Multipath Matching Pursuit

Submitted to IEEE trans. on Information theory Authors: S. Kwon, J. Wang, and B. Shim

Presenter: Hwanchol Jang
> Multipath is investigated rather than a single path for a greedy type of search
> In the final moment, the most promising path is chosen.
> They propose "breadth-first search" and "depth-first search" for greedy algorithm.
> They provide analysis for the performance of MMP with RIP

I. Introduction

CS

$>$ The sparse signals $\mathbf{x} \in \mathbb{R}^{n}$ can be reconstructed from the compressed measurements $\mathbf{y}=\boldsymbol{\Phi} \mathbf{x} \in \mathbb{R}^{n}$ even when the system representation is underdetermined $(m<n)$, as long as the signal to be recovered is sparse (i.e., number of nonzero elements in the vector is small).

Reconstruction

1. L_{0} mimimization
$>K$-sparse signal \mathbf{x} can be accurately reconstructed using $m=2 K$ measurements in a noiseless scenario [2].

2. L1 minimization

> Since ℓ_{0}-minimization problem is NP-hard and hence not so practical, early works focused on the reconstruction of sparse signals using ℓ_{1}-norm minimization technique (e.g., basis pursuit [2]).
3. Greedy search
$>$ the greedy search approach is designed to further reduce the computational complexity of
the basis pursuit.
$>$ In a nutshell, greedy algorithms identify the support (index set of nonzero elements) of the sparse vector x in an iterative fashion, generating a series of locally optimal updates.

OMP

$>$ In the orthogonal matching pursuit (OMP) algorithm, the index of column that maximizes the magnitude of correlation between columns of Φ and the modified measurements (often called residual) is chosen as a new support element in each iteration.
$>$ If at least one incorrect index is chosen in the middle of the search, the output of OMP will be simply incorrect.

II. MMP algorithm

L0 minimization

$$
\min _{\mathbf{x}}\|\mathbf{x}\|_{0} \text { subject to } \boldsymbol{\Phi x}=\mathbf{y} .
$$

OMP

$>$ OMP is simple to implement and also computationally efficient
$>$ Due to the choice of the single candidate it is very sensitive to the selection of index.
$>$ The output of OMP will be simply wrong if an incorrect index is chosen in the middle of the search.

Multiple indices

$>$ StOMP algorithm identifying more than one indices in each iteration was proposed. In this approach, indices whose magnitude of correlation exceeds a deliberately designed threshold are chosen [9].
$>\mathrm{CoSaMP}$ and SP algorithms maintaining K supports in each iteration were introduced.
> In [12], generalized OMP (gOMP), was proposed. By choosing multiple indices corresponding to $N(>1)$ largest correlation in magnitude in each iteration, gOMP reduces the misdetection probability at the expense of increase in the false alarm probability.
> The MMP algorithm searches multiple promising candidates and then chooses one minimizing the residual in the final moment.
$>$ Due to the investigation of multiple full-blown candidates instead of partial ones, MMP improves the chance of selecting the true support.
> The effect of the random noise vector cannot be accurately judged by just looking at the partial candidate, and more importantly, incorrect decision affects subsequent decision in many greedy algorithms.
$>$ MMP is effective in noisy scenario.

Fig. 1. Comparison between the OMP and the MMP algorithm ($L=2$ and $K=3$).

III. Perfect Recovery Condition for MMP

$>$ A recovery condition under which MMP can accurately recover K-sparse signals in the noiseless scenario.
> two parts:

- A condition ensuring the successful recovery in the initial iteration $(k=1)$.
- A condition guaranteeing the success in the non-initial iteration $(k>1)$.
- By success we mean that an index of the true support T is chosen in the iteration.

RIP

$>$ A sensing matrix $\boldsymbol{\Phi}$ is said to satisfy the RIP of order K if there exists a constant $\delta \in(0,1)$ such that

$$
\begin{equation*}
(1-\delta)\|\mathbf{x}\|_{2}^{2} \leq\|\boldsymbol{\Phi} \mathbf{x}\|_{2}^{2} \leq(1+\delta)\|\mathbf{x}\|_{2}^{2} \tag{2}
\end{equation*}
$$

for any K-sparse vector \mathbf{x}.
$>$ The minimum of all constants δ satisfying (2) is called the restricted isometry constant δ_{K}.

Lemma 3.1 (Monotonicity of the restricted isometry constant [1]): If the sensing matrix $\boldsymbol{\Phi}$ satisfies the RIP of both orders K_{1} and K_{2}, then $\delta_{K_{1}} \leq \delta_{K_{2}}$ for any $K_{1} \leq K_{2}$.

Lemma 3.2 (Consequences of RIP [1]): For $I \subset \Omega$, if $\delta_{|| |}<1$ then for any $\mathbf{x} \in \mathbb{R}^{|I|}$,

$$
\begin{align*}
& \left(1-\delta_{|I|}\right)\|\mathbf{x}\|_{2} \leq\left\|\boldsymbol{\Phi}_{I}{ }^{\prime} \boldsymbol{\Phi}_{I} \mathbf{x}\right\|_{2} \leq\left(1+\delta_{|I|}\right)\|\mathbf{x}\|_{2} \tag{3}\\
& \frac{1}{1+\delta_{|| |}}\|\mathbf{x}\|_{2} \leq\left\|\left(\boldsymbol{\Phi}_{I}{ }^{\prime} \boldsymbol{\Phi}_{I}\right)^{-1} \mathbf{x}\right\|_{2} \leq \frac{1}{1-\delta_{|I|}}\|\mathbf{x}\|_{2} \tag{4}
\end{align*}
$$

Lemma 3.3 (Lemma 2.1 in [19]): Let $I_{1}, I_{2} \subset \Omega$ be two disjoint sets ($I_{1} \cap I_{2}=\varnothing$). If $\delta_{\left|l_{1}\right|\left|I_{2}\right|}<1$, then

$$
\left\|\boldsymbol{\Phi}_{I_{1}}{ }^{\prime} \boldsymbol{\Phi}_{I_{2}} \mathbf{x}\right\|_{2} \leq \delta_{I_{I_{1} \mid+I_{2}}}\|\mathbf{x}\|_{2} \text { (5) }
$$

holds for any \mathbf{x}.

Lemma 3.4: For $m \times n$ matrix $\boldsymbol{\Phi},\|\boldsymbol{\Phi}\|_{2}$ satisfies

$$
\begin{equation*}
\|\boldsymbol{\Phi}\|_{2}=\sqrt{\lambda_{\max }\left(\boldsymbol{\Phi}^{\prime} \boldsymbol{\Phi}\right)} \leq \sqrt{1+\delta_{\min (m, n)}} \tag{6}
\end{equation*}
$$

A. Success Condition in Initial Iteration

In the first iteration, MMP computes the correlation between measurements \mathbf{y} and each column ϕ_{i} of Φ and then selects L indices whose column has largest correlation in magnitude. Let Λ be the set of L indices chosen in the first iteration, then

$$
\begin{equation*}
\left\|\boldsymbol{\Phi}_{\Lambda}^{\prime} \mathbf{y}\right\|_{2}=\max _{|I|=L} \sqrt{\sum_{i \in I}\left|\left\langle\phi_{i}, \mathbf{y}\right\rangle\right|^{2}} \tag{7}
\end{equation*}
$$

Following theorem provides a condition under which at least one correct index belonging to T is chosen in the first iteration.

Theorem 3.5: Suppose $\mathrm{x} \in \mathbb{R}^{n}$ is K-sparse signal, then among L candidates at least one contains the correct index in the first iteration of the MMP algorithm if the sensing matrix Φ satisfies the RIP with

$$
\begin{equation*}
\delta_{K+L}<\frac{\sqrt{L}}{\sqrt{K}+\sqrt{L}} . \tag{8}
\end{equation*}
$$

Proof: From (7), we have

$$
\begin{align*}
\frac{1}{\sqrt{L}}\left\|\boldsymbol{\Phi}_{\Lambda}^{\prime} \mathbf{y}\right\|_{2} & =\frac{1}{\sqrt{L}} \max _{|I|=L} \sqrt{\sum_{i \in I}\left|\left\langle\phi_{i}, \mathbf{y}\right\rangle\right|^{2}} \tag{9}\\
& =\max _{|I|=L} \sqrt{\frac{1}{|I|} \sum_{i \in I}\left|\left\langle\phi_{i}, \mathbf{y}\right\rangle\right|^{2}} \tag{10}\\
& \geq \sqrt{\frac{1}{|T|} \sum_{i \in T}\left|\left\langle\phi_{i}, \mathbf{y}\right\rangle\right|^{2}} \tag{11}\\
& =\frac{1}{\sqrt{K}}\left\|\boldsymbol{\Phi}_{T}^{\prime} \mathbf{y}\right\|_{2} \tag{12}
\end{align*}
$$

where $|T|=K$. Since $\mathbf{y}=\mathbf{\Phi}_{T} \mathbf{x}_{T}$, we further have

$$
\begin{align*}
\left\|\boldsymbol{\Phi}_{\Lambda}^{\prime} \mathbf{y}\right\|_{2} & \geq \sqrt{\frac{L}{K}}\left\|\boldsymbol{\Phi}_{T}^{\prime} \boldsymbol{\Phi}_{T} \mathbf{x}_{T}\right\|_{2} \tag{13}\\
& \geq \sqrt{\frac{L}{K}}\left(1-\delta_{K}\right)\|\mathbf{x}\|_{2} \tag{14}
\end{align*}
$$

where (14) is due to Lemma 3.2.
On the other hand, when an incorrect index is chosen in the first iteration (i.e., $\Lambda \cap T=\emptyset$),

$$
\begin{equation*}
\left\|\boldsymbol{\Phi}_{\Lambda}^{\prime} \mathbf{y}\right\|_{2}=\left\|\boldsymbol{\Phi}_{\Lambda}^{\prime} \boldsymbol{\Phi}_{T} \mathbf{x}_{T}\right\|_{2} \leq \delta_{K+L}\|\mathbf{x}\|_{2} \tag{15}
\end{equation*}
$$

where the inequality follows from Lemma 3.3. This inequality contradicts (14) if

$$
\begin{equation*}
\delta_{K+L}\|\mathbf{x}\|_{2}<\sqrt{\frac{L}{K}}\left(1-\delta_{K}\right)\|\mathbf{x}\|_{2} . \tag{16}
\end{equation*}
$$

In other words, under (16) at least one correct index should be chosen in the first iteration ($T_{i}^{1} \in \Lambda$). Further, since $\delta_{K} \leq \delta_{K+N}$ by Lemma 3.1, (16) holds true if

$$
\begin{equation*}
\delta_{K+L}\|\mathbf{x}\|_{2}<\sqrt{\frac{L}{K}}\left(1-\delta_{K+L}\right)\|\mathbf{x}\|_{2} . \tag{17}
\end{equation*}
$$

Equivalently,

$$
\begin{equation*}
\delta_{K+L}<\frac{\sqrt{L}}{\sqrt{K}+\sqrt{L}} \tag{18}
\end{equation*}
$$

In summary, if $\delta_{K+L}<\frac{\sqrt{L}}{\sqrt{K}+\sqrt{L}}$, then among L indices at least one belongs to T in the first iteration of MMP.

B. Success Condition in Non-initial Iterations

Now we turn to the analysis of the success condition for non-initial iterations. In the k-th iteration $(k>1)$, we focus on the candidate s_{i}^{k-1} whose elements are exclusively from the true support T (see Fig. 3). In short, our key finding is that at least one of L indices chosen by s_{i}^{k-1} is from T under $\delta_{K+L}<\frac{\sqrt{L}}{\sqrt{K}+3 \sqrt{L}}$. Formal description of our finding is as follows.

Theorem 3.6: Suppose a candidate s_{i}^{k-1} includes indices only in T, then among L children generated from s_{i}^{k-1} at least one candidate chooses an index in T under

$$
\begin{equation*}
\delta_{K+L}<\frac{\sqrt{L}}{\sqrt{K}+3 \sqrt{L}} \tag{19}
\end{equation*}
$$

Before we proceed, we provide definitions and lemmas useful in our analysis. Let f_{i} be the i-th largest correlated index in magnitude between \mathbf{r}^{k-1} and $\left\{\phi_{j}\right\}_{j \in T^{C}}$. That is, $f_{j}=$ $\arg \max _{j \in T^{C} \backslash\left\{f_{1}, \ldots, f_{(j-1)}\right\}}\left|\left\langle\phi_{j}, \mathbf{r}^{k-1}\right\rangle\right|$. Let F_{L} be the set of these indices $\left(F_{L}=\left\{f_{1}, f_{2}, \cdots, f_{L}\right\}\right)$. Also, let α_{j}^{k} be the j-th largest correlation in magnitude between the residual \mathbf{r}^{k-1} associated with s_{i}^{k-1} and columns indexed by incorrect indices. That is,

$$
\begin{equation*}
\alpha_{j}^{k}=\left|\left\langle\phi_{f_{j}}, \mathbf{r}^{k-1}\right\rangle\right| . \tag{20}
\end{equation*}
$$

Note that α_{j}^{k} are ordered in magnitude $\left(\alpha_{1}^{k} \geq \alpha_{2}^{k} \geq \cdots\right)$. Finally, let β_{j}^{k} be the j-th largest correlation in magnitude between \mathbf{r}^{k-1} and columns whose indices belong to $T-T_{i}^{k-1}$ (the set of remaining true indices). That is,

$$
\begin{equation*}
\beta_{j}^{k}=\left|\left\langle\phi_{\varphi(j)}, \mathbf{r}^{k-1}\right\rangle\right| \tag{21}
\end{equation*}
$$

Fig. 3. Relationship between the candidates in $(k-1)$-th iteration and those in k-th iteration. Candidates inside the gray box contain elements of true support T only.
where $\varphi(j)=\arg \max _{j \in\left(T-T^{k-1}\right) \backslash\{\varphi(1), \ldots, \varphi(j-1)\}}\left|\left\langle\phi_{j}, \mathbf{r}^{k-1}\right\rangle\right|$. Similar to $\alpha_{j}^{k}, \beta_{j}^{k}$ are ordered in magnitude $\left(\beta_{1}^{k} \geq \beta_{2}^{k} \geq \cdots\right)$. In the following lemmas, we provide the upper bound of α_{L}^{k} and lower bound of β_{1}^{k}.

Lemma 3.7: α_{L}^{k} satisfies

$$
\begin{equation*}
\alpha_{L}^{k} \leq\left(\delta_{L+K-k+1}+\frac{\delta_{L+k-1} \delta_{K}}{1-\delta_{k-1}}\right) \frac{\left\|\mathbf{x}_{T-T_{j}^{k-1}}\right\|_{2}}{\sqrt{L}} . \tag{22}
\end{equation*}
$$

Proof: See Appendix A,
Lemma 3.8: β_{1}^{k} satisfies

$$
\begin{equation*}
\beta_{1}^{k} \geq\left(1-\delta_{K-k+1}-\frac{\sqrt{1+\delta_{K-k+1}} \sqrt{1+\delta_{k-1}} \delta_{K}}{1-\delta_{k-1}}\right) \frac{\left\|\mathbf{x}_{T-T_{j}^{k-1}}\right\|_{2}}{\sqrt{K-k+1}} \tag{23}
\end{equation*}
$$

Proof: See Appendix B

Proof of Theorem 3.6. From the definitions of α_{j}^{k} and β_{j}^{k}, it is clear that a (sufficient) condition under which at least one out of L indices is true in k-th iteration of MMP is

$$
\begin{equation*}
\alpha_{L}^{k}<\beta_{1}^{k} \tag{24}
\end{equation*}
$$

Fig. 4. Comparison between α_{N}^{k} and β_{1}^{k}. If $\beta_{1}^{k}>\alpha_{N}^{k}$, then among L indices chosen in K-iteration, at least one is from the true support T.

First, from Lemma 3.1 and 3.7, we have

$$
\begin{align*}
\alpha_{L}^{k} & \leq\left(\delta_{L+K-k+1}+\frac{\delta_{L+k-1} \delta_{K}}{1-\delta_{k-1}}\right) \frac{\left\|\mathbf{x}_{T-s_{j}^{k-1}}\right\|_{2}}{\sqrt{L}} \tag{25}\\
& \leq\left(\delta_{L+K}+\frac{\delta_{L+K} \delta_{L+K}}{1-\delta_{L+K}}\right) \frac{\left\|\mathbf{x}_{T-s_{j}^{k-1}}\right\|_{2}}{\sqrt{L}} \tag{26}\\
& =\frac{\delta_{L+K}}{1-\delta_{L+K}} \frac{\left\|\mathbf{x}_{T-s_{j}^{k-1}}\right\|_{2}}{\sqrt{L}} . \tag{27}
\end{align*}
$$

Also, from Lemma 3.1 and 3.8, we have

$$
\begin{align*}
\beta_{1}^{k} & \geq\left(1-\delta_{K-k+1}-\frac{\sqrt{1+\delta_{K-k+1}} \sqrt{1+\delta_{k-1}} \delta_{K}}{1-\delta_{k-1}}\right) \frac{\left\|\mathbf{x}_{T-s_{j}^{k-1}}\right\|_{2}}{\sqrt{K-k+1}} \tag{28}\\
& \geq\left(1-\delta_{L+K}-\frac{\left(1+\delta_{L+K}\right) \delta_{L+K}}{\left(1-\delta_{L+K}\right)}\right) \frac{\left\|\mathbf{x}_{T-s_{j}^{k-1}}\right\|_{2}}{\sqrt{K-k+1}} \tag{29}\\
& =\frac{1-3 \delta_{L+K}}{1-\delta_{L+K}} \frac{\left\|\mathbf{x}_{T-s_{j}^{k-1}}\right\|_{2}}{\sqrt{K-k+1}} . \tag{30}
\end{align*}
$$

Using (24), (27), and (30), we can obtain the sufficient condition of (24) as

$$
\begin{equation*}
\frac{1-3 \delta_{L+K}}{1-\delta_{L+K}} \frac{\left\|\mathbf{x}_{T-s_{j}^{k-1}}\right\|_{2}}{\sqrt{K-k+1}}>\frac{\delta_{L+K}}{1-\delta_{L+K}} \frac{\left\|\mathbf{x}_{T-s_{j}^{k-1}}\right\|_{2}}{\sqrt{L}} \tag{31}
\end{equation*}
$$

From (31), we further have

$$
\begin{equation*}
\delta_{L+K}<\frac{\sqrt{L}}{\sqrt{K-k+1}+3 \sqrt{L}} . \tag{32}
\end{equation*}
$$

Since $\sqrt{K-k+1}<\sqrt{K}$ for $k>1$, (32) holds under $\delta_{L+K}<\frac{\sqrt{L}}{\sqrt{K}+3 \sqrt{L}}$, which completes the proof.

Appendix A

Proof of Lemma 3.7

Proof: The ℓ_{2}-norm of the correlation $\boldsymbol{\Phi}_{F_{L}}^{\prime} \mathbf{r}^{k-1}$ is expressed as

$$
\begin{align*}
\left\|\boldsymbol{\Phi}_{F_{L}}^{\prime} \mathbf{r}^{k-1}\right\|_{2} & =\left\|\boldsymbol{\Phi}_{F_{L}}^{\prime} \mathbf{P}_{s_{j}^{k-1}}^{\perp} \boldsymbol{\Phi}_{T-T_{j}^{k-1} \mathbf{x}_{T-T_{j}^{k-1}}}\right\|_{2} \tag{102}\\
& =\| \boldsymbol{\Phi}_{F_{L}}^{\prime} \boldsymbol{\Phi}_{T-T_{j}^{k-1}} \mathbf{x}_{T-s_{j}^{k-1}}-\boldsymbol{\Phi}_{F_{L}^{\prime}}^{\prime} \mathbf{P}_{T_{j}^{k-1}} \boldsymbol{\Phi}_{T-T_{j}^{k-1} \mathbf{x}_{T-T_{j}^{k-1}} \|_{2}} \tag{103}\\
& \leq\left\|\boldsymbol{\Phi}_{F_{L}}^{\prime} \boldsymbol{\Phi}_{T-s_{j}^{k-1}} \mathbf{x}_{T-T_{j}^{k-1}}\right\|_{2}+\left\|\boldsymbol{\Phi}_{F_{L}}^{\prime} \mathbf{P}_{T_{j}^{k-1}} \boldsymbol{\Phi}_{T-T_{j}^{k-1} \mathbf{x}_{T-T_{j}^{k-1}}}\right\|_{2} . \tag{104}
\end{align*}
$$

Since F_{L} and $T-s_{j}^{k-1}$ are disjoint $\left(F_{L} \cap\left(T-s_{j}^{k-1}\right)=\emptyset\right)$ and also noting that the number of correct indices in s_{j}^{k} is k by the hypothesis,

$$
\begin{equation*}
\left|F_{L}\right|+\left|T-s_{j}^{k-1}\right|=L+K-(k-1) \tag{105}
\end{equation*}
$$

Using this together with Lemma 3.3,

$$
\begin{equation*}
\left\|\boldsymbol{\Phi}_{F_{L}^{\prime}}^{\prime} \boldsymbol{\Phi}_{T-T_{j}^{k-1}} \mathbf{x}_{T-s_{j}^{k-1}}\right\|_{2} \leq \delta_{L+K-k+1}\left\|\mathbf{x}_{T-T_{j}^{k-1}}\right\|_{2} . \tag{106}
\end{equation*}
$$

Similarly, noting that $F_{L} \cap T_{j}^{k-1}=\emptyset$ and $\left|F_{L}\right|+\left|s_{j}^{k-1}\right|=L+k-1$, we have
where

$$
\begin{align*}
& \left\|\boldsymbol{\Phi}_{T_{j}^{k-1}}^{\dagger} \mathbf{\Phi}_{T-T_{j}^{k-1}} \mathbf{x}_{T-T_{j}^{k-1}}\right\|_{2} \neq\left(\boldsymbol{\Phi}_{T_{j}^{k-1}}^{\prime} \mathbf{\Phi}_{T_{j}^{k-1}}\right)^{-1} \mathbf{\Phi}_{T_{j}^{k-1}}^{\prime} \mathbf{\Phi}_{T-T_{j}^{k-1}} \mathbf{X}_{T-T_{j}^{k-1}} \|_{2} \tag{108}\\
& \leq \begin{array}{c}
1 \\
1-\delta_{k-1}
\end{array} \| \boldsymbol{\Phi}_{T_{j}^{k-1}}^{\prime} \boldsymbol{\Phi}_{T-T_{j}^{k-1} \mathbf{x}_{T-T_{j}^{k-1}} \|_{2}, ~} \tag{109}\\
& \leq \begin{array}{c}
\delta_{(k-1)+K-(k-1)} \\
1-\delta_{k-1}
\end{array}\left\|\mathbf{x}_{T-T_{j}^{k-1}}\right\|_{2} \tag{110}\\
& =\frac{\delta_{K}}{1-\delta_{k-1}}\left\|\mathbf{x}_{T-T_{j}^{k-1}}\right\|_{2} \tag{111}
\end{align*}
$$

where (109) and (110) follow from Lemma 3.2 and 3.3, respectively. Since T_{j}^{k-1} and $T-T_{j}^{k-1}$ are disjoint, if the number of correct indices in T_{j}^{k-1} is $k-1$, then

$$
\begin{equation*}
\left|T_{j}^{k-1} \cup\left(T-T_{j}^{k-1}\right)\right|=(k-1)+K-(k-1) \tag{112}
\end{equation*}
$$

Using (104), (106), (107), and (111), we have

$$
\begin{equation*}
\left\|\boldsymbol{\Phi}_{F_{L}^{\prime}}^{\prime} \mathbf{r}^{k-1}\right\|_{2} \leq\left(\delta_{L+K-k+1}+\frac{\delta_{L+k-1} \delta_{K}}{1-\delta_{k-1}}\right)\left\|\mathbf{x}_{T-T_{j}^{k-1}}\right\|_{2} . \tag{113}
\end{equation*}
$$

Using the norm inequality $\left(\|\mathbf{z}\|_{1} \leq \sqrt{\|\mathbf{z}\|_{0}}\|\mathbf{z}\|_{2}\right)$, we further have

$$
\begin{align*}
\left\|\boldsymbol{\Phi}_{F_{L}^{\prime}} \mathbf{r}^{k-1}\right\|_{2} & \geq \frac{1}{\sqrt{L}} \sum_{i=1}^{L} \alpha_{i}^{k} \tag{114}\\
& \geq\left\|\boldsymbol{\Phi}_{F_{L}^{\prime}}^{\prime} \mathbf{r}^{k-1}\right\|_{2} \tag{115}\\
& \geq \frac{1}{\sqrt{L}} L \alpha_{L}^{k}=\sqrt{L} \alpha_{L}^{k} \tag{116}
\end{align*}
$$

where α_{j}^{k} is $\left|\left\langle\phi_{f_{j}}, \mathbf{r}^{k-1}\right\rangle\right| 5$ and $\alpha_{1}^{k} \geq \alpha_{2}^{k} \geq \cdots \geq \alpha_{L}^{k}$. Combining (113) and (116), we have

$$
\begin{equation*}
\left(\delta_{L+K-k+1}+\frac{\delta_{L+k-1} \delta_{K}}{1-\delta_{k-1}}\right)\left\|\mathbf{x}_{T-T_{j}^{k-1}}\right\|_{2} \geq \sqrt{L} \alpha_{L}^{k} \tag{117}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\alpha_{L}^{k} \leq\left(\delta_{L+K-k+1}+\frac{\delta_{L+k-1} \delta_{K}}{1-\delta_{k-1}}\right) \frac{\left\|\mathbf{x}_{T-T_{j}^{k-1}}\right\|_{2}}{\sqrt{L}} . \tag{118}
\end{equation*}
$$

Appendix B

Proof of Lemma 3.8

Proof: Since β_{1}^{k} is the largest correlation in magnitude between \mathbf{r}^{k-1} and $\left\{\phi_{j}\right\}_{j \in T-T_{j}^{k-1}}$ $\left(\left|\left\langle\phi_{\varphi(j)}, \mathbf{r}^{k-1}\right\rangle\right|\right){ }^{6}$, it is clear that

$$
\begin{equation*}
\beta_{1}^{k} \geq\left|\left\langle\phi_{j}, \mathbf{r}^{k-1}\right\rangle\right| \tag{119}
\end{equation*}
$$

for all $j \in T-T_{j}^{k-1}$, and hence

$$
\begin{align*}
\beta_{1}^{k} & \geq \frac{1}{\sqrt{K-(k-1)}}\left\|\boldsymbol{\Phi}_{T-T_{j}^{k-1}}^{\prime} \mathbf{r}^{k-1}\right\| \tag{120}\\
& =\frac{1}{\sqrt{K-k+1}}\left\|\boldsymbol{\Phi}_{T-T_{j}^{k-1}}^{\prime} \mathbf{P}_{T_{j}^{k-1}}^{\perp} \boldsymbol{\Phi} \mathbf{x}\right\| \tag{121}
\end{align*}
$$

$$
\begin{aligned}
& { }^{5} f_{j}=\arg \max _{j \in T^{C} \backslash\left\{f_{1}, \ldots, f_{(j-1)}\right\}}\left|\left\langle\phi_{j}, \mathbf{r}^{k-1}\right\rangle\right| \\
& { }^{6} \varphi(j)=\max _{j \in\left(T-T^{k-1}\right) \backslash\{\varphi(1), \ldots, \varphi(j-1)\}}^{\arg }\left|\left\langle\phi_{j}, \mathbf{r}^{k-1}\right\rangle\right|
\end{aligned}
$$

where (121) follows from $\mathbf{r}^{k-1}=\mathbf{y}-\mathbf{\Phi}_{T_{j}^{k-1}} \boldsymbol{\Phi}_{T_{j}^{k-1}}^{\dagger} \mathbf{y}=\mathbf{P}_{T_{j}^{k-1}}^{\perp} \mathbf{y}$. Using the triangle inequality,

$$
\begin{align*}
& \beta_{1}^{k} \geq \frac{1}{\sqrt{K-k+1}}\left\|\mathbf{\Phi}_{T-T_{j}^{k-1}}^{\prime} \mathbf{P}_{T_{j}^{k-1}}^{\perp} \mathbf{\Phi}_{T-T_{j}^{k-1}} \mathbf{X}_{T-T_{j}^{k-1}}\right\|_{2} \tag{122}\\
& \geq \frac{\left\|\boldsymbol{\Phi}_{T-T_{j}^{k-1}}^{\prime} \boldsymbol{\Phi}_{T-T_{j}^{k-1}} \mathbf{x}_{T-T_{j}^{k-1}}\right\|_{2}-\left\|\boldsymbol{\Phi}_{T-T_{j}^{k-1}}^{\prime} \mathbf{P}_{T_{j}^{k-1}} \mathbf{\Phi}_{T-T_{j}^{k-1}} \mathbf{x}_{T-T_{j}^{k-1}}\right\|_{2}}{\sqrt{K-k+1}} . \tag{123}
\end{align*}
$$

Since $\left|T-T_{j}^{k-1}\right|=K-(k-1)$,
and also

$$
\begin{align*}
\left\|\boldsymbol{\Phi}_{T-T_{j}^{k-1}}^{\prime} \mathbf{P}_{T_{j}^{k-1}} \mathbf{\Phi}_{T-T_{j}^{k-1}} \mathbf{x}_{T-T_{j}^{k-1}}\right\|_{2} & \leq\left\|\mathbf{\Phi}_{T-T_{j}^{k-1}}^{\prime}\right\|_{2}\left\|\mathbf{P}_{T_{j}^{k-1}} \mathbf{\Phi}_{T-T_{j}^{k-1}} \mathbf{x}_{T-T_{j}^{k-1}}\right\|_{2} \tag{125}\\
& \leq \sqrt{1+\delta_{K-k+1}}\left\|\mathbf{P}_{T_{j}^{k-1}} \mathbf{\Phi}_{T-T_{j}^{k-1}} \mathbf{x}_{T-T_{j}^{k-1}}\right\|_{2} \tag{126}
\end{align*}
$$

where (126) follows from Lemma 3.4 Further, we have

$$
\begin{align*}
& \left\|\mathbf{P}_{T_{j}^{k-1}} \boldsymbol{\Phi}_{T-T_{j}^{k-1}} \mathbf{x}_{T-T_{j}^{k-1}}\right\|_{2} \tag{127}\\
& \quad=\left\|\boldsymbol{\Phi}_{T_{j}^{k-1}}\left(\boldsymbol{\Phi}_{T_{j}^{k-1}}^{\prime} \boldsymbol{\Phi}_{T_{j}^{k-1}}\right)^{-1} \boldsymbol{\Phi}_{T_{j}^{k-1}}^{\prime} \boldsymbol{\Phi}_{T-T_{j}^{k-1} \mathbf{x}_{T-T_{j}^{k-1}}}\right\|_{2} \tag{128}\\
& \quad \leq \sqrt{1+\delta_{k-1}}\left\|\left(\boldsymbol{\Phi}_{T_{j}^{k-1}}^{\prime} \boldsymbol{\Phi}_{T_{j}^{k-1}}\right)^{-1} \boldsymbol{\Phi}_{T_{j}^{k-1}}^{\prime} \boldsymbol{\Phi}_{T-T_{j}^{k-1} \mathbf{x}_{T-T_{j}^{k-1}}}\right\|_{2} \tag{129}\\
& \quad \leq \frac{\sqrt{1+\delta_{k-1}}}{1-\delta_{k-1}}\left\|\boldsymbol{\Phi}_{T_{j}^{k-1}}^{\prime} \boldsymbol{\Phi}_{T-T_{j}^{k-1}} \mathbf{x}_{T-T_{j}^{k-1}}\right\|_{2} \tag{130}\\
& \quad \leq \frac{\delta_{(k-1)+K-(k-1)} \sqrt{1+\delta_{k-1}}}{1-\delta_{k-1}}\left\|\mathbf{x}_{T-T_{j}^{k-1}}\right\|_{2} \tag{131}
\end{align*}
$$

where (129) and (130) are from the definition of RIP and Lemma 3.2 (131) follows from Lemma 3.3 and $\left|T_{j}^{k-1} \cup\left(T-T_{j}^{k-1}\right)\right|=(k-1)+K-(k-1)$ since T_{j}^{k-1} and $T-T_{j}^{k-1}$ are disjoint sets. Using (126) and (131), we obtain

$$
\begin{equation*}
\| \boldsymbol{\Phi}_{T-T_{j}^{k-1}}^{\prime} \mathbf{P}_{T_{j}^{k-1}} \boldsymbol{\Phi}_{T-T_{j}^{k-1} \mathbf{x}_{T-T_{j}^{k-1}}\left\|_{2} \leq \frac{\sqrt{1+\delta_{K-k+1}} \sqrt{1+\delta_{k-1}} \delta_{K}}{1-\delta_{k-1}}\right\| \mathbf{x}_{T-T_{j}^{k-1}} \|_{2}} \tag{132}
\end{equation*}
$$

Finally, by combining ((123), (124) and (132), we have

$$
\begin{equation*}
\beta_{1}^{k} \geq\left(1-\delta_{K-k+1}-\frac{\sqrt{1+\delta_{K-k+1}} \sqrt{1+\delta_{k-1}} \delta_{K}}{1-\delta_{k-1}}\right) \frac{\left\|\mathbf{x}_{T-T_{j}^{k-1}}\right\|_{2}}{\sqrt{K-k+1}} \tag{133}
\end{equation*}
$$

References

[1] E. J. Candes and T. Tao, "Decoding by linear programming," IEEE Trans. Inf. Theory, vol. 51, no. 12, pp. 4203-4215, Dec. 2005.
[2] E. J. Candes, J. Romberg, and T. Tao, "Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information," IEEE Trans. Inf. Theory, vol. 52, no. 2, pp. 489-509, Feb. 2006.
[3] E. Liu and V. N. Temlyakov, "The orthogonal super greedy algorithm and applications in compressed sensing," IEEE Trans. Inf. Theory, vol. 58, no. 4, pp. 2040-2047, April 2012.
[4] J. A. Tropp and A. C. Gilbert, "Signal recovery from random measurements via orthogonal matching pursuit," IEEE Trans. Inf. Theory, vol. 53, no. 12, pp. 4655-4666, Dec. 2007
[5] M. A. Davenport and M. B. Wakin, "Analysis of orthogonal matching pursuit using the restricted isometry property," IEEE Trans. Inf. Theory, vol. 56, no. 9, pp. 4395-4401, Sept. 2010.
[6] T. T. Cai and L. Wang, "Orthogonal matching pursuit for sparse signal recovery with noise," IEEE Trans. Inf. Theory, vol. 57, no. 7, pp. 4680-4688, July 2011.
[7] T. Zhang, "Sparse recovery with orthogonal matching pursuit under rip," IEEE Trans. Inf. Theory, vol. 57, no. 9, pp. 6215-6221, Sept. 2011.
[8] R. G. Baraniuk, M. A. Davenport, R. DeVore, and M. B. Wakin, "A simple proof of the restricted isometry property for random matrices," Constructive Approximation, vol. 28, pp. 253-263, Dec. 2008.
[9] D. L. Donoho, Y. Tsaig, I. Drori, and J. L. Starck, "Sparse solution of underdetermined systems of linear equations by stagewise orthogonal matching pursuit," IEEE Trans. Inf. Theory, vol. 58, no. 2, pp. 1094-1121, Feb. 2012.
[10] D. Needell and J. A. Tropp, "Cosamp: iterative signal recovery from incomplete and inaccurate samples," Commun. ACM, vol. 53, no. 12, pp. 93-100, Dec. 2010.
[11] W. Dai and O. Milenkovic, "Subspace pursuit for compressive sensing signal reconstruction," IEEE Trans. Inf. Theory, vol. 55, no. 5, pp. 2230-2249, May 2009.
[12] J. Wang, S. Kwon, and B. Shim, "Generalized orthogonal matching pursuit," IEEE Trans. Signal Process., vol. 60, no. 12, pp. 6202-6216, Dec. 2012.
[13] A. J. Viterbi, "Error bounds for convolutional codes and an asymptotically optimum decoding algorithm," IEEE Trans. Inf. Theory, vol. 13, no. 2, pp. 260-269, April 1967.
[14] E. Viterbo and J. Boutros, "A universal lattice code decoder for fading channels," IEEE Trans. Inf. Theory, vol. 45, no. 5, pp. 1639-1642, July 1999.
[15] B. Shim and I. Kang, "Sphere decoding with a probabilistic tree pruning," IEEE Trans. Signal Process., vol. 56, no. 10, pp. 4867-4878, Oct. 2008.
[16] B. M. Hochwald and S. Ten Brink, "Achieving near-capacity on a multiple-antenna channel," IEEE Trans. Commun., vol. 51, no. 3, pp. 389-399, March 2003.
[17] W. Chen, M. R. D. Rodrigues, and I. J. Wassell, "Projection design for statistical compressive sensing: A tight frame based approach," IEEE Trans. Signal Process., vol. 61, no. 8, pp. 2016-2029, 2013.
[18] S. Verdu, Multiuser Detection, Cambridge University Press, 1998.
[19] E. J. Candes, "The restricted isometry property and its implications for compressed sensing," Comptes Rendus Mathematique, vol. 346, no. 9-10, pp. 589-592, May 2008.
[20] D. Needell and R. Vershynin, "Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit," Foundations of Computational Mathematics, vol. 9, pp. 317-334, June 2009.

