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Short summary: In the paper, the authors give a sufficient condition of the Orthogonal Matching Pursuit 

(OMP) algorithm. In [2], Wakin and Davenport insisted that OMP can reconstruct any K  sparse signal if 

 1 1 3K K   , where 
K  is the restricted isometry constant. However, in this talk, an improved sufficient 

condition that guarantees the perfect recovery of OMP is presented 

I. FINAL SUMMARY OF THE PAPER 

a. A strategy of the proof of Theorem 1. 

1) We aim to find a condition such that the OMP algorithm selects a correct index in the 

first iteration. 

=> We need to show that min , max ,i j
i j 

a y a y . (e.g., see from (7) to (10).) 

2) Let us suppose that the initial k  iterations of the OMP algorithm are successful, and 

that k  is the estimated support set after the initial k  iterations. Now, the OMP 

algorithm selects a correct index, which belongs to k , in the 1k   iteration. 

=> Clearly, 
k  , therefore  ˆk k k

k span   r y A x P y A  can be considered 

as a linear combination of the K  columns of A . Thus, k r Ab , where 
0

Kb , and 

   supp supp b x .  

=> Again, we find a condition such that the OMP algorithm selects a correct index 1kt   

which belongs to  supp b . 

=> Furthermore, for any ki , we have , 0k

i r a . Thus, 1k kt   . 

3) Thus, we conclude that the OMP algorithm can reconstruct K  sparse signal provided 

that the condition of 1) and the condition of 2) are satisfied 

 

b. Comparison between the result by the authors in this paper and the result by 

Davenport and Wakin. 

On the Recovery Limit of Sparse Signal Using Orthogonal 

Matching Pursuit 
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According to the authors, the improvement is possible due to 1) contradiction based 

construction of the success condition in the first iteration ( min , max ,i j
i j 

a y a y ) , and 

2) observation that the residual in the general iteration preserves the sparsity level of the 

input signal. ( k r Ab , where 
0

Kb , and    supp supp b x ). 

In fact, the authors again improved the result by Davenport and Wakin. 

The more detailed explanations are referred to the paper. 

 

c. Future Works 

1) Can we apply the techniques, which are used in the proof, to find a sufficient condition 

of an algorithm based from the OMP algorithm? For example, the SOMP algorithm selects 

a index i such as 
 

arg max
kT

i
qi

a R , where 
     

1

k k k

S
 
 

R r r , 
 

,
ˆk k

k

i i i
 r y A x , 

and 1 or 2q  . Can we find a condition such that the SOMP algorithm selects a correct 

index? 

II. HISTORY OF SUFFICIENT CONDITIONS OF THE OMP ALGORITHM 

In the below table 1, sufficient conditions that the OMP algorithm reconstructs a K  spars signal from a set of 

linear measurements y Ax , where 
M NA ( N M ), are given. 

 

Year A sufficient condition 

2007[1]   1 2 1K    

2010[2]   1 1 3K K    

 

Besides, there are many theoretical papers which analyze algorithms based on the OMP algorithm. In here, it is 

not scope of this seminar. Therefore, we do not care about them. 

 

III. SYSTEM MODEL 

Let us consider the below equation: 

 ,y Ax  (1) 

where 
M NA ( N M ), and 

Nx  is a K  sparse signal, and My  is a set of linear measurements. 

The smallest constant K  called “the restricted isometry constant” satisfies 
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2 2 2

2 2 2
1 1K K    x Ax x  (2) 

for any K  sparse signal x . 

IV. MAIN RESULTS 

A. Improved Recovery Bound of the OMP algorithm 
Theorem 1: For any K  sparse signal x , the OMP algorithm perfectly reconstructs x  from y  if the isometry 

constant 
1K 
 satisfies  

 1

1
.

1
K

K
  


 (3) 

In this talk, we try to understand a proof of Theorem 1. 

Before we study the proof, let us consider whether the OMP algorithm perfectly reconstructs x  or not if 

1 1K K   . 

B. The OMP algorithm can fail under 1 1K K   . 

Example 1: Let us consider the problem of reconstructing a K  sparse signal 
1Kx  such as 

1 0Kx   , and 

1ix   for 1, ,i K  from y Ax , where 

    1 1

1

1
.

1

K KT

b b

b

b

b b

  

 
 
  
 
 
 

A A  

Obviously, all the Eigen values of T
A A  are 1 2 11 , and 1 .K Kb Kb            (See Example 1 on 

Appendix). When we assume  1b K K  , T
A A  becomes 

 

   

 

 

   

   1 1

1 1 1

1 1
,

1

1 1 1

K KT

K K K K

K K

K K

K K K K

  

  
 
 

 

  
 

 
  
 

A A  (4) 

and the smallest and biggest Eigen values are  

  min max1 1 , and 1 1 .K K K      
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Therefore, we have 1 1K K   (In fact, all the Eigen values of T
A A  must be contained in the interval 

1 ,1   
 

, Thus,     1 max minmax 1,1T T

K     A A A A ). Now, we investigate a quantity ,ia y  

for 1, , 1i K  . For the OMP algorithm to reconstructs x , 
1,Ka y  must be less than any ,ia y  for 

1, ,i K . This is reason that we investigate the quantities. First, for  1, ,i K , we have 

 

 

 

 

, ,

          ,

1
          1 ,

a

i i

b
T

i

c K

K K






 

a y a Ax

A a x  (5) 

where  a  from the fact y Ax ,  b  from the fact , ,T T T T

i i i i  a Ax a Ax x A a x A a , and  c  from the 

fact that T

iA a  is the i
th

 column of T
A A  presented in (4), and x  such as 1 0Kx   , and 1ix   for 1, ,i K . 

Second, for 1i K  , we have 

 

1 1

1

, ,

              ,

1
              .

K K

T

K

K

 









a y a Ax

A a x  (6) 

Obviously, the OMP algorithm must fail in the first iteration if an inequality 
1, ,K i a y a y  for all 

 1, ,i K . The inequity becomes 

 
1 1

1
K

K K K


   

which is always true if 2K  . Thus, the OMP algorithm in the first iteration selects an incorrect index. 

V. PROOF OF THEOREM 1 

A. Notations 

The below notations will be used throughout the rest of this presentation.    supp : 0ii x  x  is the set of 

indices corresponding to non-zero coefficients of x .  is the cardinality of , and  is the set of 

elements belonging to  but not to . 
M

A  is a sub-matrix of A  which contains columns 
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corresponding to indices of . x  is a restriction of x  to the elements indexed by .  span A  is 

the span of columns in A , T
A  is the transpose of A , and  

1
† T T



A A A A  is the pseudo inverse of 

A . †P A A  is the orthogonal projection onto  span A , and   P I P  is the orthogonal projection 

onto the orthogonal complement of  span A . 

B. Lemmas 

We need the below lemmas to prove Theorem 1. 

Lemma 1: For a set , if 1  , then  

    2 22
1 1T    v A A v v  

holds for any v  supported on . 

Lemma 2: For disjoint sets , , if 1


 , then  

 
22 2

T T 


 A Av A A v v  

holds for any v  supported on . 

Lemma 3: If the sensing matrix satisfies the RIP of both orders 1K  and 2K , then 
1 2K K   for any 1 2K K  

All proofs of the above lemmas are given in [3].  

C. Proof of Theorem 1 

1) We provide a condition under which the OMP algorithm selects a correct index in the first iteration. 2) We 

show that the residual in the general iteration preservers the sparsity of a K  sparse signal. 3) The condition for the 

first iteration can be extended to the general iteration. 4) Theorem 1 is established from the conditions. The 

statements are an overall strategy of Proof of Theorem1. 

First, we need investigate the condition when the OMP algorithm selects a correct index in the first iteration. Let 

us denote 
kt  be the index of the column maximally correlated with the residual 1k

r . In the first iteration, we have  

 
1 0arg max , arg max , .i i

i i
t  a r a y  (7) 

Now, let us suppose that 
1t  always belong to the support set  of x . From (7), we have 
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1

( )

2

( )

2

,

1
            

1
            1 ,

T

t

a
T

b

K

K

K







 

a y A y

A y

x

 (8) 

where  a  from the norm inequalities, and  b  from the fact that y  A x  and Lemma 1.Suppose that 
1t  

does not belong to the support set , then  

 

 

1 1

( )

1 2

,

            1 ,

T

t t

a

K 



 

a y a A x

x

 (9) 

where  a  from Lemma 2. Clearly, 
1t  must belong to the support set . Thus, if  

    12 2

1
1 1K K

K
    x x  (10) 

then, the OMP algorithm selects a correct index in the first iteration. The equation (10) becomes 1 1K KK    . 

From Lemma 3, the inequality becomes 1 1 1K KK     which leads to 

 1

1

1
K

K
  


 (11) 

In short, if (11) is true, then the OMP algorithm always selects a correct index in the first iteration. 

Now, we investigate a condition such that the OMP algorithm selects a correct index in the  1k  th
 iteration. 

Let us suppose that initial k  iterations of the OMP algorithm are successful. Namely,  1, ,k kt t  . Then, 

 ˆk k

k span  r y A x A  because y A x  and kA  is a sub-matrix of A . Thus, k
r  can be expressed 

as k kr Ax  ( i.e., k
r  is a linear combination of the K  columns of A ), where the support set of k

x  belongs 

to the support set of x . If the OMP algorithm selects a correct index belonging to the support set of k
x , then the 

OMP algorithm also selects a correct index belonging to the support set of x . Clearly, if 1 1 1K KK     is 

satisfied, then the OMP algorithm success in the  1k  th
 iteration. 

Last, we need to show that the index 
1kt 
 selected at the  1k  th

 iteration of the OMP algorithm does not 

belong to kT . First, we have 
†ˆ k kx A y , and ˆk k k

k   r y A x P y . Second, for all 
ki , we have  
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†

ˆ, ,

ˆ, ,

0.

k k

k k

k k

k

i i

i i

T T

i iA x

 

 

 



a r a y A x

a y a A x

a a A A y

 

Therefore, we conclude that k
r  is orthogonal to the columns 

ia  for all 
ki T . It leads to 

1k kt   . 

Furthermore, if 
k r 0  and  k spanr A , then there exists i  such as , 0k

i a r . Therefore, the OMP 

algorithm selects ki . 

Now, we apply the mathematical induction. First, we proved that the OMP algorithm selects a correct index if 

1

1

1
K

K
  


. Second, when we assume that the initial k  iterations of the OMP algorithm are successful, the 

OMP algorithm selects a correct index in the  1k  th
 iteration if 1

1

1
K

K
  


. Thus, the OMP algorithm will 

terminate after the K th
 iteration if 1

1

1
K

K
  


. 

VI. DISCUSSION ON THEOREM 1 

It is hard for us to determine 1K   from a sensing matrix because we need to examine all possible K sparse signal. 

However, the below result is known 

Result [4]: If an M N  sensing matrix A  whose entries are i.i.d.  0,1 M , then A  obeys the RIP 

condition K   with high probability under  

 
2

log
N

K
K

M





 
 
 

  (12) 

where   is a positive constant. When we utilize the above inequalities, we indirectly compare the result obtained 

by [2]. 

 

 A sufficient condition A sufficient condition on M  

[1]  1 1 3K K     9 1 log
1

N
M K K

K
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The paper  1 1 1K K       
2

1 1 log
1

N
M K K

K
  


 

 

Appendix 

Example 1) computing all the Eigen values of 

1

1

1

b b

b

b

b b

 
 
 
 
 
 

.  
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1 1 1 0 1

1 0 1 1 0 1 1

1 1 1

1 0 1 1 0 1

0 1 1 0 1 1

0 1 0 0 1 2

1 1 2

b b b b b b

b b b b b b

b b b b b b

b b b b

b b b b

b b b

b b

   

    

  

   

   

 

 

     

          

  

       

         

   

    

 

 Therefore, 
1 2 1 b    , and 

3 1 2b   . 

   

 

 

 

 

 

 

 

 

1 1 1

1 0 1 1 0 0 1 1 0

1 1 0 0 1 1

1 1 1

1 0 0 1 1 0 0 1

0 1 1 0 0 1 1 0

0 0 1 1 0 0 1 1

1 0 1

1 0 0 1

0 1

b b b b b b b b b

b b b b b b b

b b b b b b b b

b b b b b b b b b

b b b b

b b b b

b b b b

b b b b b b

b b

b b
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1 0 0 1

1 0 0 1 1 0

0 0 1 1 0 0 1 1

0 0 2 1 0 0 0 1 3

1 1 3

b b

b b

b b b b

b b b

b b

 

  

   

 

 

   

     


       

   

    

Therefore, 1 2 3 1 b      , and 4 1 3b    

Thus, we concluded all the Eigen values of a    1 1K K  

1

1

1

b b

b

b

b b

 
 
 
 
 
 

 are 

1 11 ,  and 1K Kb Kb         . 
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