,j t j t j i
i n

 


 r a  

Inner product :  O m  

By J n  iteration:    JnO m O Jnm  

2)   †

, , , tj t j t j j x A y  
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Pseudo-inverse:  2O mk  

3) The number of iteration: I  

Therefore,       2I O Jmn O mk O IJmn   In general 2k n  

In conclusion, the complexity of Phase 2 is  O IJmn  

 

By Phase 1 + Phase 2,   

In conclusion, the complexity of POMP is         O CJmn O IJmn O Jmn C I O Jmnk    . 

The complexity of POMP algorithm is affected by the parameters , , ,J m n k . 

Table 9. The complexity of POMP algorithm 

 

)iii The recovery condition of POMP
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 6. Performance evaluation  

In previous section, we already discuss the various correlated signals which are handled with 

references. For distinguishing those correlated signals, we named it correlated signal model (CSM) as 

following Figure 27 and then we solved MMV equation Error! Reference source not found. and 

Error! Reference source not found. by using algorithms like modified equation method (MEM), 

SOMP, ReMBo, POMP. All of the algorithms are handled in previous section.  

1) CSM-1                        2) CSM-2                       3) CSM-3                       4) CSM-4                    

    

  
 
 
 
 
 
     
 
     
     
 
 
 
 
 
 
  

        

    

    
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     

    

 
 
 
 
 
 
   
 

  
   
 
 
 
 
 
 
 

           

:  Same nonzero value

:  Unknown nonzero value

     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     



 

 . Correlated signal model (CSM)Figure 27  



INFONET, GIST 
Journal Club 

 

 

 

 - 59 - 

In Figure 27, we define correlated signal model which has various kinds of pattern. Most of the signal 

pattern can be defined by our CSM. CSM-1 and CSM-2 is similar with JSM-1 and JSM-2 which are 

handled in [Ref] but we consider the case that has some vacancies in common part and innovation part 

is also same signal model and we changed the definition of innovation part. In our case, innovation 

sparsity exist only one nonzero value in same row in different with [Ref]. CSM-1 and CSM-3 have 

common part and innovation part together but CSM-1 has same value for common part. CSM-2 has 

only common part and CSM-4 has only innovation part. Other case which does not exist in Figure 27 

will not be considered in this paper. Now, we simulate the performance POMP algorithm compared 

with other methods as ReMbo, SOMP, MEM.  

   

1) CSM-1 and Different matrix A  

We generated the CSM-1 which has common and innovation part. Its common part has same values. 

We observed the reconstruction performance for MEM, SOMP, and POMP algorithm when the signal 

has CSM-1 pattern and each sensing matrix is different.  
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 7. Conclusion  

In this chapter, we discussed the application of compressive sensing (CS) for wireless sensor networks 

(WSNs). We assumed a WSN consisting of spatially distributed sensors and one fusion center (FC). 

The sensor nodes take signal samples and pass their acquired signal samples to the FC. When the FC 

receives the transmitted data from the sensor nodes, it aims to recover the original signal waveforms, 

for later identification of the events possibly occurring in the sensed region. (Section 2.1)  

 We discussed that CS is the possible solution which provides simpler signal acquisition and 

compression. CS is suitable for the wireless sensor networks since it allows removal of intermediate 

stages such as sampling the signal and gathering the sampled signals at one collaboration point which 

would usually be the case in a conventional compression scheme. Using CS, the amount of signal 

samples that need to be transferred to the FC from the sensors can be significantly reduced. This may 

lead to reduction of power consumption at the sensor nodes, which was discussed in Section 4.1. In 

summary, each sensor with CS can save power by not needing to run complex compression operations 

on board and by cutting down signal transmissions.  

 Distributed sensors usually observe a single globally occurring event and thus the observed 

signals are often correlated with each other. We considered two types of correlations: intra- and inter-

sensor signal correlation. We provided the sparse signal models which encompass both types of 

correlation in Sections 4.2 and 4.3.  

 The FC receives the compressed signals from the sensors. The FC then recovers the original 

signal waveforms from the compressed signals using a CS recovery algorithm. We considered two 

types of algorithms. One is a greedy algorithm type, which includes the orthogonal matching pursuit 

(OMP) and the simultaneous orthogonal matching pursuit (SOMP) algorithms, discussed in Section 
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Error! Reference source not found.. The other is a gradient type for which we used the primal-dual 

interior point (PDIP) method, in Section Error! Reference source not found.. 

 Finally, we presented simulations results in which the CS based WSN system parameters 

such as the number of measurements, the sparsity, and the signal length were varied. We discussed the 

use of a joint recovery scheme at the FC. A CS recovery algorithm is referred to as the joint recovery 

scheme when it utilizes inter-sensor signal correlation as well. In contrast, when the inter-sensor signal 

correlation is not utilized, it is referred to as the separate recovery scheme.  In the joint recovery 

scheme, inter-sensor signal correlation information is incorporated in the formation of recovery 

equation as shown Eq. Error! Reference source not found. and 

Error! Reference source not found.. In the separate recovery scheme, a sensor signal recovery is 

done individually and independently from the recovery of other sensor signals. We compared the 

results of the joint recovery with those of the separate recovery scheme. We have shown that 

correlation information can be exploited and the number of measurements needed for exact 

reconstruction can be significantly reduced as shown in Figure 14. It means that the traffic volume 

transmitted from the sensors to the FC can decrease significantly without degrading the quality of the 

recovery performance. (Section Error! Reference source not found.)  

 We have shown that the CS is an efficient and effective signal acquisition and sampling 

framework for WSN which can be used to save transmittal and computational power significantly at 

the sensor node. This CS based signal acquisition and compression scheme is very simple, so it is 

suitable for inexpensive sensors. The number of compressed samples required for transmission from 

each sensor to the FC is significantly small, which makes it perfect for sensors whose operational 

power is drawn from onboard battery. Finally, the joint CS recovery at the FC exploits signal 

correlation and enables Distributed Compressive Sensing.  
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 . Summary of CS application in WSNFigure 16  
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8. Appendix  

8.1. Primal-dual interior point method (PDIP)  

The 
1L  minimization in Eq. Error! Reference source not found. can be recast as linear programming. 

Here we examine this relationship. Clearly, the 
1L  minimization problem in Eq. 

Error! Reference source not found. is not linear programming because its cost function is not linear. 

However, by using a new variable, we can transform it to linear programming. Thus, the problem that we 

want to solve is  

 

  

 

 

,
min

subject to 

i
x u

i

i i

u

x i u 





Ax b

 (24) 

  

 

 The solution of the above equation is equal to the solution of the 1L  minimization problem. 

Many approaches to solving Eq. Error! Reference source not found. have been studied and developed. 

Here, we discuss the primal-dual interior point (PDIP) method, which is an example of gradient-type 

algorithms. First, we have the Lagrangian function of Eq. Error! Reference source not found., as 

follows: 

 

    T T T T

1 2, ,L
   

            

e e
t λ v 0 1 t v A 0 t b λ t

e e
 (25) 
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where e  is the n n  identity matrix, 
10  is the zero vector, 

20  is the m n  zero vector, and 1  is 

the 1n  vector whose elements are all one, 2 1: n 
  
 

x
t R

u
, 1mv R , and 2 1 0n λ R . From the 

Lagrangian function, we have several KKT conditions,  

 

 

 

 

T

* *

3T

*

2 4

*

1

T
* * *

30,

    
      

     

 

 
 

  

 
  

  

0 e eA
v λ 0

1 e e0

A 0 t b 0

e e
t 0

e e

e e
λ t λ 0

e e

 (26) 

 

where 
30  is the 2 1n  zero vector, and 

40  is the 1m  zero vector. The main point of the PDIP is to 

seek the point  * * *, ,t λ v  that satisfies the above KKT conditions. This is achieved by defining a 

mapping function      2 1 2 1
F , , :

n m n m   
t λ v R R , which is  

 

  

   

 

 

T

T

T 2 1* * * *

4 1 3

2

F , , , ,
n m 

     
      

      
                    
 

 
 
 

0 e eA
v λ

1 e e0

e e e e
t λ v λ t 0 R t 0 λ 0

e e e e

A 0 t b

 (27) 
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where 
40  is the  2 1 1n   zero vector. Now, we would like to find the point  * * *, ,t λ v  satisfying 

 * * *

4F , , t λ v 0 . Here, we use a linear approximation method. From the Taylor expansions of the 

function  F , ,t λ v , we have  

 

        , ,
F , , F , , F , ,

 
 

        
 
  

t λ v

t

t t λ λ v v t λ v t λ v v

λ

 (28) 

 

Thus, solving the above equations yields the direction  , ,  t v λ . Next, we seek the proper step length 

along the direction that does not violate *

1

 
 

  

e e
t 0

e e
 and *

3λ 0 . The pseudo code for the PDIP 

algorithm is shown in Table 6. 

 

The primal-dual interior point method algorithm: 

1. Initialize:  

Choose 0 1mv R , 0

3λ 0 , and 
T

0 0 0   t x u , where †x A b , and 0 0 0 u x x  and iteration 

number 1k  . (The  
1

† T T


A A A A  is the Moore-Penrose pseudo-inverse of A  and T
A  denotes 

the transpose of A .) 

2. Find the direction vectors  , ,  t v λ : 

 
     

1

, ,
F , , F , ,k k k

k k k k k k


 
      
    
  

t λ v

t

v t λ v t λ v

λ

. 

3. Find the proper step length:  

Choose the largest   satisfying    
2 2

2 2
F , , F , ,k k k k k k     t λ v t λ v . 

4. Update parameters:  

1 1 1,  ,  k k k k k k            t t t v v v λ λ λ . 

5. Update the signal:  

 1 1:k k n  x x t . 
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6. Increment the iteration number k :  

Increase iteration number 1k k  , and return to Step 2 if 
2

2

k eps y Ax . 

Table 6. Primal-dual interior point method algorithm. 
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8.2 Orthogonal matching pursuit (OMP) 

The orthogonal matching pursuit (OMP) is a famous greedy-type algorithm Error! Reference source not 

found.. OMP produces a solution within k  steps because it adds one index to the sparse set   at each 

iteration. The strategy of OMP is outlined in Tables 2 and 3. 

 

Input Output 

A  measurement matrix 

A dimensional data vector 

The sparsity level  of the ideal signal

m n

m

k





A

y  
 

ˆAn estimate  in  for the ideal signal.

A set  containing  elements from 1,...,

ˆAn dimensional approximation  of the data 

ˆAn dimensional residual 

n

k

k

k k

k n

m

m





  

x R

y y

r y y

 

Table 2. Inputs and outputs of OMP algorithm. 

 

The OMP algorithm: 

1. Initialize: 

 Let the residual vector be
0 r y , the sparse set 

0 {}  , and iteration number 1t  . 

2. Find the index 
t : 1

1,...,

arg max ,t t i
i n

 


 r a . The 
ia  is the i th column vector of matrix A .  

3. Update set:  1t t t    . 

4. Signal estimate:   †

tt t  x A y  and  C

t t x 0 , where  t tx  is the set of elements whose 

indices are corresponding to the sparse set. 

5. Get new residual: ˆ ˆ,  t t t t t  y A x r y y . 

6. Increment t : Increase iteration number 1t t  , and return to Step 2 if t k . 

Table 3. OMP algorithm. 

 

 Let us examine the above OMP algorithm. In step 2, OMP selects one index that has a 

dominant impact on the residual vector r . Then, in step 3, the selected index is added to the sparse set, 

and the sub matrix 
t

A  is constructed by collecting the column vectors of A  corresponding to the 

indices of the sparse set t . OMP estimates the signal components corresponding to the indices of the 
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sparse set and updates the residual vector by removing the estimated signal components in steps 4 and 5, 

respectively. Finally, OMP finishes its procedures when the cardinality of the sparse set is k .  

 OMP is a greedy-type algorithm because it selects the one index regarded as the optimal 

decision at each iteration. Thus, its performance is dominated by its ability to find the sparse set exactly. 

If the sparse set is not correctly reconstructed, OMP’s solution could be wrong. Because OMP is very 

easy to understand, a couple of modified algorithms based on OMP have been designed and developed. 

For further information on the OMP algorithm and its modifications, interested readers are referred to two 

papers [13][14].  
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8.3 Simultaneous orthogonal matching pursuit (SOMP) 

We introduce another greedy-type algorithm based on OMP as an example: simultaneous orthogonal 

matching pursuit (SOMP) Error! Reference source not found.. This greedy algorithm has been 

proposed for treating multiple measurement vectors for JSM-2 when the sparse locations of all sensed 

signals are the same. Namely, SOMP algorithm handles multiple measurements 
jy  as an input, when 

j  is the index of distributed sensors,  1,2,...,j J . In a later section, we use this algorithm to recover 

JSM-2. The pseudo code for SOMP is shown in Table 4 and 5.  

 

Input Output 

A  measurement matrix 

A dimensional data vector 

The sparsity level  of the ideal signal

j

j

m n

m

k





A

y  
 

,

, ,

ˆAn estimate  in  for the ideal signal.

A set  containing  elements from 1,...,

ˆAn dimensional approximation  of the data 

ˆAn dimensional residual 

n

j

k

j k j

j k j j k

k n

m

m





  

x R

y y

r y y

 

Table 4. Inputs and outputs of SOMP algorithm. 

 

The SOMP algorithm: 

1. Initialize:  

Let the residual matrix be ,0 ,0j jr y . The sparse set 0 {}  , and iteration number 1t  . 

2. Find the index t : , 1 ,
1,..., 1

arg max ,
J

t j t j i
i n j

 
 

  r a . 

 The ,j ia  is the i th column vector of matrix jA . 

3. Update set:  1t t t    .  

4. Signal estimate:   †

, , tj t t j j x A y  and  ,

C

j t t x 0 , where  ,j t tx  is the set of elements 

whose indices are corresponding to the sparse set. 

5. Get new residual: , , , , ,
ˆ ˆ,  j t j t j t j t j j t  y A x r y y . 

6. Increment t : Increase iteration number 1t t  , and return to Step 2 if t k . 

Table 5. SOMP algorithm. 
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8.4 Reduce and boost (ReMBo) 

ReMBo algorithm is for recovering correlated signals. The authors in [Ref] insisted that the algorithm 

improves the recovery probability of any suboptimal methods for signal matrix X . Its idea is simple and 

effective. They transformed the matrix X  to a single vector x  and do Y  to a single measurement 

vector y . After modifying MMV equation to SMV, they apply any algorithm for SMV. We attached 

ReMBo algorithm from [Ref]. 

Input Output 

A  measurement matrix 

A dimensional data vector 

The sparsity level  of the ideal signal

j

j

m n

m

k





A

y  

ˆAn estimate  in  for the ideal signal.

ˆSupport set 

flag

n

j

S

x R

 

Table 4. Inputs and outputs of ReMBo algorithm. 

 

The ReMBo algorithm: 

Control parameters : k ,  , Maxiters 

1. Initialize:  

Set iter = 1, flag = false.  

2. while (iter   Maxiter) and (flag is false) do 

Draw a random vector a  of length j  according to randomly generated distribution. 

y Aa  

Solve y Ax  using SMV algorithm and save the solution x . 

 Ŝ I x  

If  Ŝ K  and  2
 y Ax  then 

flag = true 

else 

flag = false 

end if 

Construct X  using Ŝ  and pseudo inverse 

iter = iter + 1 

end while 

return X , Ŝ , flag 

Table 5. ReMBo algorithm. 
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